
 

Optimality conditions for continuous 

nonlinear optimization 
 

 

 

Neculai Andrei 
Research Institute for Informatics, 

Center for Advanced Modeling and Optimization 

8-10 Averescu Avenue, Bucharest 1, Romania 

E-mail:  nandrei@ici.ro 

 

 

January 12, 2016 

 

 
Abstract. The optimality conditions for the general nonlinear optimization 

problems are presented. The general concepts in nonlinear optimization, the 

optimality conditions for unconstrained optimization, the optimality conditions for 

problems with inequality constraints, the optimality conditions for problems with 

equality constraints, the optimality conditions for general problems, as well as 

some notes and references are detailed. The optimality conditions are introduced 

using the formalism of Lagrange. The sensitivity and interpretation of the Lagrange 

multipliers for nonlinear optimization problems are discussed. In Appendix we 

present some theoretical results which are used in proving some theorems 

concerning the optimality conditions for the general nonlinear optimization. 
 

 

 

1. Preliminaries 

 
The optimization problems considered in this book involve minimization or 

maximization of a function of several real variables subject to one or more 

constraints. The constraints may be non-negativity of variables, simple bounds on 

variables, equalities or inequalities as functions of these variables. These problems 

are known as continuous nonlinear constrained optimization or nonlinear 

programming.  

The purpose of this chapter is to introduce the main concepts and the 

fundamental results in nonlinear optimization known as optimality conditions.  

Plenty of very good books dedicated to these problems are known in literature: 

[Luenberger, 1973], [Gill, Murray and Wright, 1981], [Peressini, Sullivan and Uhl, 

1988], [Bazaraa, Sheraly and Shetty, 1993], [Bertsekas, 1999], [Boyd and 

Vandenberghe, 2006], [Nocedal and Wright, 2006], [Sun and Yuan, 2006], 

[Chachuat, 2007], [Andrei, 2009, 2015], etc.  

mailto:nandrei@ici.ro
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The general continuous nonlinear optimization problem is expressed as: 

)(min xf  

subject to:                                                                                                                (1) 

                                                           ( ) 0,ic x     1, , ,i m  

                                                           ( ) 0,ih x     1, , ,i p  

where ,nx  : ,nf   : ,n

ic   1, , ,i m  and : ,n

ih   

1, , ,i p  are continuous differentiable functions.  

Usually, the function f  is called the objective function. Each of the constraints 

( ) 0,ic x   1, , ,i m  is inequality constraints and ( ) 0,ih x  1, , ,i p  is 

equality constraints.   

Often (1) is called a nonlinear program. A vector x  satisfying all the equality and 

inequality constraints is called a feasible solution (point) to the problem (1). Define 

 

{ : ( ) 0, 1, , , ( ) 0, 1, , }i iX x c x i m h x i p      

 

as the feasible region (or feasible domain).  

 In this chapter we are interested to specify what is meant by optimality for 

the general nonlinear optimization problem and give conditions under which a 

solution for the problem (1) exists. Both necessary and sufficient conditions for 

optimality are presented, starting with unconstrained problems and continuing with 

problems with inequality constraints, equality constraints and finally for general 

nonlinear optimization problems with equality and inequality constraints. The key 

to understanding the nonlinear optimization is the Karush-Kuhn-Tucker (KKT) 

optimality conditions. This is a major result which identifies an algebraic system of 

equations and inequalities which corresponds to the solution to any nonlinear 

optimization problem. This system often can be used to develop algorithms for 

computing a solution for the problem or can also be considered to get some 

additional information about the sensitivity of the minimum value of the problem 

subject to changes in the constraints. In general, many optimization algorithms can 

be interpreted as methods for numerically solving the KKT nonlinear system of 

equations. 

 

 In mathematical optimization, the KKT conditions are first-order necessary 

conditions for a solution in nonlinear optimization to be optimal, provided that 

some regularity conditions are satisfied. For problems with inequality constraints, 

the KKT approach generalizes the method of Lagrange multipliers, which allows 

only equality constraints. For the development of the KKT optimality conditions 

three possible approaches can be used. One is based on the separation and support 

theorems from convex set theory. Another one uses penalty functions and the third 

one comes from the theory of Lagrange multipliers. Each of these approaches has 

its own virtues and provides its own insights on the KKT Theorem. In this text we 

consider the optimality conditions for continuously nonlinear optimization 

(mathematical programming) using the formalism of Lagrange.  

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
https://en.wikipedia.org/wiki/Necessary_and_sufficient_conditions
https://en.wikipedia.org/wiki/Nonlinear_programming
https://en.wikipedia.org/wiki/Optimization_%28mathematics%29
https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions#Regularity_conditions_.28or_constraint_qualifications.29
https://en.wikipedia.org/wiki/Lagrange_multipliers
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2. General concepts in nonlinear optimization 
 

In the following we shall present some definitions and results used in the context of 

nonlinear programming. At the same time we shall define a particular class of 

nonlinear programs that is convex programming. In this section X   denotes a 

nonempty set of real numbers. 

 

Definition 1 (Upper bound, Lower bound). A real number α  is called an upper 

bound for X  if αx   for all .x X  The set X  is said to be bounded above if it 

has an upper bound. Similarly, a real number α  is called a lower bound for X if 

αx   for all .x X  The set X  is said to be bounded below if it has a lower 

bound. 

 

Definition 2 (Least upper bound, Greatest lower bound). A real number α  is 

called the least upper bound (or supremum, or sup) of ,X  if (i) α  is an upper 

bound for ;X  and (ii) there does not exists an upper bound for X  that is strictly 

smaller than α.  The supremum, if it exists, is unique and is denoted by sup .X  A 

real number α  is called the greatest lower bound (or infimum, or inf) of ,X  if (i) 

α  is a lower bound for ;X  and (ii) there does not exists a lower bound for X  that 

is strictly greater than α.  The infimum, if it exists, is unique and is denoted by 

inf .X  

 

It is worth saying that for sups and infs, the following equivalent definition is 

useful. 

 

Definition 3 (Supremum, Infimum). The supremum of ,X  provided it exists, is the 

least upper bound for ,X  i.e. a real number α  satisfying: (i) αz   for any 

;z X (ii) for any α α,  there exists z X  such that α.z   Similarly, the 

infimum of ,X provided it exists, is the greatest lower bound for ,X  i.e. a real 

number α  satisfying: (i) αz   for any ;z X  (ii) for any α α,  there exists 

z X  such that α.z   

 

Definition 4 (Maximum, Minimum). The maximum of a set X  is its largest element 

if such an element exists. The minimum of a set X  is its smallest element if such an 

element exists.  

 

The key differences between the supremum and maximum concepts are as follows. 

If a set has a maximum, then the maximum is also a supremum for this set, but the 

converse is not true. A finite set always has a maximum which is also its 

supremum, but an infinite set need not have a maximum. The supremum of a set 

X  need not be an element of the set X  itself, but the maximum of X  must 

always be an element of .X  
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Concerning the existence of infima and suprema in ,  fundamental is the axiom of 

completeness. „If a nonempty subset of real numbers has an upper bound, then it 

has a least upper bound. If a nonempty set of real numbers has a lower bound, it 

has a greatest lower bound”. In other words, the completeness axiom guarantees 

that, for any nonempty set of real numbers that is bounded above, a supremum 

exists (in contrast to the maximum, which may or may not exist). 

 

Let us consider the minimization problem  

                                                   min{ ( ) : },f x x X                                               (2) 

where nX   represents the feasible set. Any point x X  is a feasible point or 

an admissible point. Any point \nx X  is called to be infeasible. 

 

Definition 5 (Global Minimum, Strict Global Minimum). A point *x X is said to 

be a global minimum of f  on X  if *( ) ( )f x f x  for any .x X  A point 
*x X is said to be a strict global minimum of f  on X  if *( ) ( )f x f x  for any 

x X with *.x x  

 

Definition 6. (Global Maximum, Strict Global Maximum). A point *x X is said 

to be a global maximum of f  on X  if *( ) ( )f x f x  for any .x X  It is a strict 

global maximum of f  on X  if *( ) ( )f x f x  for any x X with *.x x  

 

The point *x  is called an optimal solution of the optimization problem. The real 

number *( )f x  is known as the optimal value of the objective function subject to 

the constraints .x X   

Observe the distinction between the minimum/maximum and 

infimum/supremum. The value min{ ( ) : }f x x X  must be attained at one or more 

points .x X  On the other hand, the value inf{ ( ) : }f x x X  does not necessarily 

have to be attained at any points .x X  However, if a minimum (maximum) 

exists, then its optimal value is equal the imfimum (supremum). 

 

It is worth saying that if a minimum exists, it is not necessarily unique. That is, 

there may be a finite number, or even an infinite number, of feasible points *x  that 

satisfy the inequality *( ) ( )f x f x  for any .x X  The notation: 

 

argmin{ ( ) : } { : ( ) inf{ ( ) : }}f x x X x X f x f x x X     

 

is reserved for the set of minima of function f on ,X that is a set in .n  
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Definition 7 (Local Minimum, Strict Local Minimum). A point *x X  is said to be 

a local minimum of f  on X  if there exists ε 0  such that *( ) ( )f x f x  for any 
*( ,ε) ,x B x X   where *( ,ε)B x  is the open ball centered at *x  of radius ε.  

Similarly, a point *x X  is said to be a strict local minimum of f  on X  if there 

exists ε 0  such that *( ) ( )f x f x  for any * *( ,ε) \{ } .x B x x X   

 

Definition 8. (Local Maximum, Strict Local Maximum). A point *x X  is said to 

be a local maximum of f  on X  if there exists ε 0  such that *( ) ( )f x f x  for 

any *( ,ε) .x B x X   Similarly, it is said to be a strict local maximum of f  on X  

if there exists ε 0  such that *( ) ( )f x f x  for any * *( ,ε) \{ } .x B x x X   

 

A fundamental problem in optimizing a function on a given set is whether a 

minimum or a maximum point exists in the given set.  This result is known as the 

theorem of Weierstrass. It shows that if X  is nonempty, closed and bounded and 

f  is continuous on ,X  then a minimum of f  on X  exists. 

 

Theorem 1 (Weierstrass). Let X  be a nonempty and compact set. Assume that 

:f X   is continuous on .X  Then, the problem min{ ( ) : }f x x X  attains its 

minimum. 

 

Proof. If f  is continuous on X  and X  is both closed and bounded, it follows that 

f  is bounded below on .X  Now, since X  is nonempty, from the axiom of 

completeness there exists a greatest lower bound α inf{ ( ) : }.f x x X   Let 

0 ε 1   and consider the set { : α ( ) α ε }k

kX x X f x      1,2,k   By the 

definition of the infimum, for each k  it follows that .kX   Therefore, a 

sequence of points { }kx X  can be constructed by selecting a point kx  for each 

1,2,k   Since X  is bounded, there exists a convergent subsequence { }k Kx X  

indexed by the set K   with *x  as its limit. Since X is closed it follows that 
* .x X  By continuity of f  on ,X  since α ( ) α ε ,k

kf x    we have 
*

,α lim ( ) ( ).k k K kf x f x    Therefore, there exists a solution *x X  so that 

*( ) α inf{ ( ) : },f x f x x X    i.e. *x  is a minimizing solution.                              ♦ 

 

All the hypotheses of this theorem are important. The feasible set must be 

nonempty, otherwise there are no feasible points at which the minimum is attained. 

The feasible set must be closed, i.e. it must contain its boundary points. The 

objective function must be continuous on the feasible set, otherwise the limit at a 

point may not exist or be different from the value of the function at that point. 

Finally, the feasible set must be bounded, otherwise even continuous functions can 

be unbounded on the feasible set. 
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Definition 9 (Convex Program). Let C  be a convex set in n  and let : nf C   

be a convex function on .C  Then, min{ ( ) : }f x x C  is called a convex 

optimization problem, or a convex program. 

 

The fundamental result in convex programming is the following theorem. 

 

Theorem 2. Let *x  be a local minimum of a convex program. Then, *x  is also a 

global minimum. 

 

Proof. If *x  is a local minimum, then there exists ε 0  such that *( ) ( )f x f x  for 

any *( ,ε).x B x  Now, suppose that *x  is not a global minimum. Then there exists 

y C  such that *( ) ( ).f y f x  Let λ (0,1)  be chosen such that the point 
* *λ (1 λ) ( ,ε).z y x B x     By convexity of ,C  .z C  Therefore, 

* * * *( ) λ ( ) (1 λ) ( ) λ ( ) (1 λ) ( ) ( ),f z f y f x f x f x f x        

which is a contradiction, since *x  is a local minimum.                                            ♦ 

 

 

3. Optimality conditions for unconstrained optimization 
 

Let us consider the problem of minimizing of a function ( )f x  without constraints 

on the variables :nx   

min{ ( ) : }.nf x x  

For a given point nx  the optimality conditions determine whether or not a 

point is a local or a global minimum of .f  To formulate the optimality conditions 

it is necessary to introduce some concepts which characterize an improving 

direction along which the values of the function f decrease. 

 

Definition 10 (Descent Direction). Suppose that : nf   is continuous at *.x  

A vector nd   is a descent direction for f  at *x  if there exists δ 0  such that 
* *( λ ) ( )f x d f x   for any λ (0,δ).  The cone of descent directions at *,x  

denoted by *( )ddC x  is given by 
* * *( ) { : thereexists δ 0 such that ( λ ) ( ), forany λ (0,δ)}.ddC x d f x d f x      

 

Assume that f  is a differentiable function. To get an algebraic characterization for 

a descent direction for f  at *x  let us define the set  
* * T

0( ) { : ( ) 0}.C x d f x d    

The following result shows that every *

0( )d C x  is a descent direction at *.x  
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Proposition 1 (Algebraic Characterization of a Descent Direction). Suppose that 

: nf   is differentiable at *.x  If there exists a vector d  such that 
* T( ) 0,f x d   then d  is a descent direction for f  at *,x  i.e. * *

0( ) ( ).ddC x C x  

 

Proof. Since f  is differentiable at *,x  it follows that 
* * * T( λ ) ( ) λ ( ) λ (λ ),f x d f x f x d d o d      

where 
λ 0lim (λ ) 0.o d  Therefore, 

* *
* T( λ ) ( )

( ) (λ ).
λ

f x d f x
f x d d o d

 
    

Since * T( ) 0f x d   and λ 0lim (λ ) 0,o d   it follows that there exists a δ 0  such 

that * T( ) (λ ) 0f x d d o d    for all λ (0,δ).                                                   ♦ 

 

Theorem 3 (First-Order Necessary Conditions for a Local Minimum). Suppose 

that : nf   is differentiable at *.x  If *x  is a local minimum, then 
*( ) 0.f x   

 

Proof. Suppose that *( ) 0.f x   If we consider *( ),d f x   then 
2

* T *( ) ( ) 0.f x d f x      By Proposition 1 there exists a δ 0  such that for 

any λ (0,δ),  * *( λ ) ( ).f x d f x   But this is in contradiction with the assumption 

that *x  is a local minimum for .f                                                                             ♦ 

 

Observe that the above necessary condition represents a system of n  algebraic 

nonlinear equations. All the points *x  which solve the system ( ) 0f x   are called 

stationary points. Clearly, the stationary points need not all be local minima. They 

could very well be local maxima or even saddle points. In order to characterize a 

local minimum we need more restrictive necessary conditions involving the 

Hessian matrix of the function .f   

 

Theorem 4 (Second-Order Necessary Conditions for a Local Minimum). Suppose 

that : nf   is twice differentiable at point *.x If *x  is a local minimum, then 
*( ) 0f x   and 2 *( )f x  is positive semidefinite. 

 

Proof. Consider an arbitrary direction .d  Then, using the differentiability of f  at 
*x  we get: 

2* * * T 2 T 2 * 21
( λ ) ( ) λ ( ) λ ( ) λ (λ ),

2
f x d f x f x d d f x d d o d        

where λ 0lim (λ ) 0.o d   Since *x  is a local minimum, *( ) 0.f x   Therefore, 
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* *
2T 2 *

2

( λ ) ( ) 1
( ) (λ ).

λ 2

f x d f x
d f x d d o d

 
    

Since *x  is a local minimum, for λ  sufficiently small, * *( λ ) ( ).f x d f x   For 

λ 0  it follows from the above equality that T 2 *( ) 0.d f x d   Since d  is an 

arbitrary direction, it follows that 2 *( )f x  is positive semidefinite.                     ♦ 

 

In the above theorems we have presented the necessary conditions for a point *x  to 

be a local minimum, i.e. these conditions must be satisfied at every local minimum 

solution. However, a point satisfying these necessary conditions need not be a local 

minimum. In the following theorems the sufficient conditions for a global 

minimum are given, provided that the objective function is convex on .n   

 

Theorem 5 (First-Order Sufficient Conditions for a Strict Local Minimum). 

Suppose that : nf   is differentiable at *x  and convex on .n  If *( ) 0,f x   

then *x  is a global minimum of f  on .n  

 

Proof. Since f  is convex on n  and differentiable at *x  then from the property of 

convex functions given by the Proposition A1 it follows that for any nx  
* * T *( ) ( ) ( ) ( ).f x f x f x x x    But *x  is a stationary point, i.e. *( ) ( )f x f x  for 

any .nx                                                                                                                 ♦ 

 

The following theorem gives second-order sufficient conditions characterizing a 

local minimum point for those functions which are strictly convex in a 

neighborhood of the minimum point. 

 

Theorem 6 (Second-Order Sufficient Conditions for a Strict Local Minimum). 

Suppose that : nf   is twice differentiable at point *.x  If *( ) 0f x   and 
2 *( )f x  is positive definite, then *x  is a local minimum of .f  

 

Proof. Since f  is twice differentiable, for any ,nd   we can write: 

2* * * T T 2 *1
( ) ( ) ( ) ( ) ( ),

2
f x d f x f x d d f x d d o d       

where 0lim ( ) 0.d o d   Let λ  be the smallest eigenvalue of 2 *( ).f x  Since 

2 *( )f x  is positive definite, it follows that λ 0  and 
2T 2 *( ) λ .d f x d d   

Therefore, since *( ) 0,f x   we can write: 

2* * λ
( ) ( ) ( ) .

2
f x d f x o d d

 
    

 
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Since 0lim ( ) 0,d o d   then there exists a η 0  such that ( ) λ / 4o d   for any 

(0,η).d B  Hence 

2* * λ
( ) ( ) 0

4
f x d f x d     

for any (0,η) \{0},d B  i.e. *x  is a strict local minimum of function .f                ♦ 

 

If we assume f  to be twice continuously differentiable, we observe that, since 
2 *( )f x  is positive definite, 2 *( )f x  is positive definite in a small neighborhood 

of *x  and so f  is strictly convex in a small neighborhood of *.x  Therefore, *x is a 

strict local minimum, that is, it is the unique global minimum over a small 

neighborhood of *.x  

 

 

4. Optimality conditions for problems with inequality constraints 
 

In the following we shall consider the nonlinear optimization problems with 

inequality constraints: 

                                                           min ( )f x  

subject to:                                                                                                                (3) 

                                                           ,x X  

where X  is a general set. Later on, we will be more specific and define the 

problem as to minimize ( )f x  subject to ( ) 0,c x   where ( )c x  is the vector of 

constraint functions. 

 

Definition 11 (Feasible direction). Let X be a nonempty set in .n A nonzero 

vector nd  is a feasible direction at * ( )x cl X if there exists a δ 0  such that 
* ηx d X   for any η (0,δ).  Moreover, the cone of feasible directions at *,x  

denoted by *( ),fdC x  is given by 

* *( ) { 0, there is δ 0 such that η , for any η (0,δ)}.fdC x d x d X      

 

Clearly, a small movement from *x  along the direction *( )fdd C x  leads to 

feasible points. On the other hand, a similar movement along a direction 
*

0( )d C x  (see Definition 10 of descent direction) leads to solutions which 

improve the value of the objective function. The following theorem, which gives a 

geometrical interpretation of local minima, shows that a necessary condition for 

local optimality is that: every improving direction is not a feasible direction.  
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Theorem 7 (Geometric Necessary Condition for a Local Minimum). Let X  be a 

nonempty set in n  and let : nf   be a differentiable function. Suppose that 
*x is a local minimum of the problem (3). Then, * *

0( ) ( ) .fdC x C x   

 

Proof. Suppose that there exists a nonzero vector * *

0( ) ( ).fdd C x C x   By the 

Proposition 1 of algebraic characterization of a descent direction there exists 1δ 0  

such that * *( η ) ( )f x d f x   for any 
1η (0,δ ).  On the other hand, by Definition 

11 of feasible direction there exists 2δ 0  such that * ηx d X  for any 

2η (0,δ ).  Therefore, there exists *( ,η)x B x X   such that * *( η ) ( ),f x d f x   

for every 1 2η (0,min{δ ,δ }),  which contradicts the assumption that *x  is a local 

minimum of f  on X  (see Definition 7).               ♦ 

 

So far we have obtained a geometric characterization of the optimality 

condition for the problem (3) given by Theorem 7 where *( )fdC x  is the cone of 

feasible directions. To get practical optimality condition, implementable in 

computer programs, we need to convert this geometric condition into an algebraic 

one. For this we introduce the concept of active constraints at *x  and define a cone 
* *( ) ( )ac fdC x C x  in terms of the gradients of these active constraints. Now we 

specify the feasible set X  as:  

 

                                          { : ( ) 0, 1, , },iX x c x i m                                        (4) 

 

where : ,n

ic   1, , ,i m  are continuous functions. Define the vector 

1( ) [ ( ), , ( )].mc x c x c x  

 

Definition 12 (Active constraint, Active-Set). Let : ,n

ic   1, , ,i m  which 

define the feasible set { : ( ) 0, 1, , },iX x c x i m    and consider *x X  a 

feasible point. For each 1, , ,i m  the constraint ic  is said to be active or 

binding at *x  if *( ) 0.ic x    It is said to be inactive at *x  if *( ) 0.ic x   The set  
* *( ) { : ( ) 0},iA x i c x   

denotes the set of active constraints at *.x  

 

The following proposition gives an algebraic characterization of a feasible 

direction showing the relation between a cone *( )acC x  expressed in terms of the 

gradients of the active constraints and the cone of the feasible directions. 
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Proposition 2 (Algebraic Characterization of a Feasible Direction). Let 

: ,n

ic   1, , ,i m  be differentiable functions and consider the feasible set 

{ : ( ) 0, 1, , }.iX x c x i m    For any feasible point * ,x X  we have: 
* * T * *( ) { : ( ) 0, ( )} ( ).ac i fdC x d c x d i A x C x     

 

Proof. Suppose that *( )acC x  is a nonempty set. Let *( ).acd C x  Observe that 
* T( ) 0ic x d   for each *( ).i A x  Therefore, by Proposition 1, the algebraic 

characterization of a descent direction; it follows that d  is a descent direction for 

ic  at *,x  i.e. there exists 2δ 0  such that * *( η ) ( ) 0i ic x d c x    for any 

2η (0,δ )  and for any *( ).i A x  On the other hand, since ic  is differentiable at 
*,x  it follows that it is continuous at *.x  Therefore, since *( ) 0ic x   and ic  is 

continuous at *x  for each *( ),i A x  there exists 1δ 0  such that 
*( η ) 0ic x d   for any 1η (0,δ )  and for any *( ).i A x  Besides, for all 

1 2η (0,min{δ ,δ }),  the points * η .x d X   Therefore, by Definition 11 of 

feasible direction, *( ).fdd C x                                                                             ♦ 

 

Remark 1. From the Theorem 7 we know that * *

0( ) ( ) .fdC x C x   But, from 

Proposition 2 we have that * *( ) ( ).ac fdC x C x  Therefore * *

0( ) ( ) ,acC x C x   for 

any local optimal solution *.x                                                                                    ♦ 

 

It is worth saying that the above geometric characterization of local 

optimal solution (see Theorem 7) holds either at interior points 

int { : ( ) 0, 1, , },n

iX x c x i m    or boundary points. For interior points any 

direction is feasible and the necessary condition * *

0( ) ( )acC x C x   reduces to 

the very well known condition *( ) 0,f x   which is identical to the necessary 

optimal condition for unconstrained optimization (see the Theorem 3). 

It is important to notice that the condition * *

0( ) ( )acC x C x   can be 

satisfied by non-optimal points, i.e. this condition is necessary but not sufficient for 

a point *x  to be a local minimum of function f  on .X  For example, at any point 
*x  for which *( ) 0ic x   for an arbitrary index *( )i A x  the condition 

* *

0( ) ( )acC x C x   is trivially satisfied. 

 

 In the following, in order to get an algebraic necessary optimality condition 

to be used in numerical computation, we want to transform the geometric necessary 

optimality condition * *

0( ) ( )acC x C x   to a statement in terms of the gradient 

of the objective function and the gradient of the constraints. Thus, the first-order 

optimality conditions, known as the Karush-Kuhn-Tucker (KKT) necessary 
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conditions are obtained. In order to formulate the KKT conditions we need to 

introduce the concepts of regular point and of KKT point. 

 

Definition 13 (Regular Point – Inequality Constraints). Let : ,n

ic   

1, , ,i m  be differentiable functions and consider the feasible set 

{ : ( ) 0, 1, , }.n

iX x c x i m     A point *x X  is a regular point if the 

gradient vectors *( ),ic x  *( ),i A x  are linear independent, i.e. 
* * *[ ( ), ( )] ( ( )).irank c x i A x card A x    

 

Definition 14 (KKT point). Let : nf   and : ,n

ic   1, , ,i m  be 

differentiable functions. Consider the problem min{ ( ) : ( ) 0}.f x c x   If a point 
* *( ,μ ) n mx   satisfies the algebraic conditions: 

                                              * * T *( ) (μ ) ( ) 0,f x c x                                            (5) 

                                              *μ 0,                                                                        (6) 

                                              *( ) 0,c x                                                                    (7) 

                                              * T *(μ ) ( ) 0.c x                                                            (8) 

then * *( ,μ )x  is called a KKT point. 

 

In the Definition 14, the scalars μ ,i  1, , ,i m  are called the Lagrange 

multipliers. The first condition (5) is known as the primal feasibility condition. The 

conditions (6) and (7) are known as dual feasibility conditions. The last condition 

(8), expressed as * *μ ( ) 0,i ic x   1, , ,i m  are the complementarity slackness (or 

transversality) condition.  

 

Now we are in position to present the KKT necessary condition for optimality of 

the nonlinear optimization problem with inequality constraints. For this a very 

useful result is given by the Theorem of Gordan (see Theorem A2). This is 

extensively used in the derivation of the optimality conditions of linear and 

nonlinear programming problems.  

 

Theorem 8 (KKT Necessary Conditions). Let : nf   and : ,n

ic   

1, , ,i m  be differentiable functions. Consider the problem 

min{ ( ) : ( ) 0}.f x c x   If *x  is a local minimum and a regular point of the 

constraints, then there exists a unique vector *μ  such that * *( ,μ )x  is a KKT point. 

 

Proof. We know that *x  is an optimal solution for the problem 

min{ ( ) : ( ) 0}.f x c x   Therefore, using the Remark 1, no direction nd   exists 

such that * T( ) 0f x d   and * T( ) 0,ic x d   for any *( )i A x  are simultaneously 



♦ Neculai Andrei ♦                                                                                                         

 

13 

satisfied. Now, let 
*( ( ( ) 1)A card A x n   be the matrix whose rows are * T( )f x  and 

* T( ) ,ic x  *( ).i A x  By the Gordan Theorem (see Theorem A2) there exists a 

nonzero vector *0 1 ( ( ))
[ , , , ] 0

card A x
p u u u   in 

*( ( )) 1card A x   such that TA 0.p   

Therefore, 

*

* *

0

( )

( ) ( ) 0,i i

i A x

u f x u c x


     

where 0 0u   and 0iu   for *( )i A x  and *0 1 ( ( ))
[ , , , ]

card A x
u u u  is not the vector 

zero. Considering 0iu   for all *( ),i A x  the following conditions are obtained: 
* T *

0 ( ) ( ) 0,u f x u c x     

                                              T *( ) 0,u c x   

                                              
0 0,u   0,u   

                                              0( , ) (0,0),u u   

where u  is the vector with components iu  for 1, , ,i m  some of them being 

*0 1 ( ( ))
, , ,

card A x
u u u  and the others being zero. Observe that 

0 0,u   because 

otherwise the assumption that the gradient of the active constraints are linear 

independent at *x  is not satisfied. Now, considering the vector *μ  as the vector u  

whose components are divided by 
0 ,u  we get that * *( ,μ )x  is a KKT point.            ♦ 

 

The above theorem shows the importance of the active constraints. A major 

difficulty in applying this result is that we do not know, in advance, which 

constraints are active and which are inactive at solution of the problem. In other 

words, we do not know the active-set. The majority of algorithms for solving this 

optimization problem with inequalities face this difficulty of identifying the active-

set. Of course, the idea of investigating all possible active-sets of a problem in 

order to get the points satisfying the KKT conditions is usually impractical. 

 

Remark 2 (Constrained qualification). Observe that not every local minimum is a 

KKT point. For a local minimum *x  to be a KKT point an additional condition 

must be introduced on the behavior of the constraints. Such a condition is known as 

constraint qualification. In Theorem 8 such a constraint qualification is that *x  be 

a regular point, which also is known as the linear independence constraint 

qualification (LICQ). The Lagrange multipliers are guaranteed to be unique in the 

Theorem 8 if LICQ holds. Another weaker constraint qualification is the 

Mangasarian-Fromovitz constraint qualification (MFCQ). The Mangasarian-

Fromovitz constraint qualification requires that there exists (at least) one direction 
*( ),acd C x  i.e. such that * T( ) 0,ic x d   for each *( ).i A x  The MFCQ is 

weaker than LICQ, i.e. the Lagrange multipliers are guaranteed to be unique if 

LICQ holds, while this uniqueness property may be lost under MFCQ.                   ♦ 
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In the following theorem we present a sufficient condition which guarantees that 

any KKT point of an inequality constrained nonlinear optimization problem is a 

global minimum of the problem. Of course, this result is obtained under the 

convexity hypothesis.  

 

Theorem 9 (KKT Sufficient Conditions). Let : nf   and : ,n

ic   

1, , ,i m  be convex and differentiable functions. Consider the problem 

min{ ( ) : ( ) 0}.f x c x   If * *( ,μ )x  is a KKT point, then *x  is a global minimum of 

the problem. 

 

Proof. Let us define the function *

1
( ) ( ) μ ( ).

m

i ii
L x f x c x


  Since f  and ,ic  

1, , ,i m  are convex functions and *μ 0,i   1, , ,i m  it follows that L  is also 

convex. Now, the dual feasibility conditions determine that *( ) 0.L x   Therefore, 

by Theorem 5, *x  is a global minimum for L  on ,n  i.e. *( ) ( )L x L x  for any 

.nx  Therefore, for any x  such that *( ) ( ) 0,i ic x c x   *( ),i A x  it follows that 

*

* * *

( )

( ) ( ) μ [ ( ) ( )] 0.i i i

i A x

f x f x c x c x


      

On the other hand, the set *{ : ( ) 0, ( )}n

ix c x i A x    contains the feasible set 

{ : ( ) 0, 1, , }.n

ix c x i m    Therefore, *x  is a global minimum for the problem 

with inequality constraints.                                                                                        ♦ 

 

 

5. Optimality conditions for problems with equality constraints 
 

In this section, the nonlinear optimization problem with equality constraints is 

considered: 

                                                 min ( )f x  

subject to:                                                                                                                (9) 

                                                 ( ) 0,ih x   1, , ,i p  

where : nf   and : ,n

ih   1, , ,i p  are continuously differentiable 

functions. The functions ( ) 0,ih x   1, , ,i p  of the above problem define the 

vector 1( ) [ ( ), ( )].ph x h x h x  If *x  satisfies the constraints from (9), i.e. 

*( ) 0,ih x   1, , ,i p  it is said to be feasible. Otherwise it is called infeasible. 

 The optimality of *x  can be seen as a balance between function 

minimization and constraint satisfaction. A move away from *x cannot be made 

without either violating a constraint or increasing the value of the objective 

function. Formally, this can be stated as the following proposition. 
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Proposition 3 (Balance Between Function and Constraints). If *x  is a solution of 

(9) and * δx x  is a nearby point, then: 

1) If * *( δ ) ( )f x x f x   then *( δ ) 0ih x x   for some .i  

2) If * *

1( δ ) ( δ ) 0ph x x h x x      then * *( δ ) ( ).f x x f x                      ♦ 

 

In order to establish the optimality conditions for the nonlinear optimization 

problems with equality constraints we need to introduce some relevant concepts. 

An equality constraint ( ) 0h x   defines in n  a set which can be viewed as a 

hypersurface.  When there are p  equality constraints ( ) 0,ih x   1, , ,i p  then 

their intersection defines a (possible empty) set:  

 

{  : ( ) 0, 1, , }.n

iX x h x i p    

 

If the functions defining the equality constraints are differentiable, then the set X  

is said to be a differentiable manifold, or a smooth manifold.  

 

 Now, in any point on a differentiable manifold the tangent set can be 

defined as follows. A curve η  on a manifold X  is a continuously application 

η: ,I X   i.e. a family of points η( )t X  continuously parameterized by t  

in the interval .I   Clearly, a curve passes through the point *x  if * *η( )x t  for 

some * .t I  The derivative of a curve at *,t  if it exist, is defined in a classical 

manner as 
* *

*

ξ 0

( ξ) ( )
( ) lim .

ξ

t t
t

 
 

 
 

A curve is differentiable, or smooth, if a derivative exists for each .t I  

 

Definition 15 (Tangent Set). Let X  be a differentiable manifold in n  and a point 
* .x X  Consider the collection of all the continuously differentiable curves on X  

passing through *.x Then, the collection of all the vectors tangent to these curves 

at *x  is the tangent set to X  at *,x  denoted by *( ).XT x  

 

Definition 16 (Regular point – Equality Constraints). Let : ,n

ih   1, , ,i p  

be differentiable functions on n  and consider the set 

{ : ( ) 0, 1, , }.n

iX x h x i p    A point *x X  is a regular point if the 

gradient vectors *( ),ih x  1, , ,i p  are linearly independent, i.e. 

                                         * *

1[ ( ), , ( )] .prank h x h x p                                      (10) 

 

If the constraints are regular, in the sense of the above definition, then X  is a 

subspace of dimension .n p  In this case *( )XT x  is a subspace of dimension 
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,n p  called tangent space. At regular points the tangent space can be 

characterized in terms of the gradients of the constraints [Luenberger, 1973]. 

 

Proposition 4 (Algebraic Characterization of a Tangent Space). Let : ,n

ih   

1, , ,i p  be differentiable functions on n  and consider the set 

{ : ( ) 0, 1, , }.n

iX x h x i p    At a regular point *x X  the tangent space is 

such that  

                                           * * T( ) { : ( ) 0}.XT x d h x d                                        (11) 

 

Proof. Let *( )XT x  be the tangent space at *x  and * * T( ) { : ( ) 0}.M x d h x d    

Consider any curve η( )t  passing through *x  at *,t t  having derivative *η( )t  

such that * T *( ) η( ) 0.h x t   Since such a curve would not lie on ,X  it follows that 
* *( ) ( ).XT x M x  Now to prove that * *( ) ( )XT x M x  we must show that if 

*( )d M x  then there is a curve on X  passing through *x  with derivative .d  In 

order to construct such a curve we consider the equations 

 
* * T( ( ) ( )) 0,h x td h x u t    

 

where for fixed t  the vector ( ) pu t   is unknown. Observe that we have a 

nonlinear system of p equations with p  unknowns, continuously parameterized by 

.t  At 0t   there is a solution (0) 0.u   The Jacobian matrix of the above system 

with respect to u  at 0t   is the matrix * * T( ) ( )h x h x   which is nonsingular, since 
*( )h x  is of full rank if *x  is a regular point. Thus, by the Implicit Function 

Theorem (Theorem A1) there is a continuous solution ( )u t  for .a t a    The 

curve * * Tη( ) ( ) ( )t x td h x u t    by construction is a curve on .X  By 

differentiating the above nonlinear system with respect to t  at 0t   we get: 

 

* T * * T

0

d
0 (η( )) ( ) ( ) ( ) (0).

d t

h t h x d h x h x u
t 

      

 

By definition of d  we have * T( ) 0.h x d   Therefore, since * * T( ) ( )h x h x   is 

nonsingular, it follows that (0) 0.u   Therefore, * Tη(0) ( ) (0)d h x u d    and 

the constructed curve has derivative d  at *.x                                                           ♦ 

 

The Method of Lagrange Multipliers.  

In the following we present the optimality conditions for the nonlinear optimization 

problems with equality constraints using the method of Lagrange multipliers. The 

idea is to restrict the search of a minimum of (9) to the manifold 
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{ : ( ) 0, 1, , }.n

iX x h x i p    The following theorem gives the geometric 

necessary condition for a local minimum of a nonlinear optimization problem with 

equality constraints. It is shown that the tangent space *( )XT x  at a regular local 

minimum point *x  is orthogonal to the gradient of the objective function at *.x  

 

Theorem 10 (Geometric Necessary Condition for a Local Minimum). Let 

: nf   and : ,n

ih   1, , ,i p  be continuously differentiable functions. 

Suppose the *x  is a local minimum point of the problem min{ ( ) : ( ) 0}.f x h x   

Then, *( )f x  is orthogonal to the tangent space *( )XT x , i.e. 
* *

0( ) ( ) .XC x T x   

 

Proof. Assume that there exists a  *( )Xd T x  such that * T( ) 0.f x d   Let 

η: [ , ] ,I a a X    0,a   be any smooth curve passing through *,x  with 
*η(0) x  and η(0) .d  Also let φ  be the function defined as φ( ) (η( ))t f t  for 

any .t I  Since *x  is a local minimum of f  on { : ( ) 0},nX x h x   by 

Definition 7, it follows that there exists δ 0  such that 
*φ( ) (η( )) ( ) φ(0)t f t f x    for any (0,δ) .t B I   Therefore, * 0t   is an 

unconstrained local minimum point for φ,  and  
* T * T0 φ(0) ( ) η(0) ( ) .f x f x d    

But, this is in contradiction with the assumption that * T( ) 0.f x d                         ♦ 

 

The conclusion of this theorem is that if *x  is a regular point of the constraints 

( ) 0h x   and a local minimum point of f  subject to these constraints, then all 
nd   satisfying * T( ) 0h x d   must also satisfy * T( ) 0.f x d   

 

The following theorem shows that this property that *( )f x  is orthogonal 

to the tangent space implies that *( )f x  is a linear combination of the gradients of 
*( ),ih x  1, , ,i p  at *.x  This relation leads to the introduction of Lagrange 

multipliers and Lagrange function. 

 

Theorem 11 (First-Order Necessary Optimality Conditions). Let : nf   and 

: ,n

ih   1, , ,i p  be continuously differentiable functions. Consider the 

problem min{ ( ) : ( ) 0}.f x h x   If *x  is a local minimum and is a regular point of 

the constraints, then there exists a unique vector *λ p  such that 

                                               * * T *( ) ( ) λ 0.f x h x                                          (12) 
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Proof. Since *x  is a local minimum of f  on { : ( ) 0},nX x h x   by Theorem 

10, it follows that * *

0( ) ( ) ,XC x T x  i.e. the system 
* T( ) 0,f x d    * T( ) 0,h x d   

is inconsistent. Now, consider the following two sets: 

                         1 * T * T

1 1 2 1 2{( , ) : ( ) , ( ) },pC z z z f x d z h x d    

                         1

2 1 2 1 2{( , ) : 0, 0}.pC z z z z    

Observe that 
1C  and 

2C  are convex sets and 
1 2 .C C   Therefore, by the 

separation of two convex sets, given by Proposition A2, there exists a nonzero 

vector 1(μ,λ) p  (μ ,  λ p ) such that for any nd   and for any 

1 2 2( , )z z C  
* T T * T T

1 2μ ( ) λ [ ( ) ] μ λ .f x d h x d z z      

Now, considering 2 0z   and having in view that 1z  can be made an arbitrary large 

negative number, it follows that μ 0.  Additionally, considering 1 2( , ) (0,0),z z   

we must have * T * T[μ ( ) λ ( )] 0,f x h x d     for any .nd   In particular, letting 

* T *[μ ( ) λ ( )],d f x h x      it follows that 
2

* T *μ ( ) λ ( ) 0,f x h x      and thus, 

* T *μ ( ) λ ( ) 0,f x h x     with (μ,λ) (0,0).  

Observe that μ 0,  for otherwise the above relation would contradict the 

assumption that *( ),ih x  1, , ,i p  are linear independent. The conclusion of the 

theorem follows letting *λ λ / μ  and noting that the linear independence 

assumption implies the uniqueness of the *λ .                                                            ♦ 

 

Remark 3. The first-order necessary conditions given by the theorem 11 together 

with the constraints of the problem (9): 

                                                 * * T *( ) ( ) λ 0,f x h x                                       (13a) 

                                                 *( ) 0,h x                                                             (13b) 

represent a total of n p  nonlinear equations in the variables * *( ,λ ).x  These 

conditions determine, at least locally, a unique solution * *( ,λ ).x  However, as in 

the unconstrained case, a solution to the first-order necessary optimality conditions 

need not be a local minimum of the problem (9).                                                     ♦ 

 

Definition 17 (Lagrange multipliers). The scalars * *

1λ , ,λ p  in (12) are called the 

Lagrange multipliers. 

 

Definition 18 (Constraint normals). The vectors 1( ), , ( )ph x h x   are called the 

constraint normals. 
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The condition (12) shows that *( )f x  is linearly dependent on the constraint 

normals. Therefore, a constrained minimum occurs when the gradients of the 

objective function and the constraints interact in such a way that any reduction in 

f  can only be obtained by violating the constraints. 

 

Definition 19 (Lagrange function - Lagrangian). The function : n pL    

associated to the nonlinear optimization problem (9) is defined as: 

                                               T( ,λ) ( ) λ ( ).L x f x h x                                        (14) 

 

Remark 4 (Regularity Assumption). It is worth saying that for a local minimum to 

satisfy the above first-order necessary conditions (13) and, in particular, for unique 

Lagrange multipliers to exist, it is necessary that the equality constraints ( ) 0,ih x   

1, , ,i p  satisfy a regularity condition. As we have already seen, for a local 

minimum of an inequality constrained nonlinear optimization problem to be a KKT 

point a constrained qualification is needed. For the equality constrained nonlinear 

optimization problems the condition that the minimum point is a regular point 

corresponds to linear independence constrained qualification.                                ♦ 

 

If *x is a local minimum of (9) which is regular, then the first-order necessary 

optimality conditions (13) can be rewritten as: 

                                                      * *( ,λ ) 0,xL x                                              (15a) 

                                                      * *

λ ( ,λ ) 0.L x                                              (15b) 

Observe that the second condition (15b) is a restatement of the constraints. The 

solution of the optimization problem (9) corresponds to a saddle point of the 

Lagrangian. 

 

In the following the second-order necessary optimality conditions for a point to be 

a local minimum for (9) are presented. 

 

Theorem 12 (Second-Order Necessary Optimality Conditions). Let : nf   

and : ,n

ih   1, , ,i p  be continuously differentiable functions. Consider the 

problem min{ ( ) : ( ) 0}.f x h x   If *x  is a local minimum and it is a regular point of 

the constraints, then there exists a unique vector *λ p  such that 

                                               * * T *( ) ( ) λ 0,f x h x                                          (16)                        

and 

                                         T 2 * 2 * T *( ) ( ) λ 0d f x h x d                                    (17) 

for any nd   such that * T( ) 0.h x d   

 

Proof. The first condition * * T *( ) ( ) λ 0f x h x    follows from the Theorem 11. 

Now we concentrate to the second condition. Let *x  be a regular point and 
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consider d  an arbitrary direction from *( ),XT x  i.e. * T( ) 0.h x d   Let 

η: [ , ] ,I a a X    0,a   be an arbitrary twice-differential curve passing through 
*x  with *η(0) x  and η(0) .d  Consider φ  a function defined as φ( ) (η( )),t f t  

for any .t I  Since *x  is a local minimum of f  on { : ( ) 0},nX x h x   it 

follows that * 0t   is an unconstrained local minimum point for φ.  Therefore, by 

Theorem 4, it follows that 
2 T 2 * * Tφ(0) η(0) ( )η(0) ( ) η(0) 0.f x f x      

On the other hand, differentiating the relation T(η( )) λ 0h t   twice, we get: 

   
T

T 2 * T * Tη(0) ( ) λ η(0) ( ) λ (0) 0.h x h x      

Now, adding the last two relations we obtain: 

 T 2 * 2 * T *( ) ( ) λ 0,d f x h x d    

which must hold for every d  such that * T( ) 0.h x d                                             ♦ 

 

The above theorem says that if *( )XT x  is the tangent space to X  at *,x  then the 

matrix 2 * * 2 * 2 * T *( ,λ ) ( ) ( ) λxxL x f x h x    is positive semidefinite on *( ).XT x  

In other words, the matrix 2 * *( ,λ ),xxL x  (which is the Hessian of the Lagrange 

function) restricted to the subspace *( )XT x  is positive semidefinite.  

 

Remark 5 (Feasible Directions and Second-Order Conditions) An n -vector d  is 

said to be a feasible direction at *x  if *( ) 0,h x d   where *( )h x  is the Jacobian 

of the constraints at *.x  Let us assume d  is a feasible direction normalized so that 

1.d   Considering the Taylor’s expansion:  

2* * *( ε ) ( ) ε ( ) ( ε ),h x d h x h x d O d      

then * 2( ε ) (ε ).h x d O   Therefore, a move away from *x  along d  keeps the 

constraints satisfied to first-order accuracy. In particular, if all the constraints in (9) 

are linear, then * εx d  is a feasible point for all ε 0.  On the other hand, if any of 

the ( )ih x  in (9) are nonlinear, then d  is a direction tangential to the constraints at 
*.x  It is easy to see that condition (12) implies that, for any feasible direction ,d  

 
T *( ) 0.d f x   

 

To distinguish a minimum from a maximum or a saddle-point, the second-order 

optimality condition must be used. These conditions can be stated as: 

1) If the constraint functions ih  are all linear, the second-order condition that 

guarantees *x  is a minimum of problem (9) is 
T 2 *( ) 0d f x d   
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for any feasible direction .d  

2) If the constraint functions 
ih  are nonlinear, the second-order condition that 

guarantees *x  is a minimum of problem (9) is 
T 2 * *( ,λ ) 0d L x d   

for any feasible direction .d                                                                                       ♦ 

 

Remark 6 (Eigenvalues in Tangent Space). Geometrically, the restriction of the 

matrix 2 * *( ,λ )xxL x  to *( )XT x  corresponds to the projection *

2 * *

( )
[ ( ,λ )].

X
xxT x

P L x  

A vector *( )Xy T x  is an eigenvector of the projection *

2 * *

( )
[ ( ,λ )]

X
xxT x

P L x  if 

there is a real number ν  such that 

*

2 * *

( )
[ ( ,λ )] ν .

X
xxT x

P L x y y   

The real number ν  is called the eigenvalue of *

2 * *

( )
[ ( ,λ )].

X
xxT x

P L x  To obtain a 

matrix representation for *

2 * *

( )
[ ( ,λ )]

X
xxT x

P L x  it is necessary to introduce a basis of 

the tangent subspace *( ).XT x  It is best to introduce an orthonormal basis, say 

1[ , , ].n pE e e   Any vector *( )Xy T x  can be written as ,y Ez  where 

.n pz   Now, 2 * *( ,λ )xxL x Ez  represents the action of 2 * *( ,λ )xxL x  on such a 

vector. To project this result back into *( )XT x  and express the result in terms of the 

basis 1[ , , ]n pE e e   it is necessary to multiply by T .E  Therefore, 

T 2 * *( ,λ )xxE L x Ez  is the vector whose components give the representation in terms 

of the basis .E  The ( ) ( )n p n p    matrix T 2 * *( ,λ )xxE L x E  is the matrix 

representation of 2 * *( ,λ )xxL x  restricted to *( ).XT x  The eigenvalues of 
2 * *( ,λ )xxL x  restricted to *( )XT x  can be determined by computing the eigenvalues 

of T 2 * *( ,λ ) .xxE L x E  These eigenvalues are independent of the particular choice of 

the basis .E                                                                                                                ♦ 

 
Recall that the conditions given in Theorems 11 and 12 are necessary 

conditions. These must hold at each local minimum point. However, a point 

satisfying these conditions may not be a local minimum. As in the unconstrained 

case it is possible to derive second-order conditions for constrained optimization 

problems. The following theorem provides sufficient conditions for a stationary 

point of the Lagrange function to be a local minimum. 

 

Theorem 13 (Second-Order Sufficient Conditions). Let : nf   and 

: ,n

ih   1, , ,i p  be twice continuously differentiable functions. Consider 

the problem min{ ( ) : ( ) 0}.f x h x   If *x  and *λ  satisfy: 

                                                      * *( ,λ ) 0,xL x                                              (18a) 
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                                                      * *

λ ( ,λ ) 0L x                                               (18b) 

and 

                                                  T 2 * *( ,λ ) 0xxy L x y                                             (19) 

for any 0y   such that * T( ) 0,h x y   then *x  is a strict local minimum. 

 

Proof. Consider the augmented Lagrange function:  

2T( ,λ) ( ) λ ( ) ( ) ,
2

c
L x f x h x h x    

where c  is a scalar. Clearly, 

( ,λ) ( ,λ),x xL x L x   
2 2 T( ,λ) ( ,λ) ( ) ( ),xx xxL x L x c h x h x      

where λ λ ( ).ch x   Since * *( ,λ )x  satisfy the sufficient conditions, by the 

Theorem A3, we obtain that * *( ,λ ) 0xL x   and 2 * *( ,λ ) 0,xxL x   for sufficiently 

large .c  L  being positive definite at * *( ,λ ),x  it follows that there exist ρ 0  and 

δ 0  such that 

2
* * * *ρ

( ,λ ) ( ,λ )
2

L x L x x x    

for * δ.x x   Besides, since *( ,λ ) ( )L x f x  when ( ) 0,h x   we get 

2
* *ρ

( ) ( )
2

f x f x x x    

if ( ) 0,h x   * δ,x x   i.e. *x  is a strict local minimum.                                      ♦ 

 

Sensitivity – Interpretation of the Lagrange Multipliers 

The thi  Lagrange multiplier can be viewed as measuring the sensitivity of the 

objective function with respect to the thi  constraint, i.e. how much the optimal 

value of the objective function would change if that constraint were perturbed. 

 For the very beginning let us consider 1,p   i.e. the problem (9) has one 

constraint 1( ) 0.h x   Now, suppose that *x  is a local solution of the problem  

1min{ ( ) : ( ) 0},f x h x   

and consider the perturbed problem  

1min{ ( ) : ( ) δ},f x h x   

where δ  is a known scalar. If the solution of the perturbed problem is * ,x u  then 

using the Taylor’s expansion a first-order estimate of the optimum function value is 
* * T *( ) ( ) ( ).f x u f x u f x     But, the optimality condition for the original 

problem given by (12) states that * * *

1 1( ) λ ( ),f x h x     where *

1λ  is the Lagrange 

multiplier. Hence 
* * * T *

1 1( ) ( ) λ ( ).f x u f x u h x     
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Since *x u  solve the perturbed problem, it follows that *

1( ) δ,h x u   hence 
* T *

1 1( ) ( ) δ.h x u h x    But, *

1( ) 0.h x   Therefore, T *

1( ) δ,u h x   that is 
* * *

1( ) ( ) δλ .f x u f x     

In other words, the Lagrange multiplier is an approximate measure of the change 

in the objective function that will occur if a unit amount is added to the right-hand 

side of the constraint. In general we have the following theorem. 

 

Theorem 14 (Interpretation of the Lagrange Multipliers). Consider the family of 

problems min{ ( ) : ( ) },f x h x w  where : nf   and : n ph   are twice 

continuously differentiable. Suppose for 0w   there is a local solution *x  that is a 

regular point and that, together with its associated Lagrange multiplier vector λ,  

satisfies the second-order sufficient conditions for a strict local minimum. Then, for 

every pw  in a region containing 0  there is a ( ),x w  depending continuously 

on ,w  such that *(0)x x  and such that ( )x w  is a local minimum of the problem. 

Furthermore, 

0
( ( )) λ.w w

f x w


    

 

Proof. Consider the system of equations: 

                                                 T( ) ( ) λ 0,f x h x    

                                                 ( ) .h x w  

By hypothesis, when 0,w   there is a solution * *,λx  to this system. The Jacobian 

matrix of this system, at this solution is 

 
* * T

*

( ) ( )
,

( ) 0

L x h x

h x

 
 
 

 

 

where * 2 * 2 * T *( ) ( ) ( ) λ .L x f x h x   

Since *x is a regular point and *( )L x  is positive definite on * T{ : ( ) 0},y h x y   it 

follows that this matrix is nonsingular. Thus, by the Implicit Function Theorem 

(Theorem A1), there is a solution ( ),λ( )x w w  to the system which is twice 

continuously differentiable. Therefore, 

                                         * T

0
( ( )) ( ) (0),w ww

f x w f x x


    

                                         *

0
( ( )) ( ) (0).w ww

h x w h x x


      

But, since *( )h x w  it follows that *( ) (0) .wh x x I    On the other hand, from 
T( ) ( ) λ 0f x h x    it follows that 

0
( ( )) λ.w w

f x c


                                          ♦ 
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6. Optimality conditions for general problems 
 

In the following we present a generalization of the Theorems 8, 11, 12 and 13 to 

nonlinear optimization problems with equality and inequality constraints: 

min ( )f x  

subject to:                                                                                                              (20) 

                                                           ( ) 0,ic x     1, , ,i m  

                                                           ( ) 0,jh x     1, , ,j p  

where ,nx  : ,nf   : ,n

ic   1, , ,i m  and : ,n

jh   

1, , ,j p  are continuous differentiable functions. Define the vectors: 

1( ) [ ( ), , ( )]mc x c x c x  and 1( ) [ ( ), , ( )].ph x h x h x  

 

Remark 7 (Discarding the Inactive Constraints). Let us consider the nonlinear 

optimization problem min{ ( ) : ( ) 0, 1, , }.if x c x i m   Suppose that *x  is a local 

minimum point for this problem. Clearly, *x  is also a local minimum of the above 

problem where the inactive constraints ( ) 0,ic x   *( )i A x  have been discarded. 

Therefore, the inactive constraints at *x  can be ignored in the statement of the 

optimality conditions. On the other hand, the active constraints can be treated as 

equality constraints at a local minimum point. Hence, *x  is also a local minimum 

point to the equality constrained problem: 
*min{ ( ) : ( ) 0, ( )}if x c x i A x   

The difficulty is that we do not know the set of the active constraints at *.x   

 From Theorem 11 it follows that if *x  is a regular point, there exists a 

unique Lagrange multiplier vector *μ m  such that 

*

* * *

( )

( ) μ ( ) 0.i i

i A x

f x c x


     

Now, assigning zero Lagrange multipliers to the inactive constraints, we get: 
* * T *( ) ( ) μ 0,f x c x    

                                                μ 0,i   *( ).i A x  

Clearly, the last condition can be rewritten as * *μ ( ) 0,i ic x   1, , .i m  

It remains to show that μ 0.  For this assume that μ 0q   for some 

*( ).q A x  Now, let ( 1)A m n   be the matrix whose rows are *( )f x  and 
*( ),ic x  1, , .i m  Since *x  is a regular point, it follows that the Lagrange 

multiplier vector *μ  is unique. Therefore the condition TA 0,y   can only be 

satisfied by  
T

* *γ 1 μy   with γ .  But, μ 0q  . Therefore, by Gordan’s 

Theorem A2 there exists a direction nd   such that A 0.d   In other words, 
* *

0( ) ( ) ,acd C x C x    which contradicts the hypothesis that *x  is a local 
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minimum of the problem. All these results represent the KKT optimality conditions 

as stated by Theorem 8. Although this development is straightforward, it is 

somewhat limited by the regularity-type assumption at the optimal solution.          ♦ 

 

Definition 20 (Regular Point – General Case). Let : ,n

ic   1, , ,i m  and   

: ,n

jh   1, , ,j p  be continuously differentiable functions. Consider the set 

{ : ( ) 0, 1, , , ( ) 0, 1, , }.n

i jX x c x i m h x j p       A point *x X  is a 

regular point of the constraints from (20) if the gradients *( ),ic x  *( )i A x  and 
*( ),jh x  1, , ,j p  are linearly independent.                                                       ♦ 

 

The Definition 20 introduces the Linear Independence Constraint Qualification 

(LICQ) for general nonlinear optimization problems, i.e. the gradients of the active 

inequality constraints and the gradients of the equality constraints are linearly  

independent at *.x  Another constraint qualification is the Linear Constraint 

Qualification (LCQ): i.e. ( ),ic x 1, , ,i m  and : ,n

jh   1, , ,j p  are 

affine functions. Another one is the Slater condition, for a convex problem, i.e. 

there exists a point x  such that ( ) 0,ic x   1, , ,i m  and ( ) 0.h x   

We emphasize that the constraint qualification ensures that the linearized 

approximation to the feasible set X  captures the essential shape of X  in a 

neighborhood of *.x  

 

Theorem 15 (First- and Second-Order Necessary Conditions). Let : ,nf   

: ,n

ic   1, , ,i m  and : ,n

ih   1, ,i p  be twice continuously 

differentiable functions. Consider the problem min{ ( ) : ( ) 0, ( ) 0}.f x c x h x  If *x  

is a local minimum for this problem and it is a regular point of the constraints, 

then there exist unique vectors *μ m  and *λ p  such that: 

                                     * * T * * T *( ) ( ) μ ( ) λ 0,f x c x h x                              (21a) 

                                     *μ 0,                                                                            (21b) 

                                     *( ) 0,c x                                                                        (21c) 

                                     *( ) 0,h x                                                                        (21d) 

                                     * *(μ ) ( ) 0,T c x                                                                (21e) 

and 

                             T 2 * 2 * T * 2 * T *( ) ( ) μ ( ) λ 0,y f x c x h x y                          (22) 

for all ny  such that * T( ) 0,ic x y   *( )i A x  and * T( ) 0.h x y                     ♦  

 

Proof. Observe that since *μ 0  and *( ) 0,c x   (21e) is equivalent to the 

statement that a component of *μ  is nonzero only if the corresponding constraint is 

https://en.wikipedia.org/w/index.php?title=Linear_independence_constraint_qualification&action=edit&redlink=1
https://en.wikipedia.org/wiki/Linear_independence
https://en.wikipedia.org/wiki/Linear_independence
https://en.wikipedia.org/wiki/Slater_condition
https://en.wikipedia.org/wiki/Convex_optimization
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active. Since *x  is a minimum point over the constraint set, it is also a minimum 

over the subset of that set defined by setting the active constraints to zero. 

Therefore, for the resulting equality constrained problem defined in a 

neighborhood of *,x there are Lagrange multipliers. Hence, (21a) holds with 
*μ 0i   if *( ) 0.ic x   

It remains to show that *μ 0.  This is a little more elaborate. Suppose that for 

some *( ),k A x  *μ 0.k   Let X  and T  be the surface and the tangent space, 

respectively, defined by all the other active constraints at *.x  By the regularity 

assumptions, there is a d  such that  d T  and * T( ) 0.kc x d   Let η( )t  be a 

curve on X  passing through *x  at 0t   with η(0) .d  Then, for small 0,t   it 

follows that η( )t  is feasible and  

* T

0

d
(η( )) ( ) 0

d t

f
t f x d

t 

    

by (21a), which contradicts the fact that *x is a minimum point.                           ♦ 

 

The conditions (21) are known as the Karush-Kuhn-Tucker conditions, or KKT 

conditions. The conditions (21e) written as * *μ ( ) 0,i ic x   1, , ,i m  are the 

complementary conditions. They show that either constraint i  is active or the 

corresponding Lagrange multiplier *μ 0,i   or possibly both. For a given nonlinear 

optimization problem (20) and a solution point *,x  there may be many Lagrange 

multipliers * *(μ ,λ )  for which the conditions (21) and (22) are satisfied. However, 

when *x  is a regular point (the LICQ is satisfied), the optimal * *(μ ,λ )  are unique. 

 

The KKT conditions motivate the following definition which classifies constraints 

according to whether or not their corresponding Lagrange multiplier is zero. 

 

Definition 21 (Strongly Active (Binding) – Weakly Active Constraints). Let *x  be a 

local solution to the problem (20) and the Lagrange multipliers * *(μ ,λ )  which 

satisfy the KKT conditions (21). We say that an inequality constraint ( )ic x  is 

strongly active or binding if *( )i A x  and the corresponding Lagrange multiplier 
*μ 0.i   We say that ( )ic x  is weakly active if *( )i A x  and the corresponding 

Lagrange multiplier *μ 0.i                                                                                        ♦ 

 

The nonnegativity condition (21b) on the Lagrange multiplier for the inequality 

constraints ensures that the function ( )f x  will not be reduced by a move off any of 

the binding constraints at *x  to the interior of the feasible region. 
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A special case of complementarity is important because it introduces the concept of 

degeneracy in optimization. 

 

Definition 22 (Strict Complementarity). Let *x  be a local solution to the problem 

(20) and the Lagrange multipliers * *(μ ,λ )  which satisfy the KKT conditions (21). 

We say that the strict complementarity holds if exactly one of *μ i  and *( )ic x  is zero 

for each index 1, , .i m  In other words, we have *μ 0i   for each *( ).i A x                                                                                                         

♦ 

 

Usually, satisfaction of strict complementarity is beneficial for algorithms and 

makes it easier to determine the active set *( )A x  so that convergence is more 

rapid.  

 

Remark 8 (Degeneracy). A property that causes difficulties for some optimization 

algorithms is degeneracy. This concept refers to the following two situations: 

- The gradient of the active constraints *( ),ic x  *( ),i A x  are linearly dependent 

at the solution point *.x  Linear dependence of the gradient of the active constraints 

can cause difficulties during the computation of the step direction because certain 

matrices that must be factorized become rank deficient.  

- Strict complementarity fails to hold, that is, there is some index *( )i A x  such 

that all the Lagrange multipliers satisfying the KKT conditions (21) have *μ 0.i   

In the case when the problem contains weakly active constraints it is difficult for an 

algorithm to determine whether these constraints are active at the solution. For 

some optimization algorithms (active-set algorithms and gradient projection 

algorithms) the presence of weakly active constraints can cause the algorithm to 

zigzag as the iterates move on and off the weakly constraints along the successive 

iterations.                                                                                                                    ♦ 

 

Theorem 16 (Second-Order Sufficient Conditions). Let : ,nf   : ,n

ic   

1, , ,i m  and : ,n

jh   1, ,j p  be twice continuously differentiable 

functions. Consider the problem min{ ( ) : ( ) 0, ( ) 0}.f x c x h x   If there exist 
*,x *μ  and *λ  satisfying the KKT conditions (21a)-(21e) and 

T 2 * * *( ,μ ,λ ) 0,xxy L x y   

for all 0y   such that 

                                   * T( ) 0,ic x y    *( )i A x  with *μ 0,i                             (23a) 

                                   * T( ) 0,ic x y    *( )i A x  with *μ 0,i                             (23b) 

                                   * T( ) 0,h x y                                                                    (23c) 

where T T( ,μ,λ) ( ) μ ( ) λ ( ),L x f x c x h x    then *x  is a strict local minimum of the 

problem.                                                                                                                     ♦ 
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Proof. The theorem says that, the Hessian of the Lagrangian is positive definite on 

the critical cone * * *( ,μ ,λ )C x  defined by (23) for *,x *μ  and *λ  satisfying the 

KKT conditions (21a)-(21e).  

Assume that *x  is not a strict local minimum and let { }ky  be a sequence of 

feasible points converging to *x  such that *( ) ( ).kf y f x  Consider 
ky  of the 

form * δk k ky x s   with δ 0k   and 1.ks   Assume that δ 0k   and *.ks s  

Clearly, * T *( ) 0f x s   and * *( ) 0jh x s   for 1, , .j p  

On the other hand, for each active constraint ic  we have *( ) ( ) 0.i k ic y c x   

Therefore, * T *( ) 0.ic x s    

If * T *( ) 0,ic x s   for all * *{ : ( ) 0, μ 0},l li l c x    then the proof is similar to that 

in Theorem 13. If * T *( ) 0ic x s   for at least one * *{ : ( ) 0,μ 0},l li l c x    then 
* T * T * * T * *0 ( ) λ ( ) μ ( ) 0,f x s h x s c x s        

which represents a contradiction.                                                                               ♦ 

 

The KKT sufficient conditions for convex programming with inequality constraints 

given in Theorem 9 can immediately be generalized to nonlinear optimization 

problems with convex inequalities and affine equalities. 

 

Theorem 17 (KKT Sufficient Conditions for General Problems). Let : nf   

and : ,n

ic   1, , ,i m  be convex and differentiable functions. Also let 

: ,n

ih   1, , ,i p  be affine functions. Consider the problem min ( )f x  

subject to { : ( ) 0, ( ) 0}.nx X x c x h x     If * * *( ,μ ,λ )x  satisfies the KKT 

conditions (21a)-(21e), then *x  is a global minimum for f on .X                    ♦ 

 

 

Sensitivity – Interpretation of the Lagrange Multipliers for General Problems 

As we have already seen Theorem 14 presents an interpretation of the Lagrange 

multipliers for nonlinear optimization problems with equality constraints. Each 

Lagrange multiplier tells us something about the sensitivity of the optimal objective 

function value *( )f x  with respect to the corresponding constraint. Clearly, for an 

inactive constraint *( )i A x  the solution *x  and the function value *( )f x  are 

independent of whether this constraint is present or not. If we slightly perturb ic  by 

a tiny amount, it will still be inactive and therefore *x  will still be a local solution 

of the optimization problem. Since *μ 0i   from (21e), the Lagrange multiplier 

shows that constraint i  has no importance in the system of the constraints. 

Otherwise, as in Theorem 14 the following theorem can be presented. 
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Theorem 18 (Interpretation of the Lagrange Multipliers for General Problems). 

Consider the family of problems min{ ( ) : ( ) , ( ) },f x c x v h x w   where 

: ,nf  : n mc   and : n ph   are twice continuously differentiable. 

Suppose for 0, 0v w   there is a local solution *x  that is a regular point and 

that, together with its associated Lagrange multiplier *μ 0, *λ ,  satisfies the 

second-order sufficient conditions for a strict local minimum. Then, for every 

( , ) ,m pv w   in a region containing (0,0) ,m p  there is a solution ( , )x v w  

continuously depending on ( , ),v w  such that *(0,0)x x and such that ( , )x v w  is a 

local minimum of the problem. Furthermore, 

                                                 *

0,0
( ( , )) μ .v f x v w    

                                                 *

0,0
( ( , )) λ .w f x v w                                                ♦ 

 

 

 

Appendix 

 
Proposition A1 (First-Order Condition of Convexity). Let C  be a convex set in 

n  with a nonempty interior. Consider the function :f C   which is 

continuous on C  and differentiable on int( ).C  Then, f  is convex on int( )C  if 

and only if T( ) ( ) ( ) ( )f y f x f x y x    for any points , .x y C                            ♦ 

 

Proposition A2 (Separation of Two Convex Sets). Let 1C  and 2C  be two nonempty 

and convex set in .n  Suppose that 1 2 .C C   Then, there exists a hyperplane 

that separates 1C  and 2 ,C  i.e. there exists a nonzero vector np  such that 
T T

1 2p x p x  for any 1 1( )x cl C  and for any 2 2( ).x cl C                         ♦ 

 

Theorem A1 (Implicit Function Theorem). Let : n m nh    be a function 

such that: 

1) *( ,0) 0h z   for some * .nz   

2) The function (.,.)h  is continuously differential in some neighborhood of *( ,0).z  

3) ( , )zh z t  is nonsingular at the point *( , ) ( ,0).z t z  

Then, there exists an open sets n

zN   and m

tN   containing *z  and 0,  

respectively, and a continuous function : t zz N N  such that * (0)z z  and 

( ( ), ) 0h z t t   for all .tt N  ( )z t  is uniquely defined. If h  is q  times continuously 

differentiable with respect to both its arguments for some 0,q   then ( )z t  is also 

q  times continuously differentiable with respect to t  and 

 
1

( ) ( ( ), ) ( ( ), ) ,t zz t h z t t h z t t


     
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for all .tt N  

 

The implicit function theorem is applied to parameterized system of linear 

equations in which z  is obtained as the solution of ( ) ( ),M t z g t  where 

(.) n nM   has (0)M  nonsingular and ( ) ng t   (see the algebraic 

characterization of a tangent space). To apply the theorem, define 

( , ) ( ) ( ).h z t M t z g t   If (.)M  and (.)g  are continuously differential in some 

neighborhood of 0,  the theorem implies that 1( ) ( ) ( )z t M t g t  is a continuous 

function of t  in some neighborhood of 0.  

 
Theorem A2 (Gordan’s Theorem). Let A  be an m n  matrix. Then exactly one of 

the following two statements holds: 

System 1. There exists nx  such that 0.Ax   

System 2. There exists ,my  0y   such that T 0A y   and 0.y   

 

Proof. System 1 can be equivalently written as 0Ax es   for some nx  and 

0,s   ,s  where e  is a vector of m  ones. Now, rewriting this system in the 

form of System 1 of Theorem A4.1, we obtain   0
x

A e
s

 
 

 
 and 

(0, ,0,1) 0
x

s

 
 

 
 for some 1.n

x

s

 
 

 
 By Theorem A4.1, the associated System 

2 states that 
T

T

T
(0, ,0,1)

A
y

e

 
 

 
 and 0y   for some ,my  that is, T 0,A y   

T 1e y   and 0y   for some .my  But, this is equivalent to System 2.              ♦ 

 
Theorem A3. Let P  and Q  be two symmetric matrices, such that 0P   and 

0P   on the null space of Q  (i.e. T 0y Py   for any 0y   with 0).Qy   Then, 

there exists 0c   such that 0P cQ   for any .c c  

 

Proof. Assume the contrary. Then, for any 0k   there exists ,kx  1kx   such 

that T T( ) ( ) ( ) ( ) 0.k k k kx P x k x Q x   Consider a subsequence { }k

Kx  convergent to 

some x  with 1.x   Dividing the above inequality by k  and taking the limit as 

,k K   we get T 0.x Qx   On the other hand, Q  being semipositive definite, 

we must have T 0,x Qx   hence T 0.x Qx  Therefore, using the hypothesis, it 

follows that T 0.x Px   But, this contradicts the fact that 
T T

,

limsup ( ) ( ) 0.k k

k k K

x Px k x Q x
 

                                                                                ♦ 
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Notes 
Plenty of books and papers are dedicated to the theoretical developments of 

optimality conditions for continuous nonlinear optimization. Many details and 

properties of theoretical aspects of optimality conditions can be found in Bertsekas 

[1999], Boyd and Vandenberghe [2006], Nocedal and Wright [2006], Sun and 

Yuan [2006], Bartholomew-Biggs [2008], etc. The content of this chapter is taken 

from the books by Chachuat [2007], Bazaraa, Sherali and Shetty [1993], 

Luenberger [1973, 1984], [Luenberger and Ye, 2008] and [Andrei, 2015]. 

Concerning the optimality conditions for problems with inequality constraints the 

material is inspired by Bazaraa, Sherali and Shetty [1993]. The derivation of the 

necessary and sufficient optimality conditions for problems with equality 

constraints follows the developments presented by Luenberger [1973]. The 

sensitivity analysis and interpretation of the Lagrange multipliers for nonlinear 

optimization is taken from Luenberger [1973]. We did not treat here the duality and 

the saddle point optimality condition of the Lagrangian, but these can be found, for 

example, in [Bazaraa, Sherali and Shetty, 1993] or [Nocedal and Wright, 2006]. 

The KKT conditions were originally named after Harold W. Kuhn (1925-

2014), and Albert W. Tucker (1905-1995), who first published these conditions in 

1951 [Kuhn and Tucker, 1951]. Later on scholars discovered that the necessary 

conditions for this problem had been stated by William Karush (1917-1997) in his 

master's thesis in 1939 [Karush, 1939]. Another approach of the optimality 

conditions for nonlinear optimization problem was given in 1948 by Fritz John 

(1910-1994) [John 1948]. (See also [Cottle, 2012].)
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