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Abstract. In an undirected graph, the feedback vertex set problem is to find a set of vertices of

minimum cardinality whose removal makes the graph acyclic (connected or disconnected). This

problem is known to be NP-hard for general graph. In this paper, we proposed two algorithms

for finding the minimum feedback vertex set on interval graphs. The first algorithm is for

unweighted case and takes O(n + m) time while the second one is for weighted case taking

O(n
√

log C) time where n is the number of vertices, m is the number of edges and C is the cost

of the longest path of the graph.
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1 Introduction

An undirected graph G = (V,E) is an interval graph if the vertex set V can be put into one-to-

one correspondence with a set I of intervals on the real line such that two vertices are adjacent

in G iff their corresponding intervals have non-empty intersection. The set I is called an interval

representation of G and G is referred to as the intersection graph of I [9].

Interval graphs arise in the process of modeling real life situations, specially involving time

dependencies or other restrictions that are linear in nature. This graph and various subclass
1 This work has been done as a part of the project sponsored to the second author by Department of Science and

Technology, India, under grant No. SR/FTP/ETA-008/2002.
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thereof arise in diverse areas such as archeology, molecular biology, sociology, genetics, traffic

planning, VLSI design, circuit routing, psychology, scheduling, transportation and others. Re-

cently, interval graphs have found applications in protein sequencing [11], macro substitution

[7], circuit routine [14], file organization [3], job scheduling [3], routing of two points nets [10]

and many others. An extensive discussion of interval graphs also appears in [9]. Thus interval

graphs have been studied intensely from both the theoretical and algorithmic point of view.

In the following we give some useful definitions. Let G = (V,E) be an undirected graph and

let |V | = n and |E| = m. A cycle C of G is a sequence of distinct vertices {v1, v2, . . . , vr} such

that (vi, vi+1) ∈ E for 1 ≤ i < r and (vr, v1) ∈ E. Given S ⊆ V , the induced subgraph G(S)

is the graph G(S) = (S, E(S)), where E(S) = {(vi, vj) : vi, vj ∈ S, (vi, vj) ∈ E}. A set S is

a feedback vertex set if and only if the graph G(V − S) has no cycles. The minimum feedback

vertex set (MVFS) problem is ”Given G = (V,E), find a feedback vertex set S such that its

cardinality |S| is minimum among all such sets”. Let I(V ) be the interval representation of

the interval graph G = (V,E). For weighted undirected graph, an independent set is called a

maximum weight independent set if the sum of the weights of the vertices of the independent

set is maximum among all the independent sets of G. The maximum weight 2-independent set

(MW2IS) problem on G is to find a set of two disjoint independent sets S1, S2 of G such that

its weight
∑

v∈Q2
wt(v) is maximum, where Q2 = S1 ∪ S2 and each vertex v ∈ V has a positive

weight wt(v).

The feedback vertex set problem is important in the study of many large scale systems with

feedback such as electrical circuits. A frequently used technique in the analysis of such a system

is to model the structure of the system of a graph and make the system free from feedback by

removing a small set of edges/vertices to make it feedback set. It is empirically observed that

the convergence is faster if the feedback vertex edge set is of small size. Thus we are interested

in finding a feedback vertex/edge set which has minimum number of vertices/edges. Also, an

algorithm for the minimum feedback vertex/edge set is of some importance.

The minimum feedback vertex set problem is NP-hard on general graphs [8, 12]. An

O(mn2log(n2/m)) algorithm for the weighted feedback vertex set problem on flow-reducible

graphs is given in [16]. The feedback vertex set problem on chordal and interval graphs can

be viewed as special instances of the generalized clique cover problem which are solved in poly-

nomial time for chordal graphs [5, 17] and interval graph [13]. An O(n6) algorithm is there

for permutation graphs [2] and an O(n4) algorithm exists for the minimum weighted feedback
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vertex set problem exists on cocomparability graphs [4].

In this paper, an efficient algorithm is presented to find minimum feedback vertex set on

interval graphs in O(n + m) time for cardinality case. Also an algorithm is presented to find

the same in O(n
√

log C) time for weighted case where C is the weight of the longest path of the

graph.

2 Data Structure and Preliminaries

Let I = {I1, I2, . . . , In}, be the interval representation of an interval graph G, where ac is the left

endpoint and bc is the right endpoint of the interval Ic=[ac, bc] for all c = 1, 2, . . . , n. Without

any loss of generality we assume the following:

1. the intervals in I are indexed by increasing right end points i.e., b1 < b2 < · · · < bn,

2. the intervals are closed i.e., contains both of its endpoints and that no two intervals share

a common endpoint,

3. vertices of the interval graph and the intervals on the real line are one and the same thing,

4. the interval graph G is connected, and the list of sorted endpoints is given.

To find MFVS for unweighted interval graph, we first compute all cliques. A brief description

is given below to obtain such cliques.

To find the cliques we consider fictitious vertical lines only at each ‘b’ endpoints to consider

the intervals that are cut by these vertical lines. Between two consecutive ‘b’ endpoints, either

there will be no ‘a’ endpoint or there will remain some ‘a’ endpoints. Thus if a vertical line

is drawn at any point in between two consecutive ‘b’ endpoints then the number of intervals

cutting that vertical line is either same or less than the number of intervals that are cut by

the vertical line drawn at the right ‘b’ endpoints. Thus all maximal cliques are obtained by

considering vertical lines only at the ‘b’ endpoints.

For each i (= 1, 2, . . . , n) let Bi be the set of vertices corresponding to the interval i and the

intervals that are cut by the fictitious line considered at bi. Using algorithm [15] all maximal

cliques are obtained. The minimum vertex of each such clique is noted and arranged in increasing

order, say, p1, p2, . . . , pk where k is the total number of cliques. Let Sj be the set of vertices

forming the clique whose minimum element is pj . Thus, the maximal cliques are S1, S2, . . . , Sk.
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Figure 1: (a) An interval graph and (b) its interval representation

Obviously, Sj = Bpj . All vertices in Bpj are arranged in increasing order for each j. Let the

cardinality of Sj be Nj for each j = 1, 2, . . . , k. Let C1 be the set of all vertices of Bp1 other

than first two. Let C2 be the set of vertices whose elements are the union of C1 and Bp1 − C1

except first two elements of Bp1 −C1. In general, Ci = Ci−1 ∪{Bpi −Ci−1−{x1, x2}}, where x1

and x2 be the first two vertices of Bpi −Ci−1. Then the feedback vertex set is F = Ck. For each

j = 1, 2, . . . , k, let Sj(l) be the lth member of the jth maximal clique, where l = 1, 2, . . . , Nj .

For the graph of Figure 1, the maximal cliques, the vertices of which are put in ascending

order, are Bp1 = S1 = {1, 2, 3, 5}, Bp2 = S2 = {2, 3, 4, 5}, Bp3 = S3 = {3, 4, 5, 7}, Bp4 = S4 =

{4, 5, 6, 7}, Bp5 = S5 = {6, 7, 8, 10}, Bp6 = S6 = {7, 8, 9, 10}, Bp7 = S7 = {9, 10, 11} where

p1 = 1, p2 = 2, p3 = 3, p4 = 4, p5 = 6, p6 = 7, p7 = 9. The cardinality Nj of Sj for this graph are

N1 = 4, N2 = 4, N3 = 4, N4 = 4, N5 = 4, N6 = 4, N7 = 3. Also, S1(3) = 3, S1(4) = 5, S2(2) = 3

and so on. For this graph C1 = {3, 5}, C2 = {3, 5}, C3 = {3, 5}, C4 = {3, 5, 7}, C5 = {3, 5, 7, 10},

C6 = {3, 5, 7, 10} and C7 = {3, 5, 7, 10}.
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ap bp ar br

aq bq as bs

Figure 2: Proof of Lemma 1

For feedback vertex set of the interval graph G = (V,E) we are to collect the set F of vertices

such that the interval graph G(V − F ) becomes cycle free and this happens when its interval

representation I(V − F ) (I(V) is the interval representation of the interval graph G = (V,E))

has at most two intervals intersecting this fictitious vertical line at any position on the real line.

Following lemma gives the upper bound on the length of cycles of an interval graph.

Lemma 1 Let G = (V,E) be an interval graph then it can have cycles only of length three.

Proof. If possible let there be a cycle [vp, vq, vr, vs] of length four in an interval graph G. Let

bp < bq < br < bs. As [vp, vq, vr, vs] is a cycle we have (vp, vq), (vq, vr),(vr, vs) and (vs, vp) ∈ E.

Thus

bp < ar as (vp, vr) 6∈ E

ar < bq as (vq, vr) ∈ E

bq < as as (vq, vs) 6∈ E.

Therefore bp < ar < bq < as i.e., bp < as. This means (vs, vp) 6∈ E. This is a contradiction as

(vs, vp) ∈ E. Similar proof holds for any cycle of length greater than four. 2

Theorem 1 The set F is a feedback vertex set.

Proof: From definition of feedback vertex set, the set F is a feedback vertex set if and only if

the graph G(V − F ) has no cycles. Let I(V − F ) be the set of intervals corresponding to the

interval graph G(V −F ). From the construction of the set F , the set I(V −F ) has at most two

intersecting intervals at any position on the real line. So G(V − F ) is cycle free. Hence, the set

of F is a feedback vertex set. 2

The cardinality of minimum feedback vertex set starts from zero. In the following we show

that for the interval graph the minimum feedback set may be even empty. The graph of Figure
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Figure 3: (a) A graph with empty MFVS (b) A graph with one MFVS

3(a) has no member in MFVS so it is an empty set and the graph Figure 3(b) has only one

member in MFVS viz. {6}.

Thus, for the graph of Figure 3(a), F = φ and for the graph of Figure 3(b), F = {6}. It will

be noted that, a graph may have multiple MFVS. Figure 4 gives this result.

Using the algorithm presented here MFVS for the graph correspond to the Figure 4 is {4, 5}.

But it has other MFVS also and they are {2, 5}, {2, 3}, {2, 4}. The algorithm of finding MFVS

presented here gives only one set.

The following arguments shows that feedback vertex set F obtained by the method is mini-

mum.

For the selection of members of feedback vertex set F we consider the vertex corresponding

to the interval whose length is extended most to the right of ‘b’ and are connected to the vertex

corresponding to the right end point. The selection of intervals which are extended most to

the right makes the feedback vertex set minimum. This is justified in the following example of

Figure 5.

At ‘b1’ the vertical line meets the intervals I2, I5 and I6. Here the interval I6 is extended

most to the right and next right extended interval is I5. So if we remove I5 and I6 from this

interval representation then the reduced interval representation have at most two intervals at

any position. So, here {5, 6} is the feedback vertex set. But if we take the intervals I2 and

I5 at ‘b’ position instead of I5, I6 then another interval I6 is necessary at ‘b3’ for the reduction
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Figure 4: A graph of multiple MFVSs
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Figure 5: An illustration

to cycle free graph. Thus the feedback vertex set becomes {2, 5, 6} which is not minimum.

So for minimum feedback vertex set at each right endpoint we are to take the vertices whose

corresponding intervals are extended most to the right.

3 Algorithm and its Complexity

For an interval graph and its corresponding interval representation we compute all maximal

cliques and then arrange the vertices of the cliques in ascending order. We compute the cardi-

nality of each maximal clique. Now to compute the sets C1, C2, . . . , Ck, efficiently, we compute

a Boolean array mark using the algorithm MARK.

Depending on the result of the theorem presented in Section 2 the major steps of the proposed

algorithm SMFVS to form a minimum feedback vertex set of interval graph are listed below.
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Algorithm SMFVS

Input: The endpoints ai, bi of each interval Ii, i = 1, 2, . . . , n.

Output: The minimum feedback vertex set F . Initially, F = φ.

Step 1: Compute all maximal cliques Sj . Let k be total number of maximal cliques.

Step 2: In each Sj , put the vertices in ascending order.

Step 3: Compute Nj for each j = 1, 2, . . . , k where Nj is the cardinality of Sj .

Step 4: Compute the array mark(i), for i = 1, 2, . . . , n, initially mark(i) = 0.

Step 5: Put the vertex i to the set F if mark(i) = 1, i = 1, 2, . . . , n.
end SMFVS

The array mark(·) is computed using the following algorithm.

Algorithm MARK

For i = 1 to k do

count= 0;

For j = 1 to Ni do

If (count= 2) then

mark(j) = 1;

else if (mark(Si(j)) = 0) then

count= count + 1;

else

mark(Si(j)) = 1;

endif;

endfor;

endfor;

end MARK

Lemma 2 Time to compute the array mark(·) is O(n + m).

Proof. The time complexity to compute the array mark is
k∑

i=1

Ni which is the sum of cardinality

of all maximal cliques and is equal to O(n + m) [9]. 2
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Using algorithm SMFVS we see that for the interval graph of Figure 1, mark(3) = 1,mark(5) =

1, mark(7) = 1 and mark(10) = 1, so the minimum feedback vertex set for the graph is

F = {3, 5, 7, 10}.

Following lemma gives the time complexity to compute the MFVS for an interval graph with

n vertices and m edges.

Lemma 3 The time complexity of Algorithm SMFVS is O(n + m).

Proof. Pal et al. [15] have given an O(n + m) time algorithm to compute all maximal cliques

of an interval graph with n vertices and m edges. So Step 1 can be computed in O(n+m) time.

Each of Step 2 and Step 3 takes O(n + m) time. Step 4 takes also O(n + m) time to compute

the array mark(i) and Step 5 takes O(n) time. So, overall time complexity of the algorithm

SMFVS is O(n + m). 2

From the above lemma we have the following result.

Theorem 2 The minimum cardinality feedback vertex set of an interval graph with n vertices

and m edges can be computed in O(n + m) time.

In the following we present an algorithm to compute minimum feedback vertex set on weighted

interval graphs. MFVS problem on weighted interval graph is solved by constructing an appro-

priate network. Before presenting the algorithm we defining some related terms such as network,

network flow problem etc.

4 The Network Flow Problem

To solve minimum weight feedback vertex set problem, we introduce a special network to find

maximum weight 2-flow problem of the weighted interval graph G. This network and the network

flow problem is defined as follows.

Definition 1 A network N is a finite set of nodes, where node 0 is called the source in N and

node n is called the sink in N . The set of all arcs of N , is denoted by EN .

Definition 2 For each arc (u, v) ∈ EN there is a given number c(u, v) > 0 called the capacity

of the arc (u, v).
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Definition 3 A non-negative function f(u, v) ranging over all arcs (u, v) ∈ EN , is called a flow

in N if

(i) for every (u, v) ∈ EN , f(u, v) ≤ c(u, v), and

(ii) for every node u, ∑
v

f(u, v)−
∑
v

f(v, u) = 0

where each sum is over every v for which the summation is meaningful.

For a network N , with each arc (u, v) ∈ EN , a non-negative weight wN (u, v) as well as a

positive capacity c(u, v) is associated. For each arc (u, v) of EN , f(u, v) represents the flow in

the arc (u, v).

The minimum weight 2-flow problem is defined for a network N as follows:

The minimum weight 2-flow problem is to obtain two disjoint paths P1 and P2 from the set

of all possible paths from 0 to n in N to

minimize
∑

(u,v)∈J2

wN (u, v)f(u, v)

where J2 = ∪2
i=1E

i
N and Ei

N is the set of arcs associated with the path Pi.

5 Construction of Network

Let N = (VN , EN ) be the network where VN = {0, 1, . . . , n} and EN = E′
N ∪ E

′′
N with E′

N =

(i, i + 1), i = 0, 1, . . . , n− 1, having weight zero, called as d-arcs. Each of these arcs is directed

form i to i + 1. Now find l(i) defined by l(i) = k, for i = 1, 2, . . . , n, where k is the vertex

maximum among all vertices non-adjacent to i (k < i). Now we construct E
′′
N = (l(i) − 1, i),

i = 1, 2, . . . , n with weight w((l(i) − 1, i)) equal to the weight of the vertex i, called as v-arcs.

Each of these arcs is directed from l(i)− 1 to i. Finally EN = E′
N ∪E

′′
N . Figure 6(a) is weighted

interval graph and Figure 6(b) is the corresponding network.

We now consider the maximum 2-flow problem P ∗ on the network N .

Problem P∗: The maximum network 2-flow problem is to find two disjoint paths P1, P2 from

the set of all possible paths from 0 to n in N to

maximize
∑

(u,v)∈J2

wN (u, v)f(u, v)
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Figure 6: (a) A weighted interval graph (the number outside the

circle represents the weight of the corresponding vertex),
(b) Corresponding network N.

where

(i) J2 = ∪2
i=1E

i
N ,

(ii) Ei
N is the set of arcs associated with the path Pi, and

(iii) the value of f(u, v) is either 0 or 1 for all (u, v) ∈ EN .

6 Properties of the Network

The size of VN is |VN | = |V |+1 = n+1. Again for each node associated with VN except ‘0’ node

two arcs end at i. Obviously the total number of such arcs is of O(n). As there are n nodes in

N except ‘0’ node, the size of set E′
N must be n i.e., O(n) and size of E

′′
N is O(n). Therefore,

the total number of arcs in the network N is of O(n). Hence we have the following results.

Lemma 4 The total number of nodes and arcs of N are respectively n + 1 and O(n).

The following lemma is obvious from the construction of the network N which gives the

relationship between the arcs of the network N and the vertices of the interval graph G.

Lemma 5 For any path in N , the two vertices at which any two v-arcs ends are disjoint.
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Lemma 6 The total weight of any 2-independent set of G and the total weight of the arcs of

the corresponding two-paths of N are same.

Proof: The construction of the network N from the weighted graph G shows that there is one

to one correspondence between the set of vertices of G and the set of v-arcs of N . According to

the construction of N each v-arc ei corresponds to the vertex i ∈ V of G. The arc ei ends at i

and starts from j where j is the vertex which is maximum among all non-adjacent vertices to

i (j < i). Hence each path in N corresponds to an independent set of G and conversely, each

independent set of G corresponds to a path from 0 to n in N . Further, we note that the weight

of any d-arc is zero and the weight of any v-arc is same as the weight of the corresponding vertex

of G.

Let S1 and S2 be any two independent sets of G they correspond respectively to the set of

paths P1 and P2 of Problem P∗. We take f(u, v) = 1 for each arc associated with these two

paths and f(u, v) = 0 otherwise.

Therefore,

∑
x∈Q2

wt(x) =
2∑

i=1

∑
x∈Si

wt(x) =
2∑

i=1

∑
(u,v)∈Ei

N

wN (u, v)

[as wN (u, v) = wt(x) for v − arc and

wN (u, v) = 0 for d− arc]

=
2∑

i=1

∑
(u,v)∈Ei

N

wN (u, v)f(u, v)

[since f(u, v) = 1, for all (u, v) ∈ Ei
N , for all i and

f(u, v) = 0 otherwise]

=
∑

(u,v)∈J2

wN (u, v)f(u, v)

Hence the lemma. 2

From this result the following lemma is obvious.

Lemma 7 The vertices associated with the solutions of maximum weight 2-flow problem and

MW2IS problem of G are same.

From the lemmas 6 and 7 we have the following result.
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Theorem 3 MW2IS for G and Problem P ∗ for N are equivalent.

The minimum weight 2-flow for N can be solved using the algorithm of Edmonds and Karp [6].

Thus we could possibly modify N by taking negative of the weight of each arc and then finding

a minimum weight 2-flow. But this apparently easy conversion is not possible here because in

their algorithm weights of all arcs in the network are required to be non-negative.

In order to convert a maximum weight flow problem (Problem P∗) to a minimum weight flow

problem with non-negative arc weights, we define an array d as follows.

d(i) = largest weight of a path from i to n in N , i ∈ VN .

Using the following algorithm the array d is computed for all i ∈ VN .

Algorithm DISTANCE

Input: The network N .

Output: The array d(i), i ∈ VN .

Initialization: d(i) = 0, i ∈ VN .

for i = n + 1 to 0 step −1 do

for each arc (i, j) ∈ EN do

d(i) = max{d(i), wN (i, j) + d(j)};

endfor;

endfor;

end DISTANCE

The following lemma gives the time complexity of the Algorithm DISTANCE.

Lemma 8 The array d is correctly computed in O(n) time.

Proof: Let mi be the total number of arcs adjacent to i. From Algorithm DISTANCE it

follows that the time complexity of this algorithm is
n∑

i=1

mi = total number of arcs of N = O(n)

(Lemma 4). As the network N is directed and acyclic, the correctness follows from the algorithm

directly. Hence the lemma follows. 2

The array d for the network N of Figure 6(b) are d(0) = 26, d(1) = 20, d(2) = 20, d(3) = 12,

d(4) = 12, d(5) = 0, d(6) = 0, d(7) = 0, d(8) = 0.
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7 Construction of a Minimum Weight Flow Network

Now, we convert the problem P ∗ to a minimum weight flow problem P ∗∗ as follows:

A network NU is constructed from N using the same set of arcs EN , the same set of nodes VN

and identical capacities, but different weights. The weight on the arc (i, j), i < j, is taken as

wNU (i, j) = d(i)− d(j)− wN (i, j),

for all (i, j) ∈ EN .

The problem P ∗∗ may be stated as:

Problem P∗∗: For the network NU find the set of two disjoint paths P1 and P2 from the set

of all possible paths from 0 to n in NU to

minimize
∑

(u,v)∈J2

wN (u, v)f(u, v)

where

(i) J2 = ∪2
i=1E

i
N ,

(ii)Ei
N is the set of arcs associated with the path Pi,

(iii) the value of f(u, v) is either 0 or 1 for all (u, v) ∈ NU .

Table 1 shows the weights of each arc of the networks N and NU .

arcs e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16

weights in N 4 6 1 8 3 5 10 12 0 0 0 0 0 0 0 0

weights in NU 2 0 7 0 9 7 10 0 6 0 8 0 12 0 0 0

Table 1: The arc weights of the networks N and NU

From Table 1, it may be observed that the weights of all arcs in NU are non–negative integers.

This result is proved in general in the following lemma.

Lemma 9 The weight wNU (i, j), i < j for all (i, j) ∈ EN are non-negative.

Proof: We prove this by the method of contradiction. If possible let wNU (i, j) < 0. From the

definition of N it follows that, in the ascending ordering of the nodes, the node i appears before

the node i.e., j, i < j. Since, wNU (i, j) < 0 , therefore

d(i)− d(j)− wN (i, j) < 0, or d(i) < d(j) + wN (i, j).
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But, d(i) is the largest weight of a path from i to n in N and similar is the interpretation for

d(j), so

d(i) ≥ d(j) + wN (i, j), i < j.

This is a contradiction. Hence wNU (i, j) ≥ 0, for all (i, j) ∈ EN . 2

From the definition of d it is clear that d(0) is the largest weight of a path from 0 to n and

d(n) = 0. Thus, for any arc (i, j) ∈ EN , the upper bound of wNU (i, j) is d(0), which is proved

in the following lemma.

Lemma 10 The maximum value of wNU (i, j), for all (i, j) ∈ EN is d(0).

Proof: For i < j,

max

(i, j) ∈ EN
wNU (i, j) =

max

(i, j) ∈ EN
{d(i)− [d(j) + wN (i, j)]}

<
max

(i, j) ∈ EN
d(i) = d(0).

since d(j) + wN (i, j) ≥ 0. Hence the lemma. 2

By Lemma 10 the upper bound of the weights of any arcs of the set EN is the largest weight

of a path from 0 to n in N .

It can be shown that the maximum flow of N is equivalent to minimum flow of NU .

Lemma 11 For the same set of arcs the maximum weight flow from 0 to n in N is equal to the

minimum weight flow in NU .

Proof: Let WN and WNU be the weights corresponding to a flow in the network N and NU

respectively.

Therefore,

WNU =
∑

(i,j)∈E′
N

wNU (i, j)

=
∑

(i,j)∈E′
N

{d(i)− d(j)− wN (i, j)}

= d(0)− d(n)−
∑

(i,j)∈E′
N

wN (i, j)

= d(0)−
∑

(i,j)∈E′
N

wN (i, j) (as (d(n) = 0)

= d(0)−WN
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or, WN + WNU = d(0), which is constant, that is, independent of any flow. Therefore, if WNU

is minimum then WN is maximum. Hence the lemma follows. 2

From the above lemma the following theorem is obvious.

Theorem 4 The problem P ∗ for N is equivalent to the problem P ∗∗ for NU .

If OP ∗ and OP ∗∗ denote the sets of v-arcs associated with the output of Problem P∗ and

Problem P∗∗ respectively, it can be concluded from the above theorem that both the outputs

are identical. Thus, the vertices associated with the v-arcs of the output of Problem P∗ are

nothing but the required vertices of Problem P for G. Hence we have the following theorem.

Theorem 5 The vertices corresponding to the v-arcs of the output of the problem OP ∗∗ are the

vertices of maximum weight 2-independent set Q2 of G.

8 The Algorithm for Weighted Graph

This section describes all steps of the algorithm for minimum weight feedback vertex set problem

and gives the complexity of the proposed algorithm.

Algorithm MWFVS

Input: Set of intervals I, Ii = [ai, bi] for i = 1, 2, . . . , n.

Output: A minimum weight feedback vertex set S.

Step 1: Construct a network N .

Step 2: Compute the array d using Algorithm DISTANCE.

Step 3: Convert the network N to the network NU by changing the weights to

wNU (i, j) = d(i)− d(j)− wN (i, j), (i, j) ∈ EN .

Step 4: Solve the minimum weight 2-flow problem for the network NU ,

using the algorithm of Edmonds and Karp [6].

Step 5: For any v-arc (u, v) ∈ EN , if f(u, v) > 0 then put the correspond-

ing vertex to the set Q2.

Step 6: Compute the minimum weight feedback vertex set S = V −Q2.

end MWFVS

Using Algorithm MWFVS, we obtain the following from Figure 6. The arcs of the minimum

weight 2-flow of the network NU are e1, e2, e4, e7, e8, e16. The vertices corresponding to the
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arcs e1, e2, e4, e7, e8 are {1, 2, 4, 7, 8}. The set Q2 (i.e., the vertices of MW2IS) is {1, 2, 4, 7, 8}.

Finally, the MWFVS is {3, 5, 6}. The total weight of feedback vertex set is 9.

The following theorem gives the time complexity of the algorithm MWFVS.

Theorem 6 The running time of Algorithm MWFVS is O(n
√

log C) where C is the maximum

weight of a longest path of the graph.

Proof. The array l(i) for all i ∈ V , can be computed for any interval graph in O(n) time.

Construction of the network N can be done O(n) time. The d-array and the weight of each arc

of the network NU can be computed O(n) time. Using the algorithm of Edmonds and Karp the

minimum weight 2-flow problem of NU can be solved in O(2×complexity of shortest path) time.

Ahuja et al. [1] have given an O(m + n
√

log C) time algorithm to compute shortest paths for a

general graph with n vertices and m edges, where cost of each arc is non-negative integer number

bounded by C. In NU , the weight of each arc is bounded by d(0) (≤ C), if C is the longest weight

of a path in the given interval graph. Thus, since there are O(n) arcs in NU , the algorithm

requires O(n+n
√

log C) time to solve the flow problem. The Step 5 and Step 6 can be computed

using O(n) time. Therefore, the total time complexity is of O(n + n
√

log C) = O(n
√

log C). 2

Corollary 1 In worst case, if C = nn then the time complexity becomes O(n1.5 log n).
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