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Abstract

The model describes an EOQ model with time-varying deterio-
ration, partial backlogging which depends on the length of the
waiting time for the next replenishment, linearly time-varying de-
mand function over a finite time horizon and variable replenish-
ment cycle. The model is solved analytically to obtain the optimal
solution of the problem. It is illustrated with the help of a nu-
merical example.
Key Words: Inventory, economic order quantity, variable backlog-
ging, trended demand, deterioration.

1. Introduction
In fomulating inventory models, the deterioration of items should not be
neglected for all items. For examples, items like foodstuff, pharmaceuti-
cals, chemicals, etc., deteriorate significantly. Many researchers like Ag-
garwal[1], Dave and Patel[2], Roychaudhuri and Chaudhuri[3], Dave[4],
Bahari-Kashani[5], Wee[6], Hariga Al-Alyan[7], Benkherouf[8], etc., as-
sumed that items deteriorates at constant rate.
The assumption of the constant deterioration rate was relaxed by Covert
and Philip[9], who used a two-parameter Weibull distribution to repre-
sent the distribution of time to deterioration. This model was further
generalized by Philip[10], by taking a three-parameter Weibull distribu-
tion. Misra[11] adopted a two-paremeter Weibull distribution deteriora-
tion to develop an inventory model with a finite rate of replenishment.
These investigations were followed by several researchers like Deb and
Chaudhuri[12], Goswami and Chaudhuri[13], Giri et al.[14], etc., where

57



the deterioration rate is considered to be time-proportional. The above
researchers observed in several studies that the optimal condition does
not depend on the parameters of the demand function under linearly in-
creasing deterioration rate and varying service level. But Lin et al.[15]
considered the problem of items with time-varying deterioration rate over
a finite time-horizon, and found that the solutions are dependent on the
form of demand function since the service level is assumed to be fixed
herein. He assumed that the customers would wait for backlogging or a
constant rate of customers would not wait. So during the shortage pe-
riod, backlogging rate is a fixed fraction of the demand function. However
the backlogging rate should depend on the time-spent in waiting for the
arrival of the next lot. In the present paper, we assume time-varying
deterioration, partial back-ordering that depends on the waiting time for
backlogging and linear demand function over time horizon. An analytical
solution of the model is discussed and it is illustrated with the help of a
numerical example.

2. Assumptions and Notations

The following assumptions and notations are used to develop the pro-
posed model:

(1) H : Total time horizon for in the inventory system.

(2) D(t) : The demand rate where D(t) = a + bt, a > 0, b 6= 0.

(3) si : The time at which shortage starts during the i th (i = 1, 2, .., n)
cycle.

(4) ti : The time for the i th replenishment, i = 1, 2, .., n.

(5) θ(t) : Deterioration on the on-hand inventory per unit time, where
θ(t) = αβ(t− ti)

β−1, α > 0, β > 0, t > ti.

(6) The rate of replenishment is infinite.

(7) Shortages are allowed except for the last cycle and each cycle starts
with a shortage.

(8) B(t) : Backlogging rate during shortage period which is dependent
on the length of waiting time for the next replenishment and B(t) =

1
1+δ(ti−t)

, δ ≥ 0, ti > t.

(9) Ii1(t) : The inventory at any time t ∈ [ti, si], i = 1, 2, .., n.
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(10) Ii2(t) : The shortage level at any time t ∈ [si−1, ti], i = 1, 2, .., n.

(11) A : Ordering cost per replenishment cycle.

(12) Ch : Inventory carrying cost per unit per unit time.

(13) Cs : Shortage cost per unit per unit time.

(14) Cl : Cost of lost in sales per unit.

(15) Cd : Cost of deteriorated unit per unit.

(16) n : Number of replenishments (shipment) for the buyer during the
period H.

(17) Ii : Total amount of inventory carried during the i th (i = 1, 2, .., n)
cycle.

(18) Di : Total number of deteriorated units during i th (i = 1, 2, .., n)
cycle.

(19) Si : Total shortage quantity during the i th (i = 1, 2, .., n−1) cycle.

(20) Li : Total quantity of loss during the i th (i = 1, 2, .., n− 1) cycle.

(21) TC : Total cost during the entire period H.

3. Formulation of the model and solution

The instantaneous inventory level Ii1(t) is given by the following dif-
ferential equation

dIi1(t)

dt
+ θ(t)Ii1(t) = −D(t), ti ≤ t ≤ si, i = 1, 2, .., n (1)

with the boundary condition Ii1(si) = 0.
Also for the period of shortages, the instantaneous shortage level Ii2 is
given by

dIi2(t)

dt
= −D(t)B(t), si−1 < t ≤ ti, i = 1, 2, .., n− 1 (2)

with the initial condition Ii2(si−1)=0.
The solution of (1) is given by

Ii1(t) = e−α(t−ti)
β

{
∫ si

t
eα(u−ti)

β

(a + bu)du}. (3)
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Fig-1 :Pictorial representation of the inventory cycle .

Using Maclaurin series for ex, (3) can be written as

Ii1(t) =
∞∑

k=0

∞∑
j=0

(−1)kαk+j

k!j!
[
a + bti
βj + 1

(si − ti)
βj+1(t− ti)

βk

+
b

βj + 2
(si − ti)

βj+2(t− ti)
βk − a + bti

βj + 1
(t− ti)

βk+βj+1

− b

βj + 1
(t− ti)

βk+βj+2 ] (4)

where ti ≤ t ≤ si, i=1,2,..,n.
Therefore, the total amount of inventory carried during the
interval [ti, si] is given by

Ii =
∫ si

ti
Ii1(t)dt

=
∞∑

k=0

∞∑
j=0

(−1)kαk+j

k!j!
[

a + bti
(βk + 1)(βk + βj + 2)

(si − ti)
βk+βj+2

+
b

(βk + 1)(βk + βj + 3)
(si − ti)

βk+βj+3 ], i = 1, 2, ..., n. (5)

The total number of units deteriorated during the interval [ti, si] is

Di = Ii1 −
∫ si

ti
(a + bt)dt

=
∞∑

j=0

αj

j!
[
a + bti
βj + 1

(si − ti)
βj+1 +

b

βj + 2
(si − ti)

βj+2]

− a(si − ti)−
b

2
(si

2 − ti
2), i = 1, 2, .., n. (6)

The shortage level Ii2(t) for (2) is given by

Ii2(t) =
∫ t

si−1

D(u)B(u)du
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=
∫ t

si−1

a + bu

1 + δ(ti − u)
du

= − 1

δ2
[(aδ + b + bδti)log

(1 + δ(ti − t))

(1 + δ(t− si−1))
+ bδ(t− si−1)], (7)

where si−1 ≤ t ≤ ti, i = 1, 2, ., n.
The total quantity of shortage during the interval [si, ti] is

Si =
∫ ti

si−1

Ii2(t)dt

=
aδ + b + bδti

δ2
{(ti − si−1)−

1

δ
log(1 + δ(ti − si−1))}

− b

2δ
(ti − si−1)

2, i = 1, 2, .., n. (8)

The total quantity of loss during the interval [si−1, ti] is

Li =
∫ ti

si−1

[D(t)−D(t)B(t)]dt

=
∫ ti

si−1

[(a + bt)− a + bt

1 + δ(ti − t)
]dt

= a(ti − si−1) +
b

2
(ti

2 − si−1
2)− aδ + b + bδti

δ2
log(1 + δ(ti − si−1))

+
b

δ
(ti − si−1) (9)

Therefore the total variable cost over the time horizon H is given by

TC = nA + Ch

n∑
i=1

Ii + Cd

n∑
i=1

Di + Cs

n∑
i=1

Si + Cl

n∑
i=1

Li

= nA +
n∑

i=1

{Ch

∞∑
k=0

∞∑
j=0

(−1)kαk+j

k!j!
[

a + bti
(βk + 1)(βk + βj + 2)

(si − ti)
βk+βj+2

+
b

(βk + 1)(βk + βj + 3)
(si − ti)

βk+βj+3 ]

+ Cd{
∞∑

j=0

αj

j!
[
a + bti
βj + 1

(si − ti)
βj+1 +

b

βj + 2
(si − ti)

βj+2]

− a(si − ti)−
b

2
(si

2 − ti
2)}

+ Cs{
aδ + b + bδti

δ2
{(ti − si−1)−

1

δ
log(1 + δ(ti − si−1))}

− b

2δ
(ti − si−1)

2}
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+ Cl{a(ti − si−1) +
b

2
(ti

2 − si−1
2)− aδ + b + bδti

δ2
log(1 + δ(ti − si−1))

+
b

δ
(ti − si−1)}} (10)

Our aim is to determine ti and si which would minimize the total variable
cost TC of the inventory system.
For a fixed n, the necessary conditions for TC to be minimum are

∂TC

∂ti
= 0, i = 1, 2, .., n.

∂TC

∂si

= 0, i = 1, 2, .., n− 1

where

∂TC

∂ti
= Ch

∞∑
k=0

∞∑
j=0

(−1)kαk+j

k!j!
[

b

(βk + 1)(βk + βj + 2)
(si − ti)

βk+βj+2

− a + bsi

βk + 1
(si − ti)

βk+βj+1]

+ Cd{
∞∑

j=0

αj

j!
[
−bβj

βj + 1
(si − ti)

βj+1 − (a + bsi)(si − ti)
βj] + a + bti}

+ Cs{
(aδ + b + bδti)(ti − si−1)

δ(1 + δ(ti − si−1))
− b

δ2
log(1 + δ(ti − si−1))}

+ Cl{a + bti −
aδ + b + bδti

δ(1 + δ(ti − si−1))
− b

δ
log(1 + δ(ti − si−1))

+
b

δ
} (11)

and

∂TC

∂si

= Ch

∞∑
k=0

∞∑
j=0

(−1)kαk+j

k!j!

a + bsi

βk + 1
(si − ti)

βk+βj+1

+ Cd{
∞∑

j=0

αj

j!
(a + bsi)(si − ti)

βj − a− bsi}

+ Cs{−
(aδ + b + bδti+1)(ti+1 − si)

δ(1 + δ(ti+1 − si))
+

b

δ
(ti+1 − si)}

+ Cl{−a− bsi +
(aδ + b + bδti+1)

δ(1 + δ(ti+1 − si))
− b

δ
}. (12)

For a fixed n, the sufficient condition for TC to be minimum is that the
Hessian matrix of TC (i.e, 52TC) is positive definite where
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52TC =



∂2TC
∂t21

∂2TC
∂t1∂s1

0 0 0 0 ... 0
∂2TC
∂s1∂t1

∂2TC
∂s1

2
∂2TC
∂s1∂t2

0 0 0 ... 0

0 ... ∂2TC
∂ti∂si−1

∂2TC
∂ti2

∂2TC
∂si∂ti

0 ... 0

0 ... 0 ∂2TC
∂ti∂si

∂2TC
∂si

2
∂2TC

∂ti+1∂si
... 0

... ... ... ... ... ... ... ...

0 ... 0 0 0 ∂2TC
∂sn−1∂tn−1

∂2TC
∂sn−1

2
∂2TC

∂tn∂sn−1

0 ... 0 0 0 0 ∂2TC
∂tn∂sn−1

∂2TC
∂tn2


(13)

where

∂2TC

∂ti∂si−1

= Cs{−
bδ(ti − si−1) + (aδ + b + bδti)

δ(1 + δ(ti − si−1))
(14)

+
(aδ + b + bδti)(ti − si−1)

(1 + δ(ti − si−1)
2 +

b

δ
}

+ Cl{
b

(1 + δ(ti − si−1))
+

aδ + b + bδti

(1 + δ(ti − si−1))
2},

∂2TC

∂ti
2

= Ch

∞∑
k=0

∞∑
j=0

(−1)kαk+j

k!j!
[
a + bsi

βk + 1
(βk + βj + 1)(si − ti)

βk+βj

− b

βk + 1
(si − ti)

βk+βj+1]

+ Cd{
∞∑

j=0

αj

j!
[(a + bsiβj(si − ti)

βj−1 − b(si − ti)
βj] + b}

+ Cs{
(aδ + b + bδti) + bδ(ti − si−1)

δ(1 + δ(ti − si−1))

− (aδ + b + bδti)(ti − si−1)

(1 + δ(ti − si−1))
2 − b

δ(1 + δ(ti − si−1))
}

+ Cl{b−
2b

1 + δ(ti − si−1)
− aδ + b + bδti

(1 + δ(ti − si−1))
2},

∂2TC

∂si∂ti
=

∂2TC

∂ti∂si

= Ch

∞∑
k=0

∞∑
j=0

(−1)kαk+j

k!j!
[−a + bsi

βk + 1
(βk + βj + 1)(si − ti)

βk+βj]

+ Cd

∞∑
j=0

αj

j!
[−(a + bsi)βj(si − ti)

βj−1],
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∂2TC

∂si
2

= Ch

∞∑
k=0

∞∑
j=0

(−1)kαk+j

k!j!
[

b

βk + 1
(si − ti)

βk+βj+1

+
a + bsi

βk + 1
(βk + βj + 1)(si − ti)

βk+βj]

+ Cd{
∞∑

j=0

[
(−1)j

j!
b(si − ti)

βj + (a + bsi)βj(si − ti)
βj−1]− b}

+ Cs{
(aδ + b + bδti+1

δ(1 + δ(ti+1 − si))
+

(aδ + b + bδti+1)(ti+1 − si)

(1 + δ(ti+1 − si))
2 − b

δ

+ Cl{−b +
(aδ + b + bδti+1)

1 + δ(ti+1 − si))
2}

and

∂2TC

∂si∂ti+1

= Cs{−
(aδ + b + bδti+1)

δ(1 + δ(ti+1 − si))

+
(aδ + b + bδti+1)(ti+1 − si)

(1 + δ(ti+1 − si))
2 +

b

δ(1 + δ(ti+1 − si))
}

+ Cl{−
(aδ + b + bδti+1)

(1 + δ(ti+1 − si))
2 +

b

(1 + δ(ti+1 − si)
}.

5. Solution Procedure
Before going to the solution procedure, we propose the following theorem.
Theorem: If g(si, ti+1) < f(si, ti) < g(si−1, ti), i = 1, 2, ..., n,
then 52TC is positive definite,
where

f(x, y) = −Chb(si − ti)
∞∑

k=0

∞∑
j=0

(−1)kαk+j

k!j!

1

βk + 1
(si − ti)

βk+βj

− Cdb[e
α(si−ti)

β

− 1]

and

g(x, y) = Cs{
b(y − x)

1 + δ(y − x)
}

+ Cl{−b +
b

1 + δ(y − x)
+

2(aδ + b + bδy)

1 + δ(y − x)
}

Proof: The proof is given in the Appendix.

Using the above proposed theorem we find the solution as under.
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1 Input the parameter values H, a, b, α, β, δ, A, Ch, cs, Cl, Cd.

2 Initialize the number t1. With this value of t1 and s0(= 0), find s1

from (11).

3 Find t2 from (12) using the values of s1 and t1.

4 Using t2 and s1, find s2 from (11) and proceed in this way until sn

is obtained.

5 If sn is very close to H and if t1, s1, t2, s2, ..., tn, sn satisfies g(si, ti+1) <
f(si, ti) < g(si−1, ti), i = 1, 2, ..., n, then t1, s1, t2, s2, ..., tn, sn is an
optimal solution for n replenishment cycles and find TC.

6 If sn > H, a smaller value of t1 is initialized and if sn < H, a larger
value of t1 is initialized.

7 For each value of n = 1, 2, 3, ...,and so on, corresponding total costs
are obtained to find the optimal solution.

5. Numerical Example:
Let a=45, b=4, α=0.2, β=0.6, δ=4, H=1, A=250, Ch=40, Cd=200,
Cs=80 in appropriate units. To solve the nonlinear equations (11) and
(12), we take help of the numerical computational software Mathematica
(version 4.1). We obtain the optimal solutions ti and si given in Table
1. It shows that number of replenishments is 4 and the correspond-
ing minimum total cost is 66391.80. The corresponding total costs for
n = 1, 2, 3, ... are given in Table 2.
Table 1. Optimal solution of the numerical example
i ti

∗ si
∗

1 0.488 0.78122
2 0.86569 0.94856
3 0.97269 0.99097
4 0.99804 1.00013

Table 2.Total cost for different replenishment cycles
i TC
1 74074.40
2 67716.10
3 67591.90
4∗ 66391.80∗

5 66474.20
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6. Concluding remarks:
The present paper describes an inventory model where the main issues
are to consider deterioration, backlogging and variable replenishment cy-
cle. Although many researchers used constant or linear deterioration
rate to simplify their models, it is now widely adopted and more realis-
tic to take deterioration rate following Weibull distribution. A complete
rate or a constant partial rate were used in many studies to describe the
backlogging rate. But it is more realistic to assume the backlogging rate
to be time proportional with waiting time of backlogging. Some inven-
tory modellers used the backlogging rate to be an exponential function
of waiting time. But in real practice, backlogging rate never varies so
high as exponential. So, we have considered here the backlogging rate

1
1+δ(ti−t)

, which seems to be better. For the replenishment cycle, a fixed
period is generally used in many studies. However, a variable replenish-
ment cycle would be more efficient than a fixed replenishment cycle in
terms of total costs.
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APPENDIX-A:
Proof of the theorem:
Since (si−1, ti) and (ti, si) have negative correlation ∀ i = 1, 2, 3, ..., n,
we have ∂2TC

∂ti∂si−1
< 0, ∂2TC

∂si∂ti
< 0, ∂2TC

∂ti+1∂si
< 0,∀ i = 1, 2, 3, ..., n.

Hence

∂2TC

∂ti
2
− | ∂2TC

∂si−1∂ti
| − | ∂2TC

∂si∂ti
|
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= − Chb(si − ti)
∞∑

k=0

∞∑
j=0

(−1)kαk+j

k!j!

1

βk + 1
(si − ti)

βk+βj

− Cdb[e
α(si−ti)

β

− 1]Cs{
b(ti − si−1)

1 + δ(ti − si−1)
}

+ Cl{−b +
b

1 + δ(ti − si−1)
+ 2

(aδ + b + bδti)

1 + δ(ti − si−1)
}

= −f(si, ti) + g(si−1, ti) > 0,∀ i = 1, 2, 3, ..n

and

∂2TC

∂si
2
− | ∂2TC

∂ti∂si

| − | ∂2TC

∂ti+1∂si

|

= Chb(si − ti)
∞∑

k=0

∞∑
j=0

(−1)kαk+j

k!j!

1

βk + 1
(si − ti)

βk+βj

+ Cdb[e
α(si−ti)

β

− 1]− Cs{
b(ti − si−1)

1 + δ(ti − si−1)
}

− Cl{−b +
b

1 + δ(ti − si−1)
+ 2

(aδ + b + bδti)

1 + δ(ti − si−1)
}

= f(si, ti)− g(si−1, ti) > 0,∀ i = 1, 2, 3, ..n.

Therefore 52TC is positive definite (Horn and Johnson[16]).
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