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Abstract. We consider a networked system defined on a graph where each edge
corresponds to a quasilinear hyperbolic system with space dimension one. At
the nodes, the system is governed by algebraic node conditions. The system is
controlled at the nodes of the graph. Optimal control problems for systems of
this type arise in the operation of channel networks, for example in hydraulic
flood routing. For the solution of such problems, the evaluation of the derivatives
of functions that depend on the state of the system is necessary. For the case of
continously differentiable states, we present an adjoint sensitivity calculus that
allows to compute directional derivatives in seceral directions by solving only one
backward equation. The result is used to numerically solve by a gradient–type
method a problem of optimal control for the St. Venant Equations.
Keywords. optimal control, hyperbolic partial differential equation, network,
node conditions, adjoint equations, St. Venant Equations
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1 Introduction

In many applications, systems appear that can be modelled as a networked
system defined on a graph where the dynamics on each edge are modelled by a
quasilinear hyperbolic partial differential equation and at the interior nodes of
the graph, these systems are coupled by algebraic node conditions. As examples,
consider networks of water channels/ gas pipelines/ roads with traffic flow (see
[15, 19, 28]). There are many excellent studies of hyperbolic conservation laws,
see for example [6, 10, 16, 18] and the references therein. Classical solutions are
studied in [22].

We consider problems of optimal control for networked systems that are
controlled at the nodes of the graph. We prove the differentiability with respect
to the control function of objective functions that are defined as integrals that
depend on the state of the system. We present an adjoint sensitivity calculus
that is useful for the evaluation of the derivative of the objective function and
allows the statement of optimality conditions.

1This work was supported by DFG–research cluster: Real-time optimization of complex
systems; grant number Le595/13-1.
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In order to compute the derivatives of the objective function, as an interme-
diate step we need the sensitivity of the system state with respect to changes in
the control function. Let v(u) denote the state of our system corresponding to
the control u. We want to compute the directional derivatives in direction d,

lim
h→0+

[ v(u+ hd)− v(u) ] /h = H(u, d). (1.1)

To do this, we first have to make sure that the directional derivatives exist.
We work with the linearized forward equation to prove the existence of the
directional derivatives. We show that H is a continuous function on each edge
of our graph if the control function u generates a continuously differentiable
system state v(u) and the direction d satisfies certain compatibility conditions
with respect to the initial conditions. To evaluate the derivatives, a backwards
equation is used. If this approach is used, only one backwards equation has
to be solved to compute the directional derivatives in several directions. This
is cheaper and more accurate than the approximation of directional derivatives
with finite differences, where for each direction, the foward system equation has
to be solved again.

Related studies can be for example found in [5] where sensitivity equations
are derived formally, in [3, 4] and in the work of S. Ulbrich (e.g. [24, 25]), who
focusses in particular on the question how shocks in the state depend on the
controls. For the St. Venant equations, a sensitivity analysis has been presented
by Sanders and Katapodes [21] in engineering style. In this paper, we consider
continuously differentiable solutions. The philosophy behind this approach is
that we aim to choose the controls in such a way that they do not generate
shocks in the state. That this is indeed possible is a question of controllability
which has been studied in [9, 12, 13, 19, 23].

2 Example: Control of water flow to a standstill

Consider a Y–shaped network of three rectangular frictionless horizontal chan-
nels with equal length L.

The flow is governed by the De St. Venant (shallow water) equations. The
node conditions are chosen to guarantee the conservation of mass and the conti-
nuity of the water height. Initially, the flow is stationary with positive velocity.
The objective function is the sum of the weighted L2–norms over [0, L]× [T1, T ]
of the velocities in the three channels (where T1 ∈ (0, T ) is given) so the aim is
to steer the water to rest. The water flow is controlled at the three boundary
nodes of the channel network, in the junction there is no control. Arguments
similar to those used in the proof of the controllability result in [12] imply that
if T1 is sufficiently large, the optimal value is zero, that is there are control
functions that steer the water flow to a standstill in finite time. These control
functions are not uniquely determined.

We number the channels in the Y–shaped graph in the following way: chan-
nel 1 is the top left–hand side channel, channel 2 is the top right–hand–side
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Figure 1: A junction of three channels
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channel and channel 3 is the remaining channel. Assume that all channels are
directed to the boundary node of channel 3, that is the end L of each channel is
closer to this boundary node that the end 0 of this channel (see Figure 1). Let
bi > 0 denote the constant width of channel i. Assume that

b1 = b2 = b3/2.

2.1 De St. Venant Equations

The channel is parametrized lengthwise by x ∈ [0, L]. Let Ai(x, t) denote the
wetted cross section at the point x at time t and let Qi(x, t) denote the corre-
sponding flow rate. Then the conservation of mass yields the equation

d

dt
Ai(x, t) +

d

dx
Qi(x, t) = 0

for i ∈ {1, 2, 3}. Let Ui = Qi/Ai denote the average velocity over the cross sec-
tion of the channel and hi = Ai/bi the average water height. The conservation
of energy implies the equation

d

dt
Ui(x, t) +

d

dx

[
Ui(x, t)2/2 + ghi(x, t)

]
= 0.

In terms of the functions Ui and hi, the quasilinear system can be written as

∂t

(
hi

Ui

)
+

(
Ui hi

g Ui

)
∂x

(
hi

Ui

)
= 0.

Let ci(x, t) =
√
ghi(x, t) denote the corresponding wave celerity, where g > 0

is the gravitational constant. The eigenvalues of the system matrix are Ui + ci
and Ui − ci. In terms of the functions Ui and ci the system equation is

∂t

(
ci
Ui

)
+

(
Ui ci/2
2ci Ui

)
∂x

(
ci
Ui

)
= 0.



Nodal Control of hyperbolic networks 12

With the Riemann invariants Ri
+ = Ui + 2ci, Ri

− = Ui − 2ci and the diagonal
matrix

Di(Ri
+, R

i
−) :=

(
3
4R

i
+ + 1

4R
i
− 0

0 1
4R

i
+ + 3

4R
i
−

)
,

the de St. Venant equations can be written in the diagonal form

∂t

(
Ri

+

Ri
−

)
+Di(Ri

+, R
i
−) ∂x

(
Ri

+

Ri
−

)
= 0. (2.1)

For the matrix defined later in (7.1) we have

M i(Ri
+, R

i
−) =

(
3
4∂xR

i
+

1
4∂xR

i
+

1
4∂xR

i
−

3
4∂xR

i
−

)
.

The adjoint backwards system is for i ∈ {1, 2, 3}

∂t(µi
+, µ

i
−) + ∂x

(
(µi

+, µ
i
−)Di(Ri

+, R
i
−)

)
(2.2)

= (µi
+, µ

i
−)M i(Ri

+, R
i
−) + (∂+f

i(Ri
+, R

i
−), ∂−f i(Ri

+, R
i
−))

with f i(Ri
+, R

i
−) = α(t)(Ri

+ +Ri
−)2/8 = α(t)U2

i /2 (the integrand in the objec-
tive function), hence

∂+f
i(Ri

+, R
i
−) = ∂−f

i(Ri
+, R

i
−) = α(t)(Ri

+ +Ri
−)/4.

The end conditions for µ are for i ∈ {1, 2, 3} (see (7.3))

µi
+(x, T ) = µi

−(x, T ) = 0, x ∈ [0, L].

2.2 Objective Function

We consider the optimization problem where for all nodes ω, the functions fω,e

equal zero and for the edges i (i ∈ {1, 2, 3}) of the Y –shaped graph we have

f i(Ri
+, R

i
−, x, t) = (1/8)α(t)(Ri

+ +Ri
−)2 = α(t)U2

i /2

where the weight function α(t) ≥ 0 has support α ⊂ [T1, T ], with 0 < T1 < T .

2.3 Node Conditions

At the interior node ω, we require the conservation of mass and the continuity
of the water height, that is for each fixed time the water height in the end points
of the channels that are adjacent to the node must be equal.

Then the first node condition is

A1(L, t) U1(L, t) +A2(L, t) U2(L, t) = A3(0, t) U3(0, t) for all t ≥ 0. (2.3)

Our second node condition is

h1(L, t) = h2(L, t) = h3(0, t), t ≥ 0. (2.4)
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Our node conditions can be transformed to a system of linear equations for
the Riemann invariants. Since the channels are rectangular, (2.3) and (2.4)
imply the equation b1U1 + b2U2 = b3U3. Since Ui = (Ri

+ +Ri
−)/2, this implies

b1(R1
+(L, t) +R1

−(L, t)) + b2(R2
+(L, t) +R2

−(L, t)) = b3(R3
+(0, t).+R3

−(0, t))
(2.5)

Since
√
ghi = ci = (Ri

+ −Ri
−)/4, (2.4) implies

R1
+(L, t)−R1

−(L, t) = R2
+(L, t)−R2

−(L, t) = R3
+(0, t)−R3

−(0, t). (2.6)

With the numbering of the edges in the Y –shaped graph given above, the
solution of this system of linear equations is given by the equation R1

−(L, t)
R2
−(L, t)
R3

+(0, t)

 =
1
2

 1 −1 2
−1 1 2

1 1 0

  R1
+(L, t)

R2
+(L, t)
R3
−(0, t)

 . (2.7)

Let λi
+ = 3

4R
i
+ + 1

4R
i
−, λi

− = 1
4R

i
+ + 3

4R
i
−. The adjoint interior node

conditions (see (7.4), (7.6)) are(
µ1

+(L, t), µ2
+(L, t), µ3

−(0, t)
)

=
(
µ1
−(L, t), µ2

−(L, t), µ3
+(0, t)

)
Bω(t)

(2.8)
with the matrix Bω(t) defined as

−

0@ λ1
−(L, t) 0 0

0 λ2
−(L, t) 0

0 0 −λ3
+(0, t)

1A 1

2

0@ 1 −1 2
−1 1 2

1 1 0

1A
0BB@

1
λ1
+(L,t)

0 0

0 1
λ2
+(L,t)

0

0 0 − 1
λ3
−(0,t)

1CCA .

In Section 8, a numerical solution of this problem is presented. The opti-
mization problem is solved with a a gradient–type method. For the evaluation
of the gradient, a discretized form of the representation of the directional deriva-
tives given in Theorem 3 below is used. In Section 9, we present some remarks
about the analytical solution of our example problem.

3 Notation

Consider a finite directed graphG = (V,E) with vertices (nodes) V and edges E.
This graph is taken to represent a network of coupled systems. Each edge e ∈ E
of the graph corresponds to an interval [0, Le], where the system is governed by
a quasilinear system in diagonal form

ve
t (x, t) +De(ve(x, t), x, t) ve

x(x, t) + Se(ve(x, t), t) = 0, (3.1)

e ∈ E, x ∈ [0, Le], t ∈ [0, T ]

where the solution has n components, De is a continuously differentiable map
to the space of n× n diagonal matrices,

De(w, x, t) = diag (de
ii(w, x, t)) =

[
de

ij(w, x, t)
]
ij
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and Se is continuously differentiable. We consider only controls that generate
states where the diagonal entries of De are nowhere zero and the sign of such
an entry is constant on [0, Le]× [0, T ]. Define

Ge(ve) = ve
t +De(ve) ve

x + Se(ve). (3.2)

The initial state of the system is given by an initial condition of the form

ve(x, 0) = ve
0(x), e ∈ E, x ∈ [0, Le] (3.3)

where for all edges e ∈ E, the function ve
0 is continuously differentiable.

At the nodes ω ∈ V of the graph, the values of the functions ve are coupled
through algebraic node conditions. For a node ω ∈ V , let E0(ω) denote the set
of adjacent edges. For e ∈ E0(ω), let xe(ω) ∈ {0, Le} denote the end–point of
the interval [0, Le] that corresponds to the vertex.

There are two types of nodes: Boundary nodes, where the set E0(ω) has
only one element and interior nodes, where E0(ω) has at least two elements.
Let VB ⊂ V denote the set of boundary nodes. For ω ∈ VB , let e(ω) denote the
adjacent edge. Let V 0 denote the set of boundary nodes that are at the end
zero of the adjacent edge and let V L denote the set of boundary nodes that are
at the end Le of the adjacent edge e.

3.1 Boundary and interior node conditions

For a boundary node ω ∈ V 0, we assume that the boundary conditions have the
form

v
e(ω)
+ (0, t) = B0(t, ω, v

e(ω)
− (0, t)) + β(t, ω) ue(ω)(t, ω) (3.4)

and for ω ∈ V L

v
e(ω)
− (Le(ω), t) = B0(t, ω, v

e(ω)
+ (Le(ω), t)) + β(t, ω) ue(ω)(t, ω). (3.5)

Here ve
+ contains the components of ve that correspond to positive eigenvalues

in De and ve
− the components corresponding to negative eigenvalues. B0(·, ω, ·)

is a continuously differentiable function and u(·, ω) is the corresponding control
function. β(·, ω) is a continuously differentiable real–valued function. The con-
trol function ue(·, ω) is continuously differentiable. The number of components
of u depends on the number of positive and negative eigenvalues of De. For a
discussion of boundary conditions for hyperbolic systems, see [2].

To state the conditions for the interior nodes ω ∈ V \VB of the graph, where
several edges are connected, we need the following notation: For e ∈ E, define
the index sets

Ie
+ = {i ∈ {1, ..., n} : de

ii(x, t) > 0, (x, t) ∈ [0, Le]× [0, T ]} ,
Ie
− = {i ∈ {1, ..., n} : de

ii(x, t) < 0, (x, t) ∈ [0, Le]× [0, T ]}

where de
ij(x, t) are the entries of the matrix De(ve(x, t), x, t).
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We assume that the interior node conditions can be written in the following
form, where B0(·, ω, ·) is a continuously differentiable function and β(·, ω) is a
continuously differentiable real–valued function:

For e ∈ E0(ω) with xe(ω) = 0 and i ∈ Ie
+:

ve
i (0, t) = B0(e, i, t, ω, v

f
j (xf (ω), t) : (3.6)

f ∈ E0(ω), xf (ω) = 0 and j ∈ If
− or xf (ω) = Lf and j ∈ If

+) + β(t, ω) ue
i (t, ω).

For e ∈ E0(ω) with xe(ω) = Le and i ∈ Ie
−:

ve
i (Le, t) = B0(e, i, t, ω, v

f
j (xf (ω), t) : (3.7)

f ∈ E0(ω), xf (ω) = 0 and j ∈ If
− or xf (ω) = Lf and j ∈ If

+) + β(t, ω) ue
i (t, ω).

Hence for the indeces with characteristics that flow out of the node for the
forward equation, that is the indeces i for which the values of ve

i at the node are
not determined from the values in the interior of [0, Le]× [0, T ], the values are
determined from the remaining components of the solution that are determined
from the characteristics that flow into the node.

Obviously, the sign of the corresponding eigenvalue of the system matrix
and the end–point (0 or Le) determine wether a characteristic curve goes out
of the node or into the node. Again the control functions u are assumed to be
continuously differentiable.

4 The Linearized Problem

In a problem of optimal control, we can regard the system equation as an equal-
ity constraint of the form Ge(ve) = 0 for all e ∈ E. On each edge e ∈ E, the
linearized equation is

He
t + [De(ve)] He

x + [∇vD
e(ve)He] ve

x + [(Se)′(ve)] He = 0. (4.1)

Here for v ∈ Rn the matrix (Se)′(v) is defined by the equation

(Se)′(v, t) =
(
∂Se

i

∂vj
(v, t)

)
ij

(4.2)

and denotes the derivative of Se and

[∇vD
e(ve)He] = diag

 n∑
j=1

∂ve
j
dii(ve)He

j


is a diagonal matrix.

With the appropriate initial and boundary/interior node conditions this
yields the initial boundary value problem for H.
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Since the given initial state v0 does not depend on the boundary control
function, the initial condition for H is

He(x, 0) = 0, e ∈ E, x ∈ [0, Le]. (4.3)

It is important that in general the partial derivative ve
x that appears in the

linearized problem cannot be expected to be continuously differentiable if the
function ve is continously differentiable. Therefore in general we cannot expect
that the linearized problem has a continuously differentiable solution. We can
only expect that the solution He is continuous.

4.1 Boundary and interior node conditions for the lin-
earized problem

For a boundary node ω ∈ V 0, the linearized boundary conditions have the form

H
e(ω)
+ (0, t) = B(t, ω)He(ω)

− (0, t) + β(t, ω) de(ω)(t, ω) (4.4)

and for ω ∈ V L

H
e(ω)
− (Le(ω), t) = B(t, ω)He(ω)

+ (Le(ω), t) + β(t, ω) de(ω)(t, ω) (4.5)

where the matrix B(t, ω) contains the corresponding partial derivatives of B0.
The functions d(·, ω) are continuously differentiable with d(0, ω) = 0.

Let beg
ik denote the partial derivative

beg
ik (t, ω, vf

j (xf (ω), t) : f ∈ E0(ω), xf (ω) = 0 and j ∈ If
− or xf (ω) = Lf and j ∈ If

+)

=
∂

∂vg
k

B0(e, i, t, ω, v
f
j (xf (ω), t) :

f ∈ E0(ω), xf (ω) = 0 and j ∈ If
− or xf (ω) = Lf and j ∈ If

+).

The interior node conditions are as follows:
For e ∈ E0(ω) with xe(ω) = 0 and i ∈ Ie

+:

He
i (0, t) =

∑
f ∈ E0(ω) :
xf (ω) = 0,
j ∈ If

−

bef
ij (t, ω)Hf

j (0, t)+
∑

f ∈ E0(ω) :
xf (ω) = Lf ,

j ∈ If
+

bef
ij (t, ω)Hf

j (Le, t)+β(t, ω) de
i (t, ω).

(4.6)
Again the functions bef

ij are given by the corresponding partial derivatives of
B0. The sum over the partial derivatives appears in (4.6) compared with (3.6)
on account of the linearization.
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For e ∈ E0(ω) with xe(ω) = Le and i ∈ Ie
−:

He
i (Le, t) =

∑
f ∈ E0(ω) :
xf (ω) = 0,
j ∈ If

−

bef
ij (t, ω)Hf

j (0, t)+
∑

f ∈ E0(ω) :
xf (ω) = Lf ,

j ∈ If
+

bef
ij (t, ω)Hf

j (Le, t)+β(t, ω) de
i (t, ω).

(4.7)
The functions d(·, ω) are continuously differentiable with

de(0, ω) = 0. (4.8)

5 Existence of Solutions

The solvability of the system equation (3.1) can be guaranteed in a neighbour-
hood of a constant stationary solution v0 that satisfies the equation Se(v0) = 0.

With boundary controls u that are chosen such that the corresponding values
of the solution are sufficiently close to v0, whose derivatives are sufficiently
small and that satisfy compatibility conditions, system (3.1) has a continuously
differentiable solution. This follows from results of Cirina in [8].

The linearized system (4.1) has the same system matrix as (3.1) . The
characteristic curves are determined by the eigenvalues of this matrix.

Since with smooth boundary values that satisfy compatibility conditions
with the initial state, shocks only occur if the characteristic curves intersect,
this observation implies that if for the original initial boundary value problem a
continuously differentiable solution exists, then also the linearized system (4.1)
can be transformed to the same characteristic coordinates.

For the case where Se is the zero function and in addition vx = 0 or ∇vD =
0, that is if the source term vanishes, this implies that the solution of the
linearized system exists and is continuously differentiable on the same domain
as the solution of the original system, since in this case the Riemann invariants
remain constant along every characteristic curve (see for example Dafermos,
[10], p. 128).

In the sequel we study the existence of a continuous solution of the linearized
initial boundary value problem.

Since the linearized problem has the same characteristic curves as the original
problem, which by assumption has a continuously differentiable solution, we
consider solutions of the linearized problem in the characteristic sense that is
solutions that are obtained by integrating along the characteristic curves.

For e ∈ E and i ∈ {1, ..., n} such a curve (ξe
i (s), s) satisfies the ordinary

differential equation

d

ds
ξe
i (s) = de

ii(v
e(ξe

i (s), s), ξe
i (s), s).

Along the characteristic curves, the solution He of the linearized equation sat-
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isfies the following relation:

He
i (ξe

i (t), t) = He
i (ξe

i (s0), s0) +
∫ t

s0

[[∇vD
e(ve)He]ve

x + (Se)′(ve)He]i |(ξe
i (s),s) ds

(5.1)
where the notation [ ]i denotes the i–th component.

The following theorem concerns the existence of continous solutions of the
linearized problem.

Theorem 1 Let a control function u be given that generates continuously dif-
ferentiable solution of equation (3.1) that satisfies the initial condition (3.3) and
on the time interval [0, T ] the conditions (3.4), (3.5), (3.6), (3.7). Assume that
the function d satisfies the compatibility conditions (4.8).

Then on the time interval [0, T ] there exists a unique continuous solution of
the initial boundary value problem defined by the initial condition He(·, 0) = 0
for all e ∈ E, the boundary node conditions (4.4), (4.5), the interior node
conditions (4.6), (4.7) and the linearized equation (4.1) in the characteristic
sense (5.1).

The Theorem is proved by a fixed–point iteration of Picard–Lindelöf type
along the characteristic curves. Using the a priori bounds, the existence of
the solution on the time interval [0, T ] follows by applying the local existence
result on a finite number of time intervals [0, T0], [T0, 2T0],... until the time T
is reached.

Note that due to the linearity of the problem, we need not assume a bound
on the size of the norm of d or its derivative.

Proof.
For e ∈ E and (x, t) ∈ [0, Le]× [0, T ] define the characteristic curves through

this point by introducing the functions ξe
i (s) = ξe

i (s;x, t) for i = 1, ..., n that
satisfy the conditions

d

ds
ξe
i (s) = de

ii(v
e(ξe

i (s), s), ξe
i (s), s), s ≤ t, ξe

i (t) = x.

where de
ii are the eigenvalues of the diagonal system matrix De. Then the

characteristic curves through the point (x, t) have the form {(ξe
i (s), s) : s ∈

[s0, t]}.
Since by assumption a C1–solution of the original problem exists, such curves

exist and run backwards in time until they reach boundary 0 or Le at some
positive time s0 > 0 or until at the initial time s0 = 0, ξe

i has some value in the
interval [0, Le].

Along the characteristic curves, the function H satisfies the following rela-
tion:

He
i (x, t) = He

i (ξe
i (s0), s0) +

∫ t

s0

[[∇vD
e(ve)He]ve

x + (Se)′(ve)He]i |(ξe
i (s),s) ds

(5.2)
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For a continuous function w such that for all e ∈ E: we : [0, Le]× [0, T ] 7→ IRn,
define the integral operator

(Pw)e
i (x, t) = (Qw)e

i (ξ
e
i (s0), s0)

+
∫ t

s0

[[∇vD
e(ve)we]ve

x + (Se)′(ve)we]i |(ξe
i (s),s) ds

where (Qw)e
i (ξ

e
i (s0), s0) denotes the boundary values that are determined ei-

ther by the initial values given in the initial condition (3.3) (if s0 = 0) or by
the boundary conditions (4.4), (4.5) or the node conditions (4.6), (4.7) with
the control function d and the values of the function Pw determined on the
characteristic curves that enter the nodes.

To obtain these boundary values, it is necessary to follow the involved char-
acteristic curves backwards in time until the initial time zero is reached. If the
time t is sufficiently small, the initial line can be reached after at most one
reflection at the boundary.

Choose w0 = 0. Consider the sequence of functions ϕk with ϕ0 = w0 and

(ϕk+1)e
i = (Pϕk)e

i .

Then the definition of P implies that for all k ∈ IN , the function ϕk is well–
defined and continuous.

Let K ≥ 1 be such that for all (x, t) ∈ [0, Le]× [0, T ] and for all continuous
functions fe defined on [0, Le]× [0, T ] the following inequalities hold:

‖ [∇vD
e(ve)fe]ve

x + (Se)′(ve)fe|(x,t)‖ ≤ K‖fe(x, t)‖

and for an interior node ω ∈ V , if f ∈ (IRn)E0(ω) satisfies the node conditions
(4.6), (4.7) with de

i = 0, then for the components fe
i corresponding to outgoing

characteristic curves with respect to this node we have

|fe
i | ≤ K‖re‖, (5.3)

where the vector re contains the components of fe for which the corresponding
characteristic curves come from the interior of [0, Le] × [0, T ] to the node, so
re contains the components of ve corresponding to ingoing characteristic curves
with respect to the node ω ∈ V .

Moreover, assume that the number K is chosen such that at the boundary
nodes ω ∈ V 0, if f ∈ IRn satisfies the node condition

fe
+ = B(t, ω)fe

− (5.4)

we have the inequality
‖fe

+‖ ≤ K‖fe
−‖ (5.5)

and at the boundary nodes ω ∈ V L for all f ∈ IRn with

fe
− = B(t, ω)fe

+ (5.6)
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we have the inequality
‖fe
−‖ ≤ K‖fe

+‖. (5.7)

Then the following inequality is valid for continuous functions α, β with com-
ponents αe, βe ∈ C([0, Le]× [0, T ], IRn) for e ∈ E:

max
x∈[0,Le]

‖(Pα(x, t)− Pβ(x, t))e‖ ≤ max
x∈[0,Le]

max
s∈[0,t]

‖αe(x, s)− βe(x, s)‖Km+1t.

Here m denotes the maximum number of reflections at the boundary until a
characteristic curve emanating from the interval [0, Le] at time zero reaches a
point (x, t) ∈ [0, Le]× [0, T ]. Note that here we use the inequalities (5.3), (5.5),
(5.7).

Hence if T1 ≤ T is sufficiently small, P is a contraction on the time interval
[0, T1].

Therefore the sequence ϕk converges to a limit v and the limit function v
is continuous and satisfies the initial conditions (4.3). Since for all k ∈ IN , the
boundary conditions (4.4), (4.5), and the node conditions (3.6), (3.7) with the
control function d are valid for the functions ϕk by the definition of (Qw), also
the function v satisfies these conditions. Moreover, the equation Pv = v implies
that v satisfies the integral equation (5.2).

To show the existence of the solution on the whole time interval [0, T ], we
use the method of continuation (see [20]), namely, starting with the solution at
time T1 as initial condition we show in a similar way the existence of the solution
on a time interval [T1, T2] that is sufficiently small to yield a contraction and
continue in this way on successive time–intervals until we have reached the time
T .

So we have shown the existence of a unique continuous solution.

6 Directional Differentiability

In this section we show that if a control function u generates a continuously
differentiable solution v of our nonlinear system, then we can expand the solution
in the form

v(x, t, u+ hd) = v(x, t, u) + hH(x, t, u, d) + o(h) (6.1)

where H is the solution of the corresponding linearized system and d is a contin-
uously differentiable direction that satisfies the compatibility conditions (4.8).

Theorem 2 Let a control function u be given that generates a continuously
differentiable solution of equation (3.1) that satisfies the initial condition (3.3)
and on the time interval [0, T ] the conditions (3.4), (3.5), (3.6), (3.7).

Assume that the function d satisfies the compatibility conditions (4.8). As-
sume that for all real numbers h that are sufficiently small, the control functions
u+ hd also generate continuously differentiable solutions.
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Then using the unique continuous solution of the linearized problem (4.3),
(4.4), (4.5), (4.6), (4.7) and (4.1) in the characteristic sense (5.1) we can expand
the solution of the original system in the form (6.1), that is equation (1.1) holds.

Proof.
For a real number h, define the function

R(x, t, u, d, h) = v(x, t, u) + hH(x, t, u, d)

where H is a solution of the linearized problem (4.3), (4.4), (4.5), (4.6), (4.7)
where the linearized system equation (4.1) holds in the characteristic sense (5.1).
Then the following equation holds vor R along the characteristic curves (ξe

i (s), s)
generated by the control function u + hd (where we use the notation de

ii(u +
hd, s) = de

ii(v
e(ξe

i (s), s, u+ hd), ξe
i (s), s)):

Re
i (ξ

e
i (t), t, u, d, h) = Re

i (ξ
e
i (s0), s0, u, d, h)

+
∫ t

s0

[de
ii(u+ hd, s)− de

ii(u, s)] [Rx(ξe
i (s), s, u, d, h)]i ds

−
∫ t

s0

[Se(ve(ξe
i (s), s, u), s) + (Se)′(ve(ξe

i (s), s, u), s)hHe(ξe
i (s), s, u, d)]i ds

−
∫ t

s0

h [[∇vD
eHe]ve

x(ξe
i (s), s, u), s)]i ds

where in the matrix

[∇vD
eHe] = diag

 n∑
j=1

∂ve
j
de

ii(v
e(ξe

i (s), s, u), ξe
i (s), s)He

j (ξe
i (s), s, u, d)


we have omitted the arguments to obtain a shorter formula.

Define the function

r(x, t, u, d, h) = R(x, t, u, d, h)− v(x, t, u+ hd).

Then along the characteristic curves (ξe
i (s), s) generated by the control function

u+ hd, the following equation holds for r:

re
i (ξ

e
i (t), t, u, d, h)− re

i (ξ
e
i (s0), s0, u, d, h) (6.2)

=
∫ t

s0

[de
ii(u+ hd, s)− de

ii(u, s)] [Rx(ξe
i (s), s, u, d, h)]i ds

+
∫ t

s0

[Se(ve(ξe
i (s), s, u+ hd), s)− Se(ve(ξe

i (s), s, u), s)

−(Se)′(ve(ξe
i (s), s, u), s)hHe(ξe

i (s), s, u, d)]i ds
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−
∫ t

s0

h [[∇vD
eHe]ve

x(ξe
i (s), s, u), s)]i ds

=
∫ t

s0

[Se(Re − re)− [Se(ve(u)) + (Se)′(ve(u))(Re − ve(u))]]i ds

−
∫ t

s0

h [[∇vD
eHe]ve

x(ξe
i (s), s, u), s)]i ds

+
∫ t

s0

[de
ii(u+ hd, s)− de

ii(u, s)] [R
e
x(ξe

i (s), s, u, d, h)]i ds

where in the last equation we used some shorter notation which is self–explaining.
Define

F e
1 (r, h) = Se(Re − re)− [Se(ve(u)) + (Se)′(ve(u))(Re − ve(u))]

= Se(Re − re)− Se(Re) + Se(Re)− [Se(ve(u)) + (Se)′(ve(u))(Re − ve(u))]

= Se(Re − re)− Se(Re) +
∫ 1

0

[(Se)′(ve(u))− (Se)′(ve(u) + λhHe)]hHe dλ.

Then we have the inequality

‖F e
1 (r, h)‖ ≤M1‖re‖+ |h|

∫ 1

0

‖(Se)′(ve(u))− (Se)′(ve(u) + λhHe)‖‖He‖ dλ,

where the numberM1 > 0 is such that for all e ∈ E for all (x, t) ∈ (0, Le)×(0, T ),
λ ∈ (0, 1) we have

‖(Se)′(Re − re + λre)(x, t)‖ ≤M1.

Hence we have shown that an estimate of the form

‖F e
1 (r, h)‖ ≤M1‖re‖+ |h|ϕe

1(h) (6.3)

is valid, with
lim
h→0

ϕe
1(h) = 0

for all e ∈ E.
Define

F e
2 (r, h) = [De(ve(u+ hd))−De(ve(u))]Re

x − h[∇vD
e(ve(ue))He]ve

x(ue)
= [De(Re − re)−De(ve(ue))− [∇vD

e(ve(ue))hHe]]Re
x

+ h2[∇vD
e(ve(ue))He]He

x

=
{∫ 1

0

[(∇vD
e(ve + λhHe)−∇vD

e(ve)) hHe] dλ+De(Re − re)−De(Re)
}
Re

x

+ h2[∇vD
e(ve(ue))He]He

x

=
{
h

∫ 1

0

[(∇vD
e(ve + λhHe)−∇vD

e(ve)) He] + [∇vD
e(Re − λre)re] dλ

}
Re

x

+ h2[∇vD
e(ve(ue))He]He

x.
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Then in a similar way as above, we obtain an estimate of the form

‖F e
2 (r, h)‖ ≤M2‖re‖+ |h|ϕe

2(h) (6.4)

with
lim
h→0

ϕe
2(h) = 0

for all e ∈ E.
For t ≥ 0 define the continuous function

U(t) = max{‖re(x, t, u, d, h)‖ : e ∈ E, x ∈ [0, Le], s ≤ t}.

The the inequalities (6.3), (6.4) and the integral equation (6.2) imply that an
inequality of the following form is valid:

0 ≤ U(t) ≤
∫ t

0

M U(s) + |h|ϕ(h) ds (6.5)

with
lim
h→0

ϕ(h) = 0

and a number M > 0 that does not depend on h. Then Gronwall’s Lemma 1
stated below for the convenience of the reader yields the inequality

U(t) ≤ |h|ϕ(h) exp(Mt)/M

which implies that for |h| → 0, U(·)/|h| converges to zero uniformly on [0, T ].
The definition of r implies that r satifies approximatively the linearized node
conditions (4.4), (4.5), (4.6), (4.7) with d = 0 and with an error of order o(h),
which yields the assertion.

Lemma 1 (Gronwall) (see for example [27], p.13): Let C > 0, u0 ≥ 0 and
ε ≥ 0 be given. Suppose that u is a continuous real–valued function on the
interval [0, T ] satisfying the inequalities

0 ≤ u(t) ≤ u0 +
∫ t

0

Cu(s) + ε ds.

Then the following inequality holds: u(t) ≤ u0e
Ct + ε

(
eCt − 1

)
/C.

7 Evaluation of Derivatives using adjoint solu-
tions

We consider objective or constraint functions of the form

J(u) =
∑
ω∈V

∑
e∈E0(ω)

∫ T

0

fω,e(ve(xe(ω), t), t) dt

+
∑
e∈E

∫ T

0

∫ Le

0

fe(ve(x, t), x, t) dx dt.
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The functions fω,e and fe are assumed to be continuously differentiable, and
ve (the state of the system) is the solution of the initial boundary value problem
(3.1), (3.3), (3.4), (3.5), (3.6), (3.7) generated by the control function u.

Define the matrix function Me(ve) with the entries

Me
ij(v

e) = ∂xv
e
i ∂vj

dii(ve). (7.1)

Then we have for all i ∈ {1, ..., n}

[Me(ve)He]i =
n∑

j=1

∂xv
e
i ∂vjdii(ve)He

j = [
n∑

j=1

∂vjdii(ve)He
j ]∂xv

e
i = [ [∇vD

e(ve)He]ve
x ]i

hence Me(ve)He = [∇vD
e(ve)He]vx.

For e ∈ E, we consider the adjoint equation

µe
t + (µeDe)x − µe[(Se)′(ve)]− µe[Me(ve)] = ∇v(fe)T (7.2)

where µe is a row–vector with n components and the matrix (Se)′(ve) is as in
(4.2).

The end conditions for µe are

µe(x, T ) = 0, for all e ∈ E. (7.3)

In this section, we want to show that the directional derivative

DdJ(u) = lim
h→0

J(u+ hd)− J(u)
h

can be represented in a form where the solution of the original nonlinear forward
problem and the adjoint solution appear but not the solution of the linearized
problem.

Theorem 3 Let the assumptions of Theorem 2 hold. Let µ denote the solution
of the terminal value problem that satisfies for all e ∈ E the end condition (7.3)
and for all (x, t) ∈ (0, Le)×(0, T ) the adjoint equation (7.2) and the appropriate
node conditions given below by (7.4), (7.6), (7.7). Again we consider solutions
that satisfy the corresponding integral equations along the characteristic curves.

Then the directional derivative of J is given by the equation

DdJ(u) =
∑
ω∈V

∑
e∈E0(ω):xe(ω)=Le

∑
i∈Ie

−

∫ T

0

µe
i (Le, t) de

ii(Le, t) β(t, ω) de
i (t, ω) dt

−
∑
ω∈V

∑
e∈E0(ω):xe(ω)=0

∑
i∈Ie

+

∫ T

0

µe
i (0, t) d

e
ii(0, t) β(t, ω) de

i (t, ω) dt

+
∑
ω∈V

∑
e∈E0(ω):xe(ω)=Le

∑
i∈Ie

−

∫ T

0

∂vi
fω,e(ve(Le, t), t)β(t, ω) de

i (t, ω) dt

+
∑
ω∈V

∑
e∈E0(ω):xe(ω)=0

∑
i∈Ie

+

∫ T

0

∂vif
ω,e(ve(0, t), t)β(t, ω) de

i (t, ω) dt.
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Before we can prove the theorem, we have to define the appropriate node
conditions.

Let a node ω ∈ V and t ∈ [0, T ] be given. Define the column vectors

wω
1 (t) = (He

i (0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie
−; He

i (Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie
+)T ,

wω
2 (t) = (He

i (0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie
−; He

i (Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie
+;

He
i (0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie

+; He
i (Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie

−)T ,

dω(t) = (de
i (0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie

+; de
i (Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie

−)T .

Since we want to work with matrix vector multiplication in what follows, let the
order in which the components appear in the vectors be fixed.

Then we can write the node conditions (4.6), (4.7) in the form

wω
2 (t) =

(
I

Aω(t)

)
wω

1 (t) +
(

0
β(t, ω) dω(t)

)
where I denotes the identity matrix in the space containing wω

1 (t) and Aω(t) is
the appropriate matrix. Let mω

1 denote the length of wω
1 (t) and mω

2 denote the
length of dω(t). Then Aω(t) is a mω

2 ×mω
1 matrix.

Define the row vectors

µω
1 (t) = (µe

i (0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie
+; µe

i (Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie
−),

µω
2 (t) = (µe

i (0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie
−; µe

i (Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie
+;

µe
i (0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie

+; µe
i (Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie

−).

Then for the adjoint node conditions we make the ansatz

µω
2 (t) = µω

1 (t)(Bω(t), I) + (αω(t), 0) (7.4)

where I denotes the identity matrix in the mω
2 –dimensional space and Bω(t) is

a mω
2 ×mω

1 matrix that we have to determine as well as the row vector αω(t)
that has mω

1 components.
Define the diagonal matrices

∆ω
1 (t) = diag(−de

ii(0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie
−; de

ii(Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie
+),

∆ω
2 (t) = diag(−de

ii(0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie
+; de

ii(Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie
−),

∆ω(t) =
(

∆ω
1 (t) 0

0 ∆ω
2 (t)

)
.
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The matrix ∆ω
1 (t) is a mω

1 ×mω
1 matrix and the matrix ∆ω

2 (t) is a mω
2 ×mω

2

matrix. The following equation is valid:

n∑
i=1

∑
e ∈ E0(ω) :
xe(ω) = Le

µe
i (Le, t)de

ii(Le, t)He
i (Le, t)−

∑
e ∈ E0(ω) :
xe(ω) = 0

µe
i (0, t)d

e
ii(0, t)H

e
i (0, t)

(7.5)
= µω

2 (t) ∆ω(t)wω
2 (t)

= [µω
1 (t)(Bω(t), I)+(αω(t), 0)]

(
∆ω

1 (t) 0
0 ∆ω

2 (t)

) [(
I

Aω(t)

)
wω

1 (t) +
(

0
β(t, ω) dω(t)

)]
= µω

1 (t)Bω(t)∆ω
1 (t)wω

1 (t)+µω
1 (t) ∆ω

2 (t)Aω(t)wω
1 (t) +µω

1 (t) ∆ω
2 (t)β(t, ω) dω(t) +αω(t)∆ω

1 (t)wω
1 (t)

=: ψω(t) .

We define the matrix Bω(t) by the equation

Bω(t) = −∆ω
2 (t)Aω(t) [∆ω

1 (t)]−1
. (7.6)

Then
ψω(t) = µω

1 (t) ∆ω
2 (t)β(t, ω) dω(t) + αω(t) ∆ω

1 (t)wω
1 (t).

Define the column vectors

Dfω
1 (t) = (∂vi

fe,ω(0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie
−; ∂vi

fe,ω(Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie
+)T ,

Dfω
2 (t) = (∂vi

fe,ω(0, t), e ∈ E0(ω), xe(ω) = 0, i ∈ Ie
+; ∂vi

fe,ω(Le, t), e ∈ E0(ω), xe(ω) = Le, i ∈ Ie
−)T .

We define the row vector αω(t) by the equation

αω(t) =
[
−Dfω

1 (t)T −Dfω
2 (t)TAω(t)

]
[∆ω

1 (t)]−1
. (7.7)

Then we have

ψω(t) = µω
1 (t) ∆ω

2 (t)β(t, ω) dω(t) −Dfω
1 (t)T wω

1 (t) −Dfω
2 (t)T Aω(t)wω

1 (t)

= µω
1 (t) ∆ω

2 (t)β(t, ω) dω(t) −
(
Dfω

1 (t)
Dfω

2 (t)

)T (
wω

2 (t) −
(

0
β(t, ω) dω(t)

))
.

(7.8)
Proof of Theorem 3. Consider the directional derivative of J . By Theorem 1 a
continuous solution H of the linearized problem exists, and by Theorem 2 and
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integration by parts we obtain

DdJ(u) =
∑
ω∈V

∑
e∈E0(ω)

∫ T

0

n∑
i=1

∂vi
fω,e(ve(xe(ω), t), t)He

i (xe(ω), t) dt

+
∑
e∈E

∫ T

0

∫ Le

0

n∑
i=1

∂vi
fe(ve(x, t), x, t)He

i (x, t)

+ µe {He
t +De(ve)He

x + [∇vD
e(ve)He]ve

x + (Se)′(ve)He} |(x,t) dx dt

=
∑
ω∈V

∑
e∈E0(ω)

∫ T

0

n∑
i=1

∂vi
fω,e(ve(xe(ω), t), t)He

i (xe(ω), t) dt

+
∑
e∈E

∫ T

0

∫ Le

0

n∑
i=1

∂vif
e(ve(x, t), x, t)He

i (x, t)

− {µe
t + (µeDe(ve))x − µeMe(ve)− µe(Se)′(ve)}He|(x,t) dx dt

+
∫ T

0

µe(x, t)De(ve(x, t), x, t)He(x, t)|Le
x=0 dt

=
∑
ω∈V

∑
e∈E0(ω)

∫ T

0

n∑
i=1

∂vif
ω,e(ve(xe(ω), t), t)He

i (xe(ω), t) dt

+
∑

e ∈ E0(ω) :
xe(ω) = Le

∫ T

0

n∑
i=1

µe
i (Le, t)de

ii(Le, t)He
i (Le, t) dt

−
∑

e ∈ E0(ω) :
xe(ω) = 0

∫ T

0

n∑
i=1

µe
i (0, t)d

e
ii(0, t)H

e
i (0, t) dt.

Now we have represented DdJ(u) in a form that requires only the values of µ
and H at the nodes of the network. Up to now, for µ only the adjoint equation
(7.2) and the end condition (7.3) have been used. It remains to be shown that
in fact, due to the definition of the adjoint node conditions only the values of
the solution µ of the adjoint backwards problem are necessary and the values of
the linearized problem H are not needed. In fact the definition of ψω(t) (7.5)
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and equation (7.8) imply that

DdJ(u) =
∑
ω∈V

∑
e∈E0(ω)

∫ T

0

n∑
i=1

∂vif
ω,e(ve(xe(ω), t), t)He

i (xe(ω), t) dt

+
∑
ω∈V

∫ T

0

ψω(t) dt

=
∑
ω∈V

∫ T

0

(
Dfω

1 (t)
Dfω

2 (t)

)T

wω
2 (t) + µω

1 (t) ∆ω
2 (t)β(t, ω) dω(t) dt

−
∫ T

0

(
Dfω

1 (t)
Dfω

2 (t)

)T (
wω

2 (t)−
(

0
β(t, ω) dω(t)

))
dt

=
∫ T

0

Dfω
2 (t)T β(t, ω) dω(t) + µω

1 (t) ∆ω
2 (t)β(t, ω) dω(t) dt

and the assertion follows.

Remark 1 The numerical evaluation of gradients is also possible by automatic
differentiation. For a comparison between both approaches see [14].

8 Numerical Results

In this section, we present a numerical solution for the problem defined in Section
2 to illustrate that the representation of the directional derivatives given in
Theorem 3 is useful for numerical purposes.

Our optimal control problem is a problem of global optimization, where local
minima can appear. In general, for problems of this type it is only possible
to find local minima. For our problem, we have the special situation that it is
known that the optimal value is zero, which allows to verify wether the objective
value of a computed approximation is close to the optimal value. In general this
is not possible, so usually one must be content with an approximation of a local
minimum where the norm of the gradient is small.

In our computations, we use the steepest descent method (see [7]) that tries
to find a point where the gradient vanishes. In each step of the method, a line–
search (that is an approximate one–dimensional minimization) is performed
in the direction of steepest descent, which is the negative gradient. For the
evaluation of the gradient, we use the results from Theorem 3. We choose the
steplength in the line–search according to Armijo’s sufficient decrease condition
introduced in [1]. A detailed description of the Algorithm can be found in [17],
Chapter 3. In fact, we have implemented the following variation of Algorithm
3.1.1 in [17]:

• For k = 1, ..., kmax

(a) Compute J(u) and the gradient g of J with respect to u.
Test for termination.
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(b) Find the least integer m ≥ 0 such that the sufficient decrease condition

J(u− λg)− J(u) < −αλ‖g‖2

holds for λ = δkβ
m. Let γk = λ.

(c) u = u− γkg

In our implementation we have chosen α = 10−7, β = 1/2 and δk = 10−3 for
k ≤ 50, δk = 10−2 for k > 50.

The iteration was started with constant control functions (u1, u2, u3) that
generated the constant initial state where for all i ∈ {1, 2, 3}

Ui = 0.2, hi = 0.1.

The lengths are L1 = L2 = L3 = 400 and the widths b1 = b2 = 1 and b3 = 2.
We work with T = 5000.

For i ∈ {1, 2, 3} let ui(t) denote the control corresponding to channel i, that
is we have the boundary conditions:

u1(t) = R1
+(0, t),

u2(t) = R2
+(0, t),

u3(t) = R3
−(L, t).

Let u(k)
i denote the current iterate for ui. Then Step (c) of the algorithm has

the following form due to the representation of the directional derivatives given
in Theorem 3, for t ∈ [0, T ]:

u
(k+1)
1 (t) = u

(k)
1 (t) + γk µ

1
+(0, t) d1

11(0, t)

u
(k+1)
2 (t) = u

(k)
2 (t) + γk µ

2
+(0, t) d2

11(0, t)

u
(k+1)
3 (t) = u

(k)
3 (t)− γk µ

3
−(L, t) d3

22(L, t)

Here µ denotes the solution of the adjoint system defined in Theorem 3. The
steplength γk ≥ 0 has to be chosen sufficiently short such that a subcritical
state is generated.

The corresponding gradients are computed by an upwind/downwind finite
difference discretization of the representation given in Theorem 3 with a flux–
vector splitting (see [26]) in the sense that the space–derivatives in the forwards
equation corresponding to positive eigenvalues are replaced by an upwind dis-
cretization and the space–derivatives in the forwards equation corresponding to
negative eigenvalues are replaced by a downwind discretization. For the adjoint
backwards equation, in the equations for the components corresponding to posi-
tive eigenvalues a downwind discretization is used and for the other components
an upwind discretization. The discretization is described in detail in [11].

In our computations we have T1 = T/3 and α(t) = 0.4(t− T1)+/(T − T1).
Figure 2 shows the flow rates Qi = bi Ui hi corresponding to the computed

control functions. The dotted line is the flow rate in channel 1 and channel 2
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where due to symmetry the controls are identical and the top line is the flow
rate in channel 3. At the end of channel 3, where outflow occurs, the reduction
of the flow rate starts earlier than in the other nodes, where the water flows in.

The following figures illustrate the state of the system generated by the
computed control. Figure 3 shows snapshots of the velocity Ui and the water
height hi. On the left hand side are channel 1 and channel 2 where the water
flows into the system. Due to the symmetry of the system the states in these
channels are identical. On the right hand side of the figure is channel 3, where
outflow from the system occurs. At t = 0, the top line gives the positive initial
velocity. The lower line gives the initial water height, which is plotted at the
z–level zero in order to make it possible to include it in the same figure. It can
be seen that the control steers the system to a state where the water has zero
velocity. The water height for the final state is greater than for the initial state,
namely at time T we have h = 0.1069. Since during the control process, the
water height rises, in the figure at time T the water height is given by the upper
line and the lower line is the velocity that has been steered to zero.

9 Analytical solution of the example problem

We are looking for control functions that generate a state with Ui(x, t) = 0 for
t ≥ T1, x ∈ [0, L], i ∈ {1, 2, 3}. The objective function does not determine
the water height of the terminal state, so we can choose h0 = 0.1 as the water
height for our final constant state. Since our system is symmetric we can find an
optimal control with u1 = u2. In fact, if we assume that u1(t) = u2(t) for all t,
we can consider our system as a single channel of length 2L and width b3, which
allows to use the results from [12]. Now we present the control constructed in
[12].

Let

r0+ = 0.2 + 2
√
gh0, r0− = 0.2− 2

√
gh0,

r1+ = 2
√
gh0, r1− = −2

√
gh0.

Let T2 ∈ (0, T1). We choose continuously differentiable decreasing control
funtions u1 = u2 and u3 with u1(0) = r0+ and u1(t) = r1+ if t ≥ T2, and
u3(0) = r0− and u3(t) = r1− if t ≥ T2.

If T2 is sufficiently large, we can choose control functions whose derivatives
are sufficiently close to zero such that a continuously differentiable state is gen-
erated. If T2 is sufficiently small, we have for t ≥ T1

Ui(x, t) = 0, hi(x, t) = 0.1, x ∈ [0, L], i ∈ {1, 2, 3}. (9.1)

For the corresponding flow rates at the inflow of channel i (i ∈ {1, 2} we
obtain

Qi(0, t) = Ui(0, t)bihi(0, t) =
(
ui(t) +Ri

−(0, t)
2

)
bi
g

(
ui(t)−Ri

−(0, t)
4

)2

,
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Figure 2: The computed flow rates Qi: After finite time, the flow rates are
steered to zero (that is the ends of the system are closed) and the system has
reached a stationary state with velocity zero.
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so to evaluate Qi(0, t), we have to solve our state equation.
If (9.1) holds, the solution of the adjoint problem satisfies the equations

0 = µ1
+(0, t) = µ2

+(0, t) = µ3
−(L, t).

Theorem 3 implies that for all feasible directions d we have

DdJ(u) =
∫ T

0

−µ1
+(0, t)λ1

+(0, t)d1
+(t)−µ2

+(0, t)λ2
+(0, t)d2

+(t)+µ3
−(L, t)λ3

−(L, t)d3
−(t) dt.

Hence for our optimal control u, for all feasible directions d we have

DdJ(u) = 0.

The author thanks an anonymous referee for valuable suggestions.
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