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Abstract: In affluent countries, people are more interested about the quality of an
item irrespective its price structure and motivated by the decorative display of the
commodity. Taking this fact into consideration, multi-objective and single objec-
tive inventory models of stochastically deteriorating items are developed in which
demand is a function of inventory level and quality of the commodity. Production
rate depends upon the quality level of the items produced and unit production cost
is a function of production rate. Deterioration depends upon both the quality of the
item and duration of time for storage. The time related function for deterioration
follows a two parameter Weibull distribution in time. In these models, results are
derived without shortages and for partially backlogged shortages. Here, objectives
for profit maximization for each item are separately formulated and compromise
solutions of the multi-objective non-linear optimization problems are obtained by
two different fuzzy optimization methods. The models are illustrated with numeri-
cal examples and results from different methods are compared. The results for the
models assuming them to be single house integrated business are also obtained and

compared with those from the respective non-integrated models.
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1. INTRODUCTION

In real life, the demand of a particular type of commodity depends upon many factors such
as time, selling price, stock level at the showroom, quality of the item, etc. It is a common
practice that the higher selling price of an item negates the demand of that item whereas less
price has the reverse effect. Several researchers-Abad!, Urban? and others investigated the
dependence on pricing for non-deteriorating items whereas Cohen®, Mukharjee?, etc. did the
same for deteriorating commodities.

Again, according to Levin at al.?, “it is a common belief that large piles of goods displayed in
a super market will lead the customers to buy more”. For this reason, several authors- Gupta
and Vrat®, Baker and Urban’, Mandal and Maiti® and others have studied inventory models
with stock-dependent demand.

Moreover, in a competitive society, the quality level of the commodities plays a vital role to
stimulate the demand for the items. Very few researchers ( cf. Chen® etc.) have considered the
quality of items in their analysis. But till now, no inventory model has been formulated taking
demand to be dependent jointly on inventory and quality of the commodities.

In conventional studies of inventory models, it is normally assumed that the lifetime of an item
is infinite while in storage. In reality, it is not always true. Due to the ill preservation conditions,
etc., some portion of items like food grains, vegetables, fruits, drugs etc, are damaged or decayed
due to dryness, spoilage, vaporization, etc. and are not in a condition to satisfy the future
demand of customers. Some authors- Mandal and Phoujder!?, Ting and Chung!!, Mandal and
Maiti'2, and others considered the inventory models for deteriorated / damaged items assuming
deterioration to be constant or linearly dependent on time or stock level. A very few scientists
have taken deterioration to be stochastically dependent on time. But deterioration rate also
depends upon the physical condition of the commodities i.e., it is quality level dependent too.
An item of high quality will decay much less than the low quality ones. This phenomenon has
been overlooked by the researchers. Till now, none has related deterioration jointly with quality
level of the products and duration of storage.

Again, in classical inventory problems, the production rate of a machine is assumed to be
predetermined and inflexible. Production rate gets affected to maintain the quality of the items.
If the quality of the products is very high, the production suffers. Hence, rate of production is
inversely related with the quality.This relationship too has been ignored by most of researchers.

The production cost per unit item is partly related to the rate of production. If the production
is more, the wages of the workers and fixed over-head expenditures are spread over more units
and as a result, average production cost comes down. Hence, unit cost and production rate are
partly inversely related. Khauja'?, etc. have taken production dependent unit cost but none
has related this with the quality of the commodities.

In the important market places, space problem is a big hindrance and takes a vital role to
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expand the business. Taking space limitation as constraints, several workers- Roy and Maiti'4,
Mandal and Maiti'®, etc. have considered multi-item inventory models in crisp and fuzzy envi-
ronments.

Now-a-days, almost every important real world problem involves more than one objective.
More so than ever before, decision makers find it imperative to evaluate solution alternatives
according to multiple conflicting criteria. These problems are modelled as multi-criteria decision
making (MCDM) problems identifying the types of measures that might be said as ‘criteria’. The
thrust of these models is to design the ‘best’alternative by considering the various interaction
within the objectives and constraints which best satisfies decision makers (DM) by way of
attaining some acceptable levels of a set of some quantifiable objectives. Recently various new
methods ( cf. Gabriele and Ragsdell'®, Tiwari, et al.l?, Zimmermann'8) have been outlined to
find the compromise solution of MCDM problems.

In this paper, under limited storage space, multi-objective inventory models for stochasti-
cally deteriorating items under a single management is formulated. Here, demand is influenced
jointly by quality level of goods and on-hand inventory level. Deterioration depends upon both
the quality level of the item and time duration for storage. The time related function for deterio-
ration follows a two parameter Weibull distribution in time, ¢t. Production rate changes inversely
with the quality level of items and the unit production cost is partly inversely dependent upon
the production rate. Moreover, the set-up cost is also quality dependent and the selling price
is assumed to be marker over the production cost. It is assumed that the items are produced
separately in different production firms under a single ownership. The profit maximization ob-
jectives are derived for each item and hence multi-objective inventory problems are formulated
and solved for a compromise solution by recently developed methods-(i) Fuzzy Non-linear Pro-
gramming Technique (FNLP) and (i7) Fuzzy Additive Goal Programming Technique (FAGP).
For the models, results are derived without shortages and for partially backlogged shortages.
The models are illustrated numerically and the best possible solutions from different methods

are compared. The problems have been solved also formulating them as a single objective.

2. ASSUMPTIONS AND NOTATIONS
Multi-objective and single objective economic lot size problems for stochastically deteriorating

items are developed under the following notations and assumptions :
2.1. Notations

V = available storage space.

PF =total average profit.

n = number of items in the inventory system.
For i-th item,

qi(t) =inventory level at any time .
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K; = rate of production.

d; = rate of demand.

qui = quality level of the item

i = per unit production cost

S5 = selling price

co;  =shortage cost per unit per unit time ( when it is allowed).
h; = holding cost per unit per unit time.

U; = setup cost in a time cycle.

Sp; = total shortage cost in a time cycle.

gi = deteriorated units in a time cycle

H; = total holding cost in a time cycle

TP, = total production cost in a time cycle

ta; = one time cycle

V; = gpace required to store a unit.

b; =the fraction of demand to be backlogged.

(?1; = maximum inventory level at time ¢y;.

@2; = maximum shortage level at time to; ( when it is allowed ).

PF; = total average profit.

2.2. Assumptions

(i
(ii

) The inventory system involves n items.

)
(iii) Lead time is negligible.

)

)

The planning horizon is infinite.

(iv) There is no repair or replacement of the deteriorated units.

(v) Deterioration is a function of both quality level and time where time related function
follows a two parameter Weibull distribution: 6;(t, qu;) = 61;(qus)02i(t) where 61;(qui) =
a;-q;i‘s" and 6q(t) = a;-'ﬁz-tﬁi_l; t>0.

. o . " .
Here o is a positive real constant, a; and 3; are scale and shape parameters respectively.

—$1i

(vi) The rate of production is a function of quality level of the product: K; = a;q,;"", Here a;

is positive and 0 < ¢1; < 1.

(vii) The setup cost consists of two parts: one part is constant, as; and another changes with
$3i

ui )

the quality level of the product. Thus u; = uy; + u2;q
0<¢s3 <1

here wqy;,u9; are positive and

(viil) Unit production cost is a function of production rate as p; = x; + y; K, ", where z;,y; are

positive and n;, (i = 1,2, ...,n) are integers.
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(ix) Rate of demand is a function of quality level of the product and inventory level at any time
t, i.e., d; = do; + )\iqffiqi(t) for g;(t) > 0 where dy; and \; are positive and 0 < ¢o; < 1.

Let, dy; = /\Z-q;ff" , then d; can be written as d; = dy; + dy;qi(t). During the shortage

period, demand is assumed to be constant.

(x) unit selling price depends on per unit production cost

i.e. s; = m;p; , where m;(> 1) is the mark-up.

3. MATHEMATICAL FORMULATION
3.1 Model —1la [Non-integrated model with shortages ]

The production starts at time ¢ = 0. Hence, for the i— th item, initially the stock is zero
and later, reaches maximum inventory level, ()1; after time, ¢;;. During this time, produced
units are partly exhausted against the demand and deterioration and excess units are stored.
Then the production is stopped, the stock level declines continuously due to both demand and
deterioration and inventory level becomes zero at time ¢ = t5;. Now shortages are allowed up to
maximum shortage level, Q2;, at time ¢ = t3;. At this instant of time, fresh production starts
to meet the current demand and to clear the accumulated backlogged shortages partially by the
time t = t4;( cf. Fig.—1). Here, it is assumed that due to the non-availability of the item, some
customers back away. Now, the objective is to find out the optimal values of ty;, t9;, t3; and t4;,
that maximize the profit over the time horizon [0,%4;] following the restriction on the storage
space.

If g;(t) be the inventory level of the i-th item at time ¢ at the production center, then the

differential equations governing the stock status during the period [0, t4;] can be written as

dg;(t)

. - Ki— (doi + d1igi(t)) — 0i(t, qui)qi(t), 0=t <ty (1)
= —(doi + d1iqi(t)) — 0:(t, qui)qi(t), t1i <t <ty (2)
= —bdy;, to; <t <ts (3)
= K; —dy, t3; <t <1y (4)

with boundary condition g;(t) = 0 at t = 0, t9;, t4;.
Following equations (1) — (4), we get ( see Appendix )
t1i

to;
g = [ otaa®d [ ot aad
12

t14 to;
o= wf [Mawi [ awa)
0 t1s

t3; ta;
i = czi{ [ awe+ [ qi(t)dt}
t

2i t3:
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t1; ta;
TPl- = pi{ Kidt + szt}
0 t3i
1
PF;, = a{si{.K'i(tli + tai — t3i) — gi}
i

— {Kpi(t1; + tai — t3i) + Hi +u; + Shi}}

Inventory

. .
T » Time

Figure-1: The pattern of inventory when shortages allowed

Now, the model can be represented as the following multi-objective problem:

Maximize ~ {PFi, PFy, ..., PF,} (5)
n
subject to Z v;Q1; < V5[ due to storage space limitation ]
i=1
where t1;, to;, t3; and t4; are related by the equations(20 ) and (23)[See Appendix |.

3.2 Model-1b [Integrated model with shortages]
Assuming that the items are dealt with collectively as a single integrated business process, the

corresponding single objective model is

n
Maximize PF =) PF, (6)

i=1
n
subject to Zvini <V;
i=1
3.3 Model-2a [ Non-integrated model without shortages ]
When shortages are not allowed, the inventory model is represented as Fig.-2
Here problem is to find out the optimal values of #1; and ¢5; that maximize the profit over the

time horizon [0, to;].
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Inventory

»  Time
O th 121

Figure-2 : The pattern of inventory when shortages not allowed

In this case,for the i—th item, the differential equations and other expressions are

dg;i(t)
dt

= K;— (do; +d1;qi(t)) — 0i(t, qui)qi(t), 0<t <ty (7)
= —(do; + d1iqi(t)) — 0;(t, qui)ai (1), ti <t <ty (8)

with boundary condition ¢;(t) =0, at ¢t = 0, to;.

t1;

toi
5 = | Oi(t,qui)qi(t)dt+/t 0; (¢, qui)qi(t)dt
1z

t1; t2;
o= wd [Mawi [ awa)
0 t1s

t1;

TP, = p; K;dt = K;p;ty;
0

1
PF; = t_Z{Si{Kitli —9i} — {Kipit1i + H; + ’Ui)}}
7

Hence the model reduces to a multi-objective maximization problem as
Maximize {PFy,PF,,....,PF,} 9)

n
subject to Zvini <V
i=1

where t1; and tg; are related by the equation(20)[See Appendix |.

3.4 Model-2b [Integrated model without shortages
The corresponding single objective model is

n
Maximize PF =) PF, (10)
i=1

n
subject to Z v;Q1; < V;[ due to storage space limitation ]

i=1
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4. MATHEMATICAL ANALYSIS OF MULTI-OBJECTIVE PROBLEMS
4.1 Multi-objective Non-linear Programming (MONLP) Problem
A MONLP problem can be stated as:

Find © = (z1, %2, ..., 2n) T (11)
which maximizes F(z) = (fi(x), fo(), .oy fu(x)T

subject to gi(z) <aj, (1=1,2,....0)
ht(.’L’) = bta (t = 17 27 712)
;>0 (i=1,2,...,n)
It is noted that, if the objectives of the original problem are to maximize f;(z) for i = 1,2, ...., ko
and minimize f;(x) for i = ko+1, kg+2, ...., k, then the objective in the mathematical formulation
will be

F(z) = (f1(#), f2(@)-rer, fro (@), = fro+1(2), = fro2(@), ey = Fi(2)) T
The functions fij(z), gj(z) and hi(z) may be linear or non-linear.
Solution of MONLP problems
4.2 Fuzzy Programming Techniques
A crisp multi-objective non-linear programming problem (11) can be solved by fuzzy program-

ming method. The steps of the method are as follows:

Step-1: Solve the Multi-Objective Non-linear Programming (MONLP) as a single objective
non-linear programming problem by using any gradient based non-linear programming algo-
rithm, considering only one of the objectives at a time and ignoring all others. Repeat the
process k times for k different objective functions. Let z', 22,23, .....,z* be the ideal solutions
for the respective objective functions where 2" = (27, 25, ..., z,)

Step-2: Using all the above ideal solutions in step-1, construct a pay-off matrix of size (k x k)

as follows:

From the pay-off matrix, estimate the lower bound L, and the upper bound U, for the r-th

objective as

L, < f <U, (’I“ = 1727'~~7k)

76



where L, = min [f,«(azl),f,«(a:2),...,fr(a:k)]
and U, = max [f,(zb), fr(z?), ..., fr(z")]
Step-3. Define a fuzzy linear or non-linear membership function py, (z) for the r-th objective

function, f,(z), (r =1,2,3,....,k.). Here for simplicity a linear membership for r-th objective
function f.(z), (r =1,2,3,....,k) is taken as

0 for L, > fr(z)
pr@) =3 Tl o < f@ < (12)
1 for f,.(z) > U,

Step-4. At this stage, either fuzzy additive goal programming method or fuzzy non-linear pro-

gramming method can be used to formulate the corresponding objective optimization problem.

4.2.1 Fuzzy Additive Goal Programming (FAGP) Method
Use the above membership functions to formulate a crisp non-linear programming model (fol-

lowing Tiwari, et al.?2)) by adding the membership functions together as

Max A(/J’fl (m)’/“l’fQ(m)’ e By (:I:)) = wl/“l’fl(m) + ’w2ﬂf2(33) T W (CII) (13)

subject to  pg (z) =1-— (r=1,2,3,...., k)

Here A(uy, (), s, (), ..., ps, (z)) is called fuzzy achievement function or fuzzy decision func-

tion. w;’s are weights associated with the i-th objective function f;(z) such that w; > 0 and

4.2.2 Fuzzy Non-linear Programming (FNLP) Method
According to Zimmermann'®, the crisp model (11) can be solved by FNLP method as

Max a (14)
subject to a< U(')—L’ (r=1,2,3,....k)
9i(z) <aj, G=12,...,h)
ht(w) = ( "712)
z; >0 (z =1,2, ,n)

Here « is an aspiration level of the objective functions.
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5. SOLUTION OF INVENTORY MODELS
Following the analysis in article-4, the multi-objective models (5) or (9) can be represented
as:
(a) Fuzzy Non-linear Programming Method:

Max « (15)
. PF; — Lpr, .
subject to a<l —— 1=1,2,3.
) ~ Upr, — Lpr,
3
> viQu <V
i=1

where Upr, and Lpp, are respectively upper and lower limits of profit function PF;.

(b) Fuzzy Additive Goal Programming Problem:

3

Max Zwi/’LPFi (16)
i=1

PF; — Lpp,

- = 1,2,3.
Upr, — Lpr,’ ’

subject to LPF;

3
> viQu <V

=1

Here equal weights are used i.e. w; = %, i=1, 2, 3.

6. NUMERICAL EXAMPLES
Here, the multi-objective models (i.e. model-la and model-2a) are solved by the methods,
namely, FNLP and FAGP and the single objective models (i.e. model —1b and model —2b) by
Generalized Reduced Gradient (GRG) method- as described in the earlier section.
To illustrate the above problems, we consider the following parameters as n = 3, V =

500 units and the parameter values giver in Table-1.

Table-1: Input data table

items(4) m; z; Yi n; a, d; a;I Bi  hi(in$)  qus

1 1.35 30 4000 1 0.06 0.5 0.03 07 3.5 8

2 1.35 30 5000 1 0.06 06 0.03 07 3.0 9

3 1.30 30 4000 1 006 03 006 07 35 10
items(¢) a; do; Als U4 U4 b1i P2; P34 v;

1 80 180 0.01 300 50 06 06 0.7

2 1000 300 0.01 350 100 0.5 0.6 0.7

3 80 200 0.01 300 50 05 06 0.7
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Results of Models—1a and —1b
Shortages are partially backlogged
Using the above numerical values for different parameters and taking b; = 0.8, by = 0.7, b3 =
0.75, the results of the models with partially backlogged shortages are obtained. In this case,
pay-off matrix is:

pay-off matrix

PF PF, PF;
2560.07 3929.18 1843.87
2086.01 4394.26 1983.49
2051.98 13730.01 2289.13

In different multi-objective optimization techniques, the Model—1b is reduced to the following
problems.

(a.) FNLP Problem

Following (15), the problem reduces to

Max «
PF; —2051.98

> 9560.07 — 2051.98
PF, — 3730.01

— 4394.26 — 3730.01
PF3 —1843.87
o<

~ 2289.13 — 1843.87

subject to

o

3
> viQu <V

i=1
(b.) FAGP Problem
Following (16), the problem reduces to

Max ppr, + ppr, + ppr,

_ PF; —2051.98
subject to PPFL = 9560 07 — 2051.98
_ PF,—3730.01
HPE: = 4394.26 — 3730.01
PP — 1843.87
HPF: = 5289.13 — 1843.87
3
> viQu <V
i=1

Here equal weights are used i.e. w1 = wy = w3 = % The Results of Model —1a and —1b are

given in Table-2.
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Table-2
Optimal solutions for the model with shortage which are partially backlogged

Objec- Met- items PF; t1; to; t3; ta; Super

tive(s) hod

—
.
~

(in §) criteria

2443.05 0.7517228  1.014663 1.223186  1.691644

FNLP 4242.32  1.502845 1.664696 1.770896  2.439951 | 1147479
MONLP 2187.28 0.7643590  1.021793 1.264537  1.793824
2510.69  1.085992 1.462889 1.622990  1.982665

FAGP 4268.97  1.677797 1.857844 1.952881  2.551615 | 949429

2135.67 0.5910677 0.79107458 1.078084 1.703889
2511.16  1.089274 1.467281 1.627827  1.988501
4304.51 1.968693 2.178703 2.261602  2.783870
2106.02 0.5090839 0.6817338 0.9943830 1.676094

Results of Models—2a and —2b

When shortages are not allowed, using the above relevant numerical values for different param-

SONLP GRG

W NN W N =W N =

eters, we obtain the pay off matrix as follows:

pay-off matrix
PF, PF, PF;s
2292.65 2417.80 546.26
921.60 4389.25 0.0
0.0 0.0 2254.48

The optimal results for the models without shortage (i.e., Models —2a and —2b) are presented
in Table-3.

Table-3
Optimal results for the models without shortage
Objec- Met- items PF; t1s to; Super
tive(s) hod (%) (in 8) criteria
1 2134.47 0.8322516  1.122809
FNLP 2 4086.42  1.249747  1.385043 | 7451101
MONLP 3 2098.93 0.8063751 1.077652
1 2204.03 1.032248  1.390943
FAGP 2 4110.91 1.309582  1.451180 | 5251002
3 2043.13 0.7148490 0.9559304
1 2183.11 0.9605577  1.294902
SONLP | GRG 2 4206.24 1.619959  1.794005
3 1995.59 0.6535478 0.8743218
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7. DISCUSSION

Here, two types of formulations—one as multi-objective and other as single objective have
been presented. In multi-objective formulation, different producers / manufacturers produces
the items and perform other management operations separately but they share a common stor-
ing space for storing the items. Single objective is formulated when the items are produced and
managed under a single management. It is observed from the Tables-2 and -3 that FNLP and
FAGP gives different compromise solution for each of the model. Between two multi-objective
solution methods, FAGP gives better result than FNLP in terms of super-criteria (cf. Dhingra
and Rao?) for both the model. From the Tables-2 and -3, the expected results are reflected.
For both the models, each method gives better results in terms of total profit for with-shortage
model than that of without shortage model which is obvious. Actually, the optimum solutions
for inventory control problems given by the various multi-objective optimization methods can
be observed to be different from each other. Since the solutions are different, the set of active
constraints and time periods will also be different in each case. This is an inherent character-
istic of any multi-objective optimization problem. Hence a solution concept or procedure has
to be defined on the basis of other attributes such as the mathematical basis of the method, its

generality, its easiness for computation etc.

8. CONCLUSION
In this paper, some realistic inventory models with quality conscious customers are formulated
and solved. Here, following new features have been introduced in the inventory models for the

first time.
(i)  Demand is a function of quality level and on-hand stock of the item.

~—

ii)  Unit production and setup cost are quality level dependent.

(
(iii) Deterioration is dependent jointly with quality and duration of storage(stochastically).
(iv) Production cost is dependent on production rate i.e. it is quality level dependent.
(

v) Lastly, two newly developed MCDM methods are illustrated.

The models have been formulated here in probabilistic environment taking stochastic dete-
rioration and all other inventory parameters as deterministic. The models can be extended to
include discount, salvage of deteriorated quantities, etc. This may also be formulated in fuzzy-
stochastic environment taking the goal of the profit as fuzzy or some other inventory parameters

like inventory cost, quality level, etc as imprecisely defined.
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APPENDIX
Solution of the differential equation (1)

a; 0 ithi ! L &2
BGi +1 6
//2

1
q(t) = (Ki— dOi){t - §dut2 —

a;lelldlzﬁl(ﬂl + 3)tﬁi+2 02 ﬁ2t2ﬁl+1 } (17)
2(6; +1)(B; +2) (@ +1)(26: + 1)
(taking upto second order terms only). Solving the differential equation (2), we get
ai(t) = —doie_(duHa;lelitBi)/t elduit+ay 01;t) gy
t1;
_ —dO‘{t _ Ly OB L ai OudiiBi(Bi + 3P
' 27 Bi+1 6" 2(8i +1)(Bi +2)
"2
o, 02-,82t2’3i+1 " . 1
3G, +1{)Ezﬁ~ +1) } - COi{l ~ (it 0 0uit™) + St
(3 7
" . ]_ " .
+ Olidlitﬂ’“ 29 t2'8’} (18)
(dritaita 61,8 1 a; 018151
where cg; = dgze(Ditzitai fiity; {t2i - §d1it%i - Z,gz——iiil d“tm
" . "2 .
L @i0udiBi(Bi + 3)th 2 | oy 03B } (19)
2(8; + 1)(Bi +2) (B + 1)(26; + 1)

As g;(t) is continuous at ¢t = t1;, (i = 1,2,---,n), and ¢;(¢1;) = Q1;, we have from equation (17)
and (18)

" " . "2
Kit .{1 Ll 01iBit}; n d g2y @ OnidiBi(Bi + 3)th; oy 63,8277 }
PELT T T T g 19 T+ 1)(Bi 1 2) (B + 1)(2@ +1)
" 7 . 1 //2
= COi{l — (duityi + o Or5th)) + dutu + o Opdytyi T+ % 911152&} (20)
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Either sides of equation(20) is equal to @1;. The equation(20) gives the relation among t;, to;

and t3;. Solving the differential equation (3), we get
qi(t) = —bidoi(t —t2) (21)
Similarly, Solutio of the differential equation (4) is
ai(t) = —(Ki—do)(tsi — 1) (22)
As g;(t) is continuous at t = t3;, (¢ = 1,2,---,n), and g;(t3;) = Q2; we have from (21) and (22)
bidoi(tsi — tai) = (K; — do;)(tai — t3:) (23)

Either sides of equation(23) is equal to Q2;. The equation(23) gives the relation among to;, t3;
and t4;. The deteriorated units during (0, 4;) is

" . " . "2 .
9 = Ki{aieliﬂitféﬂ _ duagOufity; ap 05876 }
. =

Bi +1 2(8; +2) (Bi +1)(28; + 1)
" " n2
do-{o‘i 01iBi g1 duici0uibi pia o O3 tzml}
; ; ; :
Bi+1% 28 +2) ¥ (Bi+D(2Bi+1)*

" "2

n ) ) dl‘Ole‘ﬁ‘ . . (e X 02- B B

+ cofafonel; — ) - ST ) - S -}
7

The inventory carrying cost over the period (0, t4;) is

H - h‘{K‘{tii_dlit%i_ of uiity;*  dith  of fudiifity
' L2 6 Bi+DB:i+2) 24 2(8+1)(8 +2)

"2 . "
+ oy 03,8250 } - do.{lt? s 0B
(B: + 1)(2B; + 1)(26; +2) 2% 6 (B+1)Bi+2)
" "2
N i 4 L %ibudibi  ps a; 0% t2.5"+2}
2472 2B+ 1)(Bi+2) % (Bi+DR6+ 126 +2)
di; a0y g gty i
+ COz’{(t% - tlz’)f(t%i — 1) - (,Bz-l—i— Zl) (o =i + %(tgi — ;)
" "2
o; Oridii g2 42 o 0% ep1 o }}
+ 1 t 3 _ t z + 2 ) t 1 _ t F1
(ﬂi+2)( 2 13 ) 2(2,Bi+1)( 21 14 )
The shortage cost over the period (0, t4;) is
1 2, 1 2
Sni = eaibidoi(tsi — t2i)” + geai(Ki — dog)(tai — ta:)

Total production cost for i-th item is

t1i ta;
TP, = Pi{ / K;dt + Kidt} = K;pi(t1; + tai — t3;)
0

t3i
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