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INTRODUCTION

In most of the existing inventory models, it is assumed that the inventory parameters,
objective goals and constraint goals are deterministic and fixed. But, if we think of their
practical meaning, they are uncertain, either random or imprecise. When some or all
parameters of an optimization problem are described by random variables, the problem is
called stochastic or probabilistic programming problem.

In a stochastic programming problem, the uncertainties in the parameters are
represented by probability distributions. This distribution is estimated on the basis of the
available observed random data. Here, the parameters are treated as random variables. For
solution, the stochastic problem is first reduced to a crisp one and then solved by an
optimization method.

As classified by Mohon (2000), “ There are two main approaches for solving single-
objective stochastic programming problem : the ‘wait and see’  (distribution problem) and
‘here and now’ approaches. The second approach is very efficient in solving real life
application problems. The methods based on this approach may be conveniently classified by
distinguishing the treatment of the stochastic constraints and that of the stochastic objective
(Roubers and Teghem (1988)). For treatment of the stochastic constraints, there are two
approaches : (i) the chance-constrained programming approach in which a minimum
probability level for satisfying each of the constraints is specified and (ii) the stochastic
programming with recourse which consists in penalizing the violation of the constraints. For
treatment of the stochastic objective, there are several approaches such as (i) E-model (which
optimizes the expected value of the stochastic objective), (ii) V-model (in which the deviation
of the stochastic objective is to be minimized), (iii) P-model (which maximizes the
probability that the value of the stochastic objective is better than a certain aspiration level
specified by the DM) and (iv) E-V-model (which optimizes both expected value and the
deviation of the stochastic objective) etc. (cf. Stancu-Minsian (1984)).

In 1965, the first publication in fuzzy set theory by Zadeh (1965) showed the
intention to accommodate uncertainty in the non-stochastic sense rather than the presence of
random variables. Bellman and Zadeh (1970) first introduced fuzzy set theory in decision-
making processes. Later, Tanaka, et-al. (1974) considered the objectives as fuzzy goals over
the α-cuts of a fuzzy constraint set and Zimmermann (1976) showed that the classical
algorithms could be used to solve a fuzzy linear programming problem and fuzzy additive
goal programming technique.

Fuzzy mathematical programming has been applied to several fields like project
network, reliability optimization, transportation, media selection for advertising, air pollution
regulation etc. problems formulated in a fuzzy environments have been solved by fuzzy
programming method. Detail literature on fuzzy linear and non-linear programming with
application is available in two well-known books of Lie and Hwang (1992, 1994). In
inventory problem, fuzzy set theory has not been much used. Park (1987) examined the EOQ
formula in the fuzzy set theoretic perspective associating the fuzziness with cost data. Roy
and Maiti (1995, 1998) solved the classical EOQ models in fuzzy environment with fuzzy
objective goal and constraint by fuzzy non-linear programming and fuzzy additive goal
programming techniques.
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In this paper, EOQ models are developed in random and fuzzy-random environments
considering demand to be dependent on unit cost which is a decision variable. Here, for both
models, unit-purchasing cost, inventory costs and the investment limit are random. In addition
to these, total average cost goal and constraint goal for storage area is fuzzy in nature for the
probabilistic model in fuzzy environment. The fuzzy parameters have been represented by
linear membership functions. The random variables have been assume to be independent and
normally distributed. The stochastic inventory model has been formulated as a stochastic non-
linear programming problem and then reduced to the equivalent crisp E-model, V-model and
combined E-V models using chance constraint programming (CCP) technique. Similarly,
following CCP, the fuzzy-stochastic inventory problem is first converted to an equivalent
fuzzy problem and then to equivalent crisp problem using membership functions. Fuzzy non-
linear programming (FNLP) technique solves all these crisp problems. The models are
illustrated with some numerical values for inventory parameters and the results of different
models are compared.

2. Model and Assumptions

We use the following notations in proposed model:
n = number of items,
W = Floor or shelf-space available,
B = total investment cost for replenishment.

For i-th item (i = 1, 2, ……, n.),

Di = Di(pi) demand rate (function of cost price),
Qi = lot size ( a decision variable),
Si  = set-up cost per cycle,
Hi = inventory holding cost per unit item,
pi = price per unit item (a decision variable),
TC(p, Q) = average annual total cost.

          ( where p, Q are the vectors of n decision variables pi  (i = 1, 2 …, n) and
          Qi ( i = 1, 2, ….n) respectively.)

The basic assumptions about the model are:

(i)  replenishment is instantaneous,
(ii)   no back-order is allowed,
(iii)  lead time is zero,
(iv)  demand Di(pi) is related to the unit price as:
   Di = Aipi

- β
i
  where A i(>0) and βi (0 < βi <1) are constant and real numbers selected

to provide the best fit of the estimated price function. While Ai > 0 is an obvious
condition since both Di and pi must be non-negative. The reason for
0 < βi < 1 is given in appendix.

Our objective is to minimize the average total annual cost (i.e., Sum of the
purchasing, set up and inventory holding costs) subject to limitations on capital
investment and storage area. That is
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2. 1 Probabilistic model:

When  pi’s are probabilistic decision variables, set up cost, investment cost,
holding cost are random parameters, the said crisp model (1) is transformed to a
probabilistic model as

 MinTC( p̂ , Q) = 











++∑

= 2

ˆ
)

ˆ
ˆ(

1 ˆ

iQiH

iQ
iS

ip
n

i iip

iA

β                                          (2)

              Subject to

W
n

i iQiw ≤∑
=1

,ˆ
1

ˆ B
n

i iQip ≤∑
=

                        $pi , Qi > 0;  (i = 1, 2, …..n).

(here cap ‘∧’ denotes the randomization of the parameters.)

2. 2  Probabilistic model in fuzzy environment

When  pi’s are probabilistic decision variables,  investment cost, holding
costs are random parameters, but cost goal and constraint goals on storage area
become fuzzy, the said crisp model (1) is transformed to a probabilistic model in
fuzzy environment as
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(here weavy bar ‘∼’ denotes the fuzzification of the parameters.)
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3. Mathematical analysis

Stochastic non-linear programming (SNLP)

We consider a stochastic non-linear programming problem with resources and
objectives as:

Min g0(X)                                                                            

subject to

jbXjg ≤′ )( ,     (j = 1, 2, ……,m.)

           and   X ≥ 0.

    i.e.   Min g0(X)                                                                               (4)

subject to
                   0)( ≤Xjg ,       j = 1, 2, ……,m.

          and   X ≥ 0,
    where gj(X) = g′

j(X) - bj  and  X ≥ 0.

Here X is the vector of N random variables y1, y2, …., yN and it includes the decision
variables x1, x2, ….., xn. The problem stated as equation (4) can be converted into an
equivalent deterministic non-linear programming problem by applying the chance constraint
programming technique as follows:

3. i) Objective function

The objective function g0(X) can be expanded about the mean values of random

variables yi, yi as
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approximated by the first two terms of equation (5)
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If yi (i = 1, 2, …..N.) follow normal distribution, then ψ(X), which is linear function
of X, also follows the normal distribution. The mean and variance of ψ(X) are given by
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                     since all yi’s are independent.
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For the purpose of optimization in stochastic programming, there are two
simultaneous objectives - one is minimization of mean value and other minimization of the
standard deviation.

So, here the stochastic objective of (4) is equivalent to deterministic objective(s)
which is(are),

                                            Min ψ ,     (E-Model)                                                                 (9a)
                                              or

                                            Min σψ.     (V-model)                                                                 (9b)
                                               or

                                           
Min

Min

ψ
σψ






     (E-V model)                                                         (9c)

3. ii) Constraints

As some parameters of the constraints are random in nature, the constraints will be
probabilistic and one would like to have the probability of realising gj ≤ 0 must be greater
than or equal to specified probability, say rj (j = 1, 2, ….., m ). So the constraints of (4) can be
expressed as

P(gj ≤ 0) ≥ rj,       (j = 1, 2, ….., m).                                                                           (10)

i.e.   jrjdgjg
jgf ≥∫

∞−

0
)( ,   (j = 1, 2, ….., m).                                                                      (11)

where fg j
(gj) is the probability density function of the random variable gj (a function of

several random variables is also a random variable) whose range is assumed to be -∞ to ∞.
The constraint function gj(X) can be expanded around the vector of mean values of the
random variables, X  as
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From this equation, the mean value, g j , and the standard deviation,σg j
of gj can be obtained

as:
g j  = )Y(jg ,                                                                                           (13)
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where φj(rj) is the value of the standard normal variate corresponding to the
probability rj.
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Hence, the stochastic programming problem (4) is reduced to single or multi-
objective deterministic non-linear programming problems as

           Min ψ (X)                                                                                                     (20a)

Subject to the ‘m’ constraints given by equations in (19)
          and    X ≥ 0.

                    Min σψ  (X)                                                                                                                                            (20b)

                   Subject to the  ‘m’ constraints given by equations in (19)
                    and    X ≥ 0.
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  Min ψ ,                                                                                               (20c)
             Min σψ

               

Subject to the ‘m’ constraints given by equations in (19)
                    and    X ≥ 0.

It is to be noted that (20a), (20b) and (20c) are referred to as E-model, V-model and
combined E-V model respectively.

4. Fuzzy programming technique to solve the SNLP model (2)

To solve the above multi-objective programming problem (20), the first step is to
assign, for each objective, two values Uk and Lk as upper and lower bounds for the k-th
objective, where Lk = aspired level of achievement for the k-th objective, Uk = higher
acceptable level of achievement for the k-th objective and dk = Uk - Lk = the degradation
allowance for k-th objective (k = 1, 2, ……n.). Now, the stochastic programming problem (2)
has completely defined in crisp environment. The steps of the fuzzy programming technique
are as follows:

Step-1:
Solve the multi-objective programming problem as a single objective problem using,

only one objective at a time and ignoring the other.

Step-2:
From the results of step-1, determine the corresponding values for every objective at

each solution derived.

Step-3:
From step-2, we may find for each objective values Lk and Uk corresponding to the

set of solutions.

For the multi-objective problem (20), a membership function µk X( ) , which may be

linear or non-linear, corresponding to the k-th objective is defined as a linear membership
function, for simplicity as,

          

kUkZif0

kUkZkLif
kLkU
kLkZ

1

kLkZif1)X(k

>=

<<
−

−
−=

<=µ

                                                           (21)

    Here,   Zk =  ψ( )X    for k = 1,
                  = σψ(X)   for k = 2.
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According to Zimmerman (1978), the equivalent crisp non-linear programming
problem for multi-objective programming problem (20c) as:

Max α                                                                                                                        (22)
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and  X ≥ 0, α ∈ [0, 1].

5. Solution for proposed model

5. 1.  Probabilistic model

Using the above algorithm the probabilistic model (2) is transformed to
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5. 2. Fuzzy-probabilistic model

In fuzzy set theory, the fuzzy objectives and fuzzy constraints are defined by their
membership functions, which may linear and/or non-linear. Here, we assume µETC(p, Q),
µVTC(p, Q)  and µW(p, Q) to be the linear membership functions for two objectives and one
constraints respectively and these are
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Here, the expected goal for total average cost is Co with tolerance PETC, the standard
deviation goal for that is D0 with tolerance PVTC and space constraint goal is W with tolerance
PW.

Now, using fuzzy non-linear programming technique (Zimmermann (1976)), the
solution of fuzzy-stochastic inventory model (3) is transformed to
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          Max α                                                                                                                         (27)
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Here, ETC( p Q, )  and VTC( p Q, )  are known as in (23).

The above non-linear programming problems (23) and (27) are solved by a computer
program based on reduced gradient method.

6. Numerical Example

To illustrate the model (2), we assume n = 2, A1 = 100, A2 = 120, $S1  = ($100, $1),

$S2 = ($120, $1.2), $H1 = ($1, $0.01), $H2  = ($1.5, $0.015), β1 = 0.85, β2 = 0.8, w1 = 2 sq. ft.,

w2 = 3 sq. ft., W = 150 sq. ft., r1 = 0.95, $B  = ($1200, $12) and )ip01.,ip(ip̂ =  for i = 1, 2.

To illustrate the model (3) , we assume the input data of model (2), in addition to
PW = 50, C0 = $475, PETC = $75, D0 = $1.40, PVTC = $0.6.

Using this data, pay-off matrix for (2) is

              ETC     VTC







580.0$34.491$

647.0$03.481$

Q

Q
2
I

1
I

The optimal results of stochastic and fuzzy-stochastic models are presented in table-1.
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                                                           Table - 1.

Model αα ETC VTC p1 p2 Q1 Q2

I 0.90 482.05 0.59 21.44 18.72 26.75 32.16
II 0.93 480.10 0.65 21.00 14.50 27.01 33.12

Here, optimal results of total average cost are less in the case of fuzzy stochastic model than
that obtained for the stochastic model.

7. Conclusion

In this paper, we have formulated inventory problems in both random and random-
fuzzy environments. Till now, stochastic inventory problems have been normally formulated
using a special probability distribution for an inventory parameter and solved reducing them
to equivalent crisp problems by integrating the distribution function. Here, we have
formulated and solved the stochastic inventory problem completely in a different way. We
have taken the unit cost, which is a decision parameter involved in objective and one
constraint, inventory costs and limit imposed on investment constraint to be random.
Assuming these to be normally distributed, the probabilistic inventory model has been
reduced to equivalent crisp E- and V-models using chance constraint programming technique.
Till now, none has formulated or attacked the inventory problems in the above manner.

Moreover, alongwith the above randomness, impreciseness has been introduced in the
objective goal and constraint goal on storage area for an inventory model. Again, till now,
very few inventory models have been formulated in such a mixed environment - fuzzy-
random atmosphere.

Though simple EOQ models have been considered here, the technique illustrated in
this paper can easily be applied to other inventory problems with deterioration, shortages,
discount, fixed time horizon, etc. This technique is an appropriate tool to tackle the real-life
inventory problems in realistic environments.
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Appendix

For single item
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(1 - α)w01 - αw02 = 0,

                               - w02 + w03 = 0,
                    and    0 ≤ w0i ≤ 1;     for i = 1, 2, 3.

 Therefor, we have   
w01
α

 = 
w02
1− α

 = 
w03
1− α

 = 
1

2 − α
Since 0 < w01 < 1

        i.e. 0 < 
α

α2 −
 < 1 , which gives  0 < α< 1.


