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Abstract 
 

        An inventory problem of a single item with multi-distribution system is considered under different 
management systems. There are a main warehouse with a sales depot in a central place of a country and 
one secondary warehouse with one sale cum showroom in each of the n-states. The items from main 
warehouse are transferred to secondary warehouses in bulk release pattern whereas units are transferred 
from secondary warehouses to showrooms for sale in continuous or bulk release pattern. The demands at 
different places are different, may be constant or both stock and price dependent. Here time period for the 
whole system is assumed to be same and accordingly, there may be different scenarios depending upon 
the time of exhaustion of the materials at different places. If the item is exhausted early in a place, 
shortages are allowed at that counter. On the other hand, if there is a surplus at a place, the units are sold 
at reduced rate and there is an unlimited market for the lower-priced units. Moreover, the whole system is 
assumed to be both integrated and non-integrated ones. In non-integrated systems, secondary warehouses 
with their related show rooms are considered to be under separate management houses.  Following these 
assumptions, the inventory model is formulated and solved using a gradient-based non-linear optimization 
method. The models for different scenarios are illustrated numerically.    
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1 . Introduction 
 

       In reality there are many situations in business sector where the demand rate is not constant but 
varies. It may depend on time, initial or on hand inventory levels, selling price, advertisement 
expenditure, the frequency of advertisement etc. There are certain types of items (like consumer goods, 
fashionable items etc.) for which, according to market research, customers are motivated by the display of 
the items in the showrooms i.e., the demand rate is dependent on the displayed inventory level. For these 
items, the consumption goes up if the inventory level is high and vice versa. Such type of demand was 
considered by Gupta and Vrat [1], Mondal and Phaujdar [2,3], Urban [4,5], Bhuina and Maiti[6] etc.  
              However, in the present competitive market, the selling price is one of the decisive factors in 
selecting an item for use. It is a common practice that the higher selling price of an item negates the 
demand of that item whereas lower prices have the reverse effect. Hence, it can be realistically assumed 
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that the demand of an item is a function of selling price, time, current stock level etc jointly or seperately. 
In this area, one may refer to the works of Urban [4], Goyal and Gunasekaran[7], Abad[8] among others. 
              In the field of inventory management, an important problem associated with the inventory 
maintenance is to decide where to stock the goods. In the busy market place like super market, 
corporation market, municipality market etc. the storage space of a showroom is limited. When an 
attractive price discount for bulk purchase is available or the cost of procuring goods is higher than the 
inventory related other costs or there are some problems in frequent procurements or the demand of items 
is very high or the bulk transport facility is available etc., management then decides to purchase a huge 
quantity of items at a time. All these units cannot be stored in the existing storage (showroom, i.e., 
Primary Warehouse-PW) due to limited capacity. Then for storing the excess units, one (sometimes more 
than one) additional warehouse (called Secondary Warehouse, SW) is hired on a rental basis. These Sw’s 
may be located near the PW or a little away from it. The products are first stored in PW and then the 
excess amounts are stored in SW. The actual service to the customer is offered at PW only. The units of 
SW’s are transferred to PW in a continuous/bulk release pattern to meet up the demand at PW until the 
stock in SW’s are emptied and lastly the units at PW are released. There are several related papers 
presented in this area such as Hartley [9], Sarma[10], Goswami and Chaudhuri[11 ], Pakkala 
Achary[12,13 ], Bhunia and Maiti[14,15] and others.  
                In this paper, a single item inventory model is considered for style/fashionable products (like 
Winter garments, electronic goods, motor vehicles, computers etc.) whose demand is different (either 
stock and selling price dependent or constant) at different places of a country. Here time horizon is 
infinite. There is a main warehouse (MW) with a sales depot in a central place of the country and one 
Secondary Warehouse (SW) with one sale cum showroom (PW) in each of the n-states (here,  n=2). It is 
assumed that the rent of the showrooms (PW) at the heart of the market place is higher than that rent of 
the secondary warehouses (SW’s) as they are at a distance from market place. As the distance from the 
market place to secondary warehouse increases, the rent of the SW’s decreases but the transportation cost 
to transport the product from SW to PW increases. The products are transferred from SW’s to PW’s in 
bulk or continuous release pattern depending upon the nature of demand at PW’s i.e., constant or stock-
level dependent respectively. For the places where showroom-display generates the demand, showrooms 
are obviously replenished continuously empting the corresponding SW’s first. For constant demand also, 
to maintain the goodwill of the shop, showroom is filled up by bulk units at certain time intervals 
incurring some additional expenditure due to its high rent than the SW’s as SW is emptied first. The 
problem is divided into two cases: The whole system is assumed to be under a single (case-1) and 
different management systems (case-2). Here the time periods at different sales counter are assumed to be 
same and hence there are different scenarios depending upon the stock positions at the showrooms at the 
end of time period. If an item is not exhausted at a showroom, it is immediately sold at a reduced price. 
On the other hand, shortages are allowed if the item is exhausted early. To minimize the loss of goodwill, 
a restriction is imposed on the amount of shortages.  
In Case-I, the problem is solved by GRG method for single objective and in case-2, the problem is solved 
by GRG method using Interactive Satisficing method [Sakawa [16] ] for multi-objectives. Some 
numerical examples for different scenarios are presented to illustrate the cases. 
 
 

2.  Assumptions and notations 
 

The inventory problem is developed under the following assumptions and notations: 
Assumptions: 
(i) Rate of replenishment is infinite and the replenishment size is finite.  
(ii) The inventory-planning horizon is infinite and the inventory system involves only one item. 
(iii) Limited shortages are allowed. 
(iv) There is no quantity discount. 
(v) The units are sold from show room (i.e., primary warehouses viz., PW1, PW2 and PW3). 
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Notations: 
 

(i) ( j)
wS =  Initial inventory for the item in the main warehouse (MW) which are sold through jPW . 

(ii) jS =   Highest level of stock at jSW . 

(iii) jq (t) = Inventory level at any time t for the units which are sold through jPW .  

(iv) jK =  Number of units which are transferred from MW to jSW  in each shipments. 

(v) '
jK =  Number of units which are transferred from jSW  to jPW  in each shipments. 

(vi) 1t =    Consumption time of 1K units in PW1.  
(vii) '

1t =    Consumption time of 2K units in PW2.  
(viii) '

2t =    Consumption time of '
2K units in PW2.  

(ix) jn =  Number of shipments by which the items are transported from MW to jSW . 

(x) 2m =  Number of shipments by which the stock K2 are transported from SW2 to PW2 in '
1t  time. 

(xi) 3m =Number of shipments by which the stock S2 are transported from SW2 to PW2 during [t21,t22]. 
(xii) jW =  Highest level of stock at jPW . 

(xiii) j1t =   Time when inventory level of the item is j j(S w )+ . 

(xiv) j2t =   Time when inventory level of jSW (j=1,2) is zero. 

(xv) j3t =   Time when inventory level of jPW  is zero. 

(xvi) 32t =   Time when there is no item left in main warehouse to transfer in PW3 . 
(xvii) T =     Total time period of PW1, PW2 and PW3. 
(xviii) jR =    Shortage amount for jPW .   

(xix) 1
1 1 1 1 1 1f (p ,q ) ( q ) p−γ= α + β 1 1 1( , , 0)α β γ > is the demand rate at PW1 in no shortage period and 

1
1 1p−γα in shortage period.  

(xx) D  = Demand rate at PW2. 

(xxi) 3 3
3 3 3 3 3f (p ,q ) q pβ −γ= α 3 3 3( , , 0)α β γ > is the demand rate at PW3 in no shortage period and 

3
3 3p−γα in shortage period.  

(xxii) jd =Distance from jSW  to jPW . 

(xxiii) M
1C = The inventory carrying cost per unit per unit time in MW. 

(xxiv) 1
pwjC = The inventory carrying cost per unit per unit time in jPW . 

(xxv) 1 1 .
swj pwj

jC C FC d= − = The inventory carrying cost per unit per unit time in jSW . 

(xxvi) pwj
2C = Shortage cost per unit per unit time jPW . 

(xxvii) 3jC = Replenishment cost per cycle at jPW . 
(xxviii)  C   =   Purchasing cost per unit quantity at MW for integrated model. 
(xxix)   jC    =  Purchasing cost per unit quantity at jSW for non-integrated model . 

(xxx) j j jp v c, v 1= >  be the selling price per unit quantity at jPW  for integrated model. 

(xxxi) 1j 1j j 1jp v c , v 1= >  be the selling price per unit quantity at jPW  (j=1,2) for non-integrated model. 

(xxxii) 13 13 3 13p v c , v 1= >  be the selling price per unit quantity at 3PW  for non-integrated model. 

(xxxiii) tmjC = Fixed transportation cost for transporting ( j)
wS units from MW to jPW . 
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(xxxiv) '
tmjC = Transportation cost per unit for transporting j j(S w )+ units from MW to jSW  and jPW . 

(xxxv) swj
mC =Transportation cost per unit per unit distance for transporting j jn K units from MW to jSW . 

(xxxvi)  pwj
swjC = Transportation cost per unit per unit distance for transporting ( j)

wS  units from jSW  to jPW . 

 
2. Mathematical formulation 
 

2.2 2.1    System-I: MW-SW1-PW1 Distribution system: 
 

Initially, units are transferred from MW to SW1 and PW1and then sold from PW1 via SW1. Once K1 units 
are sold from PW1 and these K1 (K1< S1) units are continuously released from SW1, immediately  K1 units 
are transported from MW to SW1. It is assumed that n1such transportation are made during the whole time 
period T.  

             
                                       Fig-1 (Pictorial representation of System-1 for Case-I) 
   
Hence the differential equation governing this system during (0,T) is 
 

              

1

1

1

1 1 1 1 12

1
1 1 1 1 12 13

1 1 13

( W ) p , 0 t t
dq (t)

( q ) p , t t t
dt

p , t t T

−γ

−γ

−γ

− α + β ≤ ≤


= − α + β ≤ ≤
−α ≤ ≤

                                                                             (1) 

subject to the conditions 

          

(1)
W

(1)
W 1 1

1 1 11
1

1 12

13

1

S , t 0

S iK , t it

S W , t t
q (t)

W , t t
0 , t t

R , t T

 =


− =
 + == 

=
 =

− =

                                                                                                      (2) 
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Using the conditions, the solutions of the differential equation (1) is given by  
 

         

1

1
13 1 1

1

(1)
1 1 1 12W 1

(t t) p1
1 12 13

1

13 1 131

S ( W ) p .t , 0 t t

q (t) e 1 , t t t

(t t) p , t t T

−γ

−γ

− β

−γ

 − α + β ≤ ≤

 α  = − ≤ ≤  β  
 − α ≤ ≤

                                                                (3) 

 
and from (2) we have 

 
1

1 1
1

1 1 1

K p
t

W

γ
=

α + β
 ,  11 1 1t n t= ,  

1
1 1

12 11
1 1 1

S p
t t

W

γ
= +

α + β
,   

1
1 1 11

13 12
1 1

p W
t t log

γ α + β= +
β α

                  (4) 

(1)
w 1 1 1 1S S W n K= + + ,  1

1 1 131R p (t t)−γ= α −                                                                                        (5) 
 

1M
HOLC =  Holding cost for the units in the main warehouse, which are to be transferred in the SW1 

           [ ]M
1 1 1 1 1 1 1 1 1 1 1 1 1 1C n K t (n 1)K t (n 2)K t ......... 2K t K t= + − + − + + +  M

1 1 1 1 1
1

C n (n 1) K t
2

= +    (6) 

SW1
HOLC =  Holding cost for the units in SW1 

         
1 12

SW1 1
1

11

t t

1 1 w 1 1 1 1 1 1 1 1
0 t

C [ n { q (t) dt (S K ) t } n (S K ) t {q (t) W } dt ]= − − + − + −∫ ∫                            (7) 

    SW1 11 1
1

2 2 2
1 1 1 1 1 1 1 w 12 11 1 1 1 12 11 1 12 111 1

1 1
C [n {S t ( W ) p t } {S (t t ) ( W ) p (t t ) W (t t )}]

2 2
−γ −γ= − α + β + − − α + β − − −        

W1
HOLC =  Holding cost for the units in PW1 

        
13

pw1
1

12

t

12 1 1
t

C [ t W q (t) dt ]= + ∫  
1 1

pw1 1 1 1 1 11 1
1 121 2

1 11

W p p W
C [ W t log ]

γ γα α + β= + −
β αβ

                   (8) 

W1
SC =  Shortage cost in PW1  

1w1 2
2 1 131

1
C p (T t )

2
−γ= α −  

 

M1TC = Total transportation cost for transporting (1)
wS units from main warehouse (MW) to 1SW and 1PW         

          pw1' sw1 (1)
tm1 tm1 1 1 1 1 m1 w 1 1sw1C C (S W ) n K C C (S W )d= + + + + −                                                         (9) 

 
 
2.3 System-II:  MW-SW2-PW2 Distribution system: 
] 

Initially, units are transferred from MW to SW2 and PW2 and then sold from PW2 via SW2. Once '
2k  units 

are sold from PW2, immediately these '
2k  ( '

2k <K2 < S2) units are transported from SW2 to PW2. And after 

K2 (= m3. '
2k ) units are sold from PW2 , immediately these K2 units are transported from MW to SW2. It is 

assumed that n2 such transportation (from MW to SW2 ) are made during the whole time period T. 
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                                        Fig-2 (Pictorial representation of System-2 for Case-I) 
  
Hence the differential equation governing this system during (0,T) is 
 

232

23

D, 0 t tdq (t)
D, t t Tdt

− ≤ ≤
= −δ ≤ ≤

                                                                                                                (10) 

subject to the conditions 
(2)
W

(2) ' '
W 2 2 2

(2) '
W 2 1 2

2 2 21
1 ' '

2 2 2 21 2

2 22

23

2

S , t 0

S iK , t it (i 1, 2,....,m )

S jK , t jt ( j 1, 2,....,n )

S W , t t
q (t)

S W K , t t t

W , t t
0 , t t

R , t T

 =


− = =
 − = =
 + == 

+ − = +
 =
 =
− =

                                                                                         (11)                                                                                                     

Using the conditions (11), the solutions of the differential equation (10) is given by 
(2)

23W
2

23 23

S D t , 0 t t
q (t)

D(T t ) , t t T

 − ≤ ≤= 
δ − ≤ ≤

                                                                                                  (12) 

Also from (12), we have 
' '
2 2K D t= , '

2 2 2K m K= ,  '
2 3 2S m K= , (2)

w 2 2 2 2S S W n K= + +                                                            (13) 

' '
1 2 2t m t= , '

21 2 1t n t= , '
21 2 1t n t= , '

22 21 3 2t t m t= + , 2
23 22

W
t t

D
= +                                                      (14) 

M2
HOLC =  Holding cost for the units in the main warehouse, which are to be transferred in the SW2 
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         M ' ' ' ' '
1 2 2 1 2 2 1 2 2 1 2 1 2 1C n K t (n 1)K t (n 2)K t ....... 2K t K t = + − + − + + +   M '

1 2 2 2 1
1

C n (n 1) K t
2

= +   (15) 

HOL
sw2C =  Holding cost for the units in SW2 

         
sw2 ' ' ' ' ' ' ' ' ' '
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2

' ' ' ' ' ' ' ' ' '
3 2 2 3 2 2 3 2 2 2 2 2 2

C n {m K t (m 1)K t (m 2)K t ......... 2K t K t }

{m K t (m 1)K t (m 2)K t ......... 2K t K t }

[

]

= + − + − + + +

+ + − + − + + +
                 

         [ ]sw2 ' '
1 2 2 2 2 2 3 3

1
C K t n m (m 1) m (m 1)

2
= + + +                                                                          (16) 

pw2
HOLC =  Holding cost for the units in PW2 

         

'
232

pw2 2
1

22

tt
' ' '

2 2 22 2 w 2 2 2
0 t

C (W K ) t { q (t) dt (S K ) t } q (t) dt[ ]= − + − − +∫ ∫                                        

            pw2 2
1

2' ' ' ' 2
2 2 22 2 2 2 w 23 22 23 22

D D
C (W K ) t t K t {S (t t ) (t t ) }

2 2
[ ]= − − + + − − −                     (17) 

pw2
SC =  Shortage cost in PW2  

pw2 2
232

D
C (T t )

2
δ= −                                                                     (18) 

M2TC = Total transportation cost for transporting 2
wS units from main warehouse (MW) to 2SW and PW2         

          pw2' sw2 '
tm2 tm2 2 2 2 2 m 2 2 3 2 2 sw2C C (S W ) n K C (n m m ) K d C= + + + + +                                        (19) 

 
 
2.4 System-III: MW- PW3 Distribution system: 
 

The units are sold at the showroom PW3 and are continuously transferred from MW. 

                       
                              Fig-3 (Pictorial representation of System-3 for Case-I) 
 
 Hence the differential equation governing this system during (0,T) is 
 

3 3

3 3

3

3 3 3 32

1
3 3 3 32 33

3 3 33

W p , 0 t t
dq (t)

q p ,, t t t
dt

p , t t T

β −γ

β −γ

−γ

− α ≤ ≤


= − α ≤ ≤
−α ≤ ≤

                                                                                               (20) 
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subject to the conditions                                                                                      
 

(3)
W

3 32
3

33

3

S , t 0

W , t t
q (t)

0 , t t

R , t T

 =
 ==  =
− =

                                                                                                                 (21) 

 
Using the conditions, the solutions of the differential equation (22) is given by 

{ }
3 3

33

3

(3)
3 32W 3 3

(1 )

3 3 3 33 32 333

3 33 333

S W p .t , 0 t t

q (t) (1 ) p .(t t) , t t t

p .( t t) , t t T

β −γ

−β−γ

−γ

 − α ≤ ≤

= α −β − ≤ ≤

α − ≤ ≤

                                                        (22) 

Also from (23), we have 
(3)
w 3 3S S W= + ,  3

3 3 33 3R ( T t )p−γ= α −                                                                                             (23) 

3 3

(3)
w 3

32
3 3 3

S W
t

W pβ −γ
−=

α
,   

3 31
33

33 32
3 3

p W
t t

(1 )

γ −β
= +

α − β
                                                                                      (24) 

 
M
HOL

3C =  Holding cost for the units in the main warehouse, which are to be transferred in the PW2 

         
32t

M
1 3 3 32

0

C q (t) dt W t
 
 = −
  

∫  3 3 2M (3)
1 w 3 32 3 323 3

1
C (S W ) t W p t

2
β −γ = − − α  

                      (25) 

 pw3
HOLC =  Holding cost for the units in PW3 

          
33

pw2
1

32

t

3 32 3
t

C W t { q (t) dt
 
 = +
  

∫ { } ( )3pw3 3
1

1
3

3 32 3 3 33 323
3

1
C W t (1 )p t t

2

−β−γ − β= + α −β − − β 
     (26) 

 
34

33

t
pw3

23S
t

C C q(t) dt= − ∫ ,   3 223
3 3 333

C
R p ( T t )

2
−γ= α −                                                                    (27) 

 
M3TC = Total transportation cost for transporting 3

wS units from main warehouse (MW) to 3PW         

          pw3(3)
tm3 w tm3C S C= +                                                                                                                     (28) 

where  tm3C = Fixed transportation cost for transporting 3
wS units from MW to PW2 

          pw3
sw3C = Transportation cost per unit for transporting 3

wS units from MW to PW3. 
 
 
Case-I:  When the entire system is under single a management.  
 

In this case, it is assumed that each warehouses and showrooms are owned by a single business house.   
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Hence, the problem is to    Maximize PROF                                                                                        (29) 

where 1 2 3
1

PROF ( PROF PROF PROF )
T

= + +                                                                           

 and 1PROF = Total profit for the system-I M1 pw1 sw1 pw1
HOL HOL HOL S

M1
C TC31

1
1 w(p c)S C C C C− − − − − = − −                       

       2PROF = Total profit for the system-II M2 pw 2 sw 2 pw 2
HOL HOL HOL S

M2
C TC32

2
2 w(p c)S C C C C− − − − − = − −    

       3PROF = Total profit for the system-I  M3 pw3 pw3
HOL HOL S

M3
C TC33

3
3 w(p c)S C C C− − − − = − −  . 

 
Case-II:  When the system is a non-integrated one i.e., different parts of the distribution system are 
under separate managements.    
In this case it is assumed that there are three separate managements (shown in diagram).                        

                    
 
In this case our problem is a multi-objective problem where objective functions are   
                                    Maximize { PF1,  PF2 ,      PF3  }                                                                  (30) 
 Subject to the condition  S= (1) (2) (3)

w w wS S S+ +  (where S is the total capacity of MW).Where 

1PF = Average profit for the system-I  pw1 sw1 pw1
HOL HOL S

M1
C TC31

(1)
11 1 w[(p c )S C C C ]/ T− − − − −= −               

2PF = Total profit for the system-II     pw2 sw 2 pw 2
HOL HOL S

M2
C TC32

(2)
12 2 w[(p c )S C C C ]/ T− − − − −= −   

3PF = Total profit for the system-III 

       M1 M2 M3 pw3 pw3
HOL HOL HOL HOL S

M3
C TC33

(1) (2) (3)
1 w 2 w 13 w[(c c)S (c c)S (p c)S C C C C C ]/ T− −− − −= − + − + − − − . 
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6.   Interactive Approach 
 
Now considering the imprecise nature of DM’s judgment, DM may have different fuzzy or imprecise 
goals for each of the objective functions and hence interactive approach is used for the man-machine 
interaction. 
To derive the membership functions 

1 2 3PF PF PF, ,µ µ µ  for the corresponding objective functions PF1, 
PF2 and PF3 respectively from DM's viewpoint, we first calculate individual minimum ( i.e. 

min min min
1 2 3PF , PF , PF  ) and individual maximum ( i.e. max max max

1 2 3PF , PF , PF ) by a non-linear 
optimization technique. 
With the help of individual minimum and maximum, the DM can select any one from among the 
following three types of membership functions  

i) Linear membership functions 
ii) Quadratic membership functions 
iii) Exponential membership functions. 

The membership functions
1 2 3PF PF PF, andµ µ µ  may be written as                                                

                          
K

0
K K

0 1
K K K K

1
K K

0 if PF PF

d if PF PF PFPF

0 if PF PF

≤

 ≤


= ≤

 ≥


µ                                                                (31) 

where 1
KPF  and 0

KPF  are to be chosen such that   min 1 0 max
K K K KPF PF PF PF≤ ≤ ≤  and Kd  is a strictly 

monotonic decreasing continuous function of  PFK which may be linear or non-linear. 
 
 

6.1   Linear membership function (Type-I) 
 

      For each objective function, the corresponding linear membership functions may be as follows: 

K

0
K K

1PF PFK 0 1K
P K K KK

1
K K

0 if PF PF

1 if PF PF PFPF

1 if PF PF

−
−

 ≤
= ≤ ≤

 ≥

µ                                                   (32) 

where 0
KPF  and  K

1PF  are to be chosen such that   min max
K K K K

0 1PF PF PF PF≤ ≤ ≤ and 1 0
K K KP PF PF= −  is the 

tolerance of k-th objective function KPF . 
 
6.2.     Quadratic membership function (Type-II)  
 For each of the objective functions, the corresponding quadratic membership functions may be 

K

1
K K

21PF PF 0 1KK
K K KPK

1
K K

0 if PF PF

1 if PF PF PFPF

1 if PF PF

−
−

 ≤


 = ≤ ≤  
 


≥

µ
                                    (33)                                                                      

where 1
KPF  and  0

KPF  are to be chosen such that   min 0 1 max
K K K KPF PF PF PF≤ ≤ ≤ and 1 0

K K KP PF PF= −  is the 
tolerance of k-th objective function KPF . 
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   Fig.-4
KPF(Pictorial representation of linear )µ       Fig.-5

KPF(Pictorial representation of quadratic )µ  
 

 
6.3.      Exponential membership function (Type-III)  
 

For each of the objective functions, the corresponding exponential membership function may be 

                         

K

0
K K

1PF PFKK�
K P 0 1K

K K K K

1
K K

1 if PF PF

� ��� ��� �
	 ��	 �
	
PF

0 if PF PF

�
−

−

 ≤
        = − ≤ ≤ 

 
   


 ≥

                                (34)                                                                      


���������������������� �
K  "!$# % K>0  can be determined by asking the DM to specify the three points 1

KPF , 
0.5
KPF and 0

KPF  such that   min 0 0.5 1 max
K K K K KPF PF PF PF PF≤ ≤ ≤ ≤ and 1 0

K K KP PF PF= −  is the tolerance of k-th 
objective function KPF .             
 
                                                                

KPFµ                                                         

                                                                 
                                                Fig.-6  

KPF(Pictorial representation of exponential )µ  
 

6.4  Fuzzy Satisficing Method: 
 

          With the help of two different types of membership functions given by (32) and (33), following 
Bellman and Zadeh [17] and Zimmermann [18], the given problem (30) can be formulated for a particular 
choice of DM as     

1 1 1

2 2 2

3 3 3

PF PF PF

PF PF PF

PF PF PF

Min
subject to , Type II

, Type I

, Type II

λ
µ − µ ≤ λ µ ∈ −

µ − µ ≤ λ µ ∈ −

µ − µ ≤ λ µ ∈ −

                                                  (35)                                        

where 
1PF

& ,
2PF

& ,
3PF

& are the reference values of the membership functions corresponding to the 

objective functions PF1 ,PF2 , PF3.                                       
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Here DM selects the above membership functions for the corresponding objective functions and assigns 
the values of 

1PF
' ,

2PF
' ,

3PF
' . Then the above problem can be solved by a non-linear optimization 

technique and the optimal value of λ  (say *λ ), 
1PF

( ,
2PF

( ,
3PF

(  are obtained. 

Now after obtaining *λ , the DM selects the most important objective function from among the objective 
functions PF1 , PF2 and PF3 . Here PF3 (say) is selected and as DM would like to maximize his / her worst 
case. Then the problem becomes (for λ = *λ ) 

                         
1 1 2 2 3 3

3F

F m F m F m

Max P

subject to P , P , P≥ ≥ ≥
          (36) 

1 1 1

2 2 2

1

1
3 3

*

*
3

1

where m PF P (1 ) *�+ ,.-0/21�3547698:-;-<,>=<?@/A8CB�DE3�FG/2,.H�3 IKJ�L e II.

*m PF P 1 M N OQPSRUTWVYX[Z9\WPS]^V�_C\W`�a \CbEcEV�_dReO.f�V gKh:ijVlk<m
m PF P (1 n�opN OQP0R2T�V5X7Z9\:PSRUT�O>q@aA\CbEcEV�_dReO.f�V gKh:ijVlkUk .

= − − ∈ −

= − − ∈ −

= − − ∈ −

                 (37) 

 

 
6.5 Pareto Optimal solution 
 

 

Now, after deriving the optimum decision variables, pareto optimality test is performed following to 
Sakawa[16]. Let the optimum values, 1

*PF , 2
*PF  and 3

*PF  are obtained from (37). With these values, the 
following problem is solving using a non-linear optimization technique. 

    
1

1 2 3

1 1 2 2 2 3 3 3
* * *

( )

PF PF , PF PF , PF PF

Minimize V

subject to

+ +

+ = + = + =

= ε ε ε

ε ε ε
                                   (38) 

                                    1 2 3, , 0ε ε ε ≥                                 

The optimal solutions of (37), say, 1 2 3PF , PF and PF  are called the strong Pareto optimal solutions of 
the problem (30) provided V is very small, otherwise it is weak Pareto Optimum. 
This Pareto optimal solution is obtained with a particular set of membership functions for the objectives 
(say, type-I for the first objective, type-II for the second objective and type-I for the third objective) and 
their corresponding reference membership values (say, 

1PF
r ,

2PF
r ,

3PF
r ). If DM is not satisfied with the 

present optimum result, he / she can again repeat the same analysis with different set of membership 
functions and/or updating the current reference membership values 

1PF
r ,

2PF
r ,

3PF
r  to the new 

membership values taking the current values of the membership functions into consideration. This process 
may be continued till DM is satisfied with the result, which can be implemented/achieved. This gives an 
interaction with DM and the machine. 
 
 
 

7.     Numerical Results 
 

 

Depending upon the occurrence of shortages in PW1, PW2 and PW3, there may be two scenarios: 
Scenario-I : When shortages are allowed in all primary warehouses PW1, PW2 and PW3. 
Scenario-II   : When shortages are not allowed in any primary warehouses PW1, PW2 and PW3. 
The above scenarios are illustrated by the input data’s given in Table -I and optimal results are given in 
Table-II for case-I and for case-II, the results are given through Table-III to VIII.                  
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Table-1(input data) 
   c 10 3α  110 31C  100 pw1

2C  0.58 sw1
m1C  0.500 

1v  1.600 
3β  0.650 

32C  105 pw 2
2C  0.26 pw1

sw1C  0.018 

2v  1.452 3γ  0.750 33C  30 pw3
2C  0.53 sw2

m2C  0.160 

3v  1.690 
1W  75.79 m

1C  0.39 tm1C  18 pw2
sw2C  0.018 

1α  195 
2W  48 pw1

1C  0.45 tm2C  20 pw3
m3C  0.100 

1β  0.790 3W  85 pw 2
1C  0.82 tm3C  16    FC 0.06 

1γ  0.359 
1d  1.24 pw3

1C  0.75 '
tm1C  0.7 

1S  175 

D 210 

 

2d  1.72 

 

δ  0.7 

 

'
tm2C  0.21 

 

2S  184 

C1 11.5  C2 11.5  v11 1.581  V22 1.342  V33 1.49 
     

Table-I1 (Optimal results for case-1) 
 Scenario-1 Scenario-II  Scenario-I Scenario-II 

PROF 2179.272 2256.619 '
2t  0.022 0.022 

1
wS  339.694 341.077 T 4.943 3.733 

2
wS  922.000 784.000 

11t  0.944 0.958 

3
wS  1013.313 726.640 

12t  2.802 2.816 

1K  17.781 18.057 13t  3.719 3.733 

2K  46.000 36.800 
21t  3.286 2.628 

'
2K  4.600 4.600 

22t  4.162 3.505 

1n  5 5 
23t  4.390 3.733 

2n  15 15 32t  3.918 2.733 

2m  10 8 33t  4.943 3.733 

3m  40 40 
1R  88.263 0 

1t  0.189 0.192 
2R  0.387 0 

'
1t  0.219 0.175 

 

3R  0 0 

 
 
Following (33) to (36), problem (30) for case-2 is solved using a gradient-based non-linear optimization 
technique and the results are presented in the following tables: 
 
                         Table-III (Individual minimum and maximum of objective functions) 

Minimum Maximum Objective 

functions Scenario-I Scenario-II Scenario-I Scenario-II 

PF1 296.415 410.742 432.257 429.068 

PF2 54.315 561.979 592.954 592.964 

PF3 543.718 1296.017 

 

1315.530 1326.930 
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Table-IV (Input Data for 1
KPF  ,  0

KPF ) 
 

Scenario 0
1PF  1

1PF  2
0PF  2

1PF  P 3
0F  3

1PF  
I 296.416 432.057 54.316 592.954 543.719 1315.530 

II 410.743 429.068 561.980 592.964 1296.018 1326.930 

 
 
 
                                                  Table-V (Input Data for 

1PF
s ,

2PF
s ,

3PF
s ) 

 

Scenario 
1PF

s  
2PF

s  
3PF

s  

I 0.94 0.96 0.89 
II 0.94 0.96 0.89 

 
Let, with the above values (table-IV and -V), the membership functions of the objective functions may be 
formed of the types as per the Table-VI.   
                             
                                
   
                               Table-VI  (Possible types of MF for objective functions) 
 
 

Objective functions Type of membership functions 

PF1 Type-I or Type-II or Type-III 

PF2 Type-I or Type-II or Type-III 

PF3 Type-I or Type-II or Type-III 

 
Let , at the beginning , analysis is performed to find optimum λ  with the membership functions PF1, PF3 

as linear (Type-II) and PF2 as Quadratic (Type- tEuwvyx�z�{}|�~y���������������Q��{}|�� � �@���������G�������j���e�����W���U� -VII. 
 
 
                                                          Table-VII (Optimal value of λ) 
 

Minimum λ Scenario-I Scenario-II 
λ* 0.23073736 0.4280142 

  
 With this value of λ*, the objective function PF3 is chosen as the most significant one and optimized The 
optimum results are:                                                                                     
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Table-VIII  (Optimal results when PF3 is chosen as the most important objective function ) 

 Scenario-1 Scenario-II  Scenario-I Scenario-II 
PF1 428.302 429.032 

11t  1.201 0.672 
PF2 539.499 575.633 

12t  3.141 2.612 
PF3 1313.993 1324.519 

1t  0.401 0.134 
T 4.112 3.569 '

1t  0.219 0.164 
1
wS  359.198 311.456 '

2t  0.0219 0.018 

2
wS  829.999 749.500 13t  4.098 3.569 

3
wS  912.967 771.489 

21t  2.848 2.464 

1K  36.136 12.133 
22t  3.724 3.340 

2K  45.999 34.500 23t  3.952 3.569 
'
2K  4.6 3.833 32t  3.179 2.636 

1n  3 5 
33t  4.112 3.569 

2n  13 15 
1R  0.983 0 

2m  10 9 
2R  0.112 0 

3m  40 40 

 

3R  0.001 0 

  
Now, the results obtained from Table-VIII are tested for Pareto-optimality according as (30) and are 
strong Pareto-optimum and hence can be accepted (Pareto-optimality results are not shown).                                                                              
Still, if the decision-maker / practitioner is not satisfied with the outputs, he / she may perform the above 
analysis again by changing the current reference membership values for each of the membership function 
(i.e., 

LF
� ,

CF
� ,

RF
� ) or /and choosing the membership function for PF1 ,PF2 and PF3. If this second time 

analysis does not also give the desired result, DM perform the analysis with the other possible different 
combination (in this case 33 times) of the membership function with the same reference membership 
values for each of the membership function and this process is continued till the DM is satisfied. 
 

 
8.     Conclusion 
 

        In India, one particular brand of computers are brought by a multi-national from Singapore and 
stored in Pandicheri, a place in Southern India where a lot of financial concessions are available. From 
this depot, materials are transported to different cities for sale as per requirement/ demand. Such a real-
life inventory distribution is portrayed here and mathematically modeled. It is solved using a gradient-
based optimization technique and optimum results are presented. For the inventory practitioners, a man-
machine interaction technique is demonstrated and assuming a DM’s choice /preference, an optimum 
result is presented for case-2. Hence, the present formulation and analysis will be use full to multi-
national companies for their business in developing countries. The formulation of the model and analysis 
are quit general. These can be extended to include other features of inventory model such as deterioration, 
discount, inflation etc. 
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