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Abstract 
This paper proposes to solve the Area Problem with generalization and to find a 
good structure of chromosome. The problem with a particular Large Object was 
presented in [IL04]. We use the 2 biggest square heuristics to restrict the area of 
possibilities and to find the length of chromosome. 
We have a single square Large Object and square Little Objects, where each size 
may appear only once. The problem is to cover with these squares the Large 
Object, minimizing the waste. 

 
This paper can be categorized cf. [WHS04] as Single Knapsack Problem. (SKP) 
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1. Introduction 

 
Rectangle layout is an important problem with applications in the glass cutting and paper 

cutting industries. There are many variants of the problem but the essential task is to place a 
given set of rectangle, or pieces, in a given larger rectangular area, so that the wasted space in 
the resulting layout is minimized. There are some popular placement algorithms, such as the 
BL strategy [J96], IBL [LT99], MERA [ABH04]. In this paper we propose a problem which 
is a particular case of the rectangular placement problem. 
 

1.1 Notation and terminology 
 

We have a single square Large Object with size *L N∈  and square Little Objects, 
with sizes m, where each size may appear only once, [1, 1]m L∈ − . The problem is to 
cover with these squares the Large Object, minimizing the waste. 
 
li  - the size of side of  square i 
L – the stock size 
S=LxL – the whole area of the Large Object  
si – The area of square i – in our case li

2=i2 
 
We have two problems to solve in this kind of problems: 

1. Selection of pieces – The Area Problem 
2. Putting on them on the pattern in a not overlapping form – The Covering Problem 
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This paper proposed to discuss only the first problem. The Covering Problem will be 
discussed in next papers. 
The mathematical model for the problem 1 is: 
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where { }0,1ix ∈  - xi=1 when we use the ith square otherwise 0 

We assume, that we try to found a non-trivial solution, better than that solution in that we put 
the (L-1) length sided square and the 1 square on board: 
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and in other terms the waste proportion 2
pw 2*( 1) /L L≤ − , but the exact solution is also a 

perspective. 
 
The main thing in this kind of problems are the following: 

A. We have to restrict the area of the possible solutions. 
B. We have to find the complexity of the problem.  

 
2. The Area Problem – hypothetical  aspects 
 
We use the 64x64 Large Object in our model, and we try to generalize this in parallel. 
We have to calculate the maximum number of squares that we can put on the Square Large 
Object.  
 
Lemma 1. Maximum number of different squares m possible to put on the Stock satisfies the 
following inequalities: 
 

2 2 2 2 2 2 2 21 2 ... 1 2 ... ( 1)m L m m+ + + ≤ ≤ + + + + +  (1.1) 
2( 1)(2 1) / 6 ( 1)( 2)(2 3) / 6m m m L m m m+ + ≤ ≤ + + + (1.2) 

This Lemma is obvious, no need to demonstrate. 
In the next graphics we can see the maximum number of squares that we can put on the given 
large square. 

 
Fig. 1. Maximum number of squares 
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Considering, that only those squares can be situated side by side that satisfy the relation: 
l1+l2<=L (where l1 and l2 are the sides of the squares), and calculating with these squares we 
have the next relations referring to their area (also 64x64): 
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With these calculations we have the following figure, which gave us the maximum size of the 
biggest square when the Large Object has 64x64 size. 
 

 

 
Fig.2. Possible covering area for 64x64 

 
Lemma 2. The minimum size L of the Large Object to have a possible solution to cover the 
whole area is 19. 
 
Proof. 

Let be k the size of the greatest square we put on the Large Object. We can put after 
we put this on, only squares smaller or equal with L-k. In case we put them all, we can write 
this in the following way: 

2 2 2

1

L k

i

k i L
−

=

+ ≥� (2.1)  

From this inequality we get: 

( )(( 1)(2 2 1) 6( )) 0L k L k L k L k− − + − + − + ≥ , where L>k  (2.2) 
( 1)(2 2 1) 6( ) 0L k L k L k− + − + − + ≥     (2.3) 

Critical points of this Lemma are in case when (2.1) extends the form (1.1), when k�L/2 
a) In case, that L=2n+1 

The critical point is, in case when k=(L+1)/2 
Introduced this in the inequality we have: 
L2-17L-6�0  
That means: Lmin=19 

b) In case, that L=2n 
The critical point is, in case when k=L/2+1 
If we introduce this is the inequality, we have: 
L2-19L-12�0  
That means: Lmin=20 

The minimum of these two minims is 19 and we demonstrated the lemma. 
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In the next figure we can see the relation between the square Large Object and the biggest 
square. 

 
Fig.3. Relation Large Object-Biggest Square 

 
We can use the (2.3) to have a relation between L the size of Square Large Object and k, size 
of the biggest possible square that we are allowed to put on, to satisfy the area covering 
option. 
If L=19 than k=10,  if L=100.000 than k=99.227, k/L�1, when L → ∞   (2.4) 
 
3. Genetic algorithm 
 

3.1 Chromosome structure 
 
The proposed length of chromosome is the size of the biggest square. 
 

46 45 ... 33 32 31 ... 18 17 ... 1 
1 0 0 0 0  0 X X X X 

 
46 45 ..... 33 32 31 ... 18 17 ... 1 
0 0 0 1 0 X X X X X X 

 
We construct a haploid chromosome, we have a chromosome with length k bit, in this case 46 
bit, where 1 represents the chosed square, and 0 represents the avoided square from the set.  
 

k k-1 ..... k-h+1 k-h k-h-1 ...  3 2 1 
X X X X X X X X X X X 

 
Like the 2 biggest square heuristic shows us, from the 46-th position of genes in chromosome 
(in general case k) to 32 (L/2 or (L+1)/2)-th chromosome we have only one of 1 allele, the 
others are 0. We can use this, when we generate the genes in a chromosome, to avoid the 
known bad solutions. We can proceed in the following way: 

1. We generate the upper part of chromosome randomly (from k to L/2) to have one 
allele of 1 or all 0. 

2. In case, we generate the upper part with one allele of 1 in position n, we complete with 
0–s until position m = L-k-n+1 

3. We generate the remaining part of chromosome randomly. 
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Point 2. has an inconvenient: the diversity of chromosomes is restricted also. Maybe is better 
to generate the chromosome with Point 1. and Point 3. 
 

3.2 Fitness function. Genetic operators 
 
There is no solution, when S > LxL (4096), because some parts of some squares are out of the 
square Large Object. When we perform operation on chromosomes we don’t drop those 
solutions, because some part of the chromosome can be good, and we can use them when we 
make crossover operations, but we give them a fewer fitness, a fewer chance to be a chose 
parent. 
The fitness function of the chromosomes we write like this: 
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Fig. 4. Fitness function 

 
We choose the quadratic function, to control the convergence of the population. 

We calculate the average of the fitness function ff=�
=

k

i
if

1

/k, where k is the number of 

individuals in a population. In the case of the roulette wheel, fitness based selection, the 
individuals of the populations are chose to be parents according to this proportion: f/ff. Like 
De Jong proposed[AL02], every time, when we choose an individual to be a parent for the 
next population we decrease this probabilistic proportion with one, to avoid the early 
convergence of the population. If the proportion is 1, we don’t decrease this. 
 
We choose two-point crossover operator, and accept both of the children in the next 
generation. We can perform the operator over 46 bits (k bits) or over the 32 (L/2) last 
significant bit, to avoid the 2 bit of 1 in the significant part of the chromosome. This 
heuristically approach we discussed before for other reason. In general case 46�k and 
32�L/2 (or (L+1)/2) 



6 

Complexity of the problem 
With formula 2.5, we could establish the complexity of the first problem, an upper bound, and 
we consider again, that the sum of length of sides of 2 adjacent squares l1+l2<=L. It means 
that from k to L/2 (32 now) position in the chromosome, we have only one of 1 bit. (46-
32=14, which means, that we have only one of 1 bit on 15 bits.) 

18 19 31 32 18 14 18 152 2 ... 2 2 2 (1 2 ... 2 ) 2 (2 1)+ + + + = + + + = − , if L = 64 
19 20 31 32 19 13 19 142 2 ... 2 2 2 (1 2 ... 2 ) 2 (2 1)+ + + + = + + + = − , if L = 65 

 
Lemma 3. The Area Problem in this case is NP complex. 
 
Proof. 
One upper bound for this general problem we can calculate in the next way: 
 

( ) ( 1) ( / 2)2 2 ... 2L K L K L K L− − + − ++ + + ,    if L = 2n  (3.1) 
( 1) ( 2) ( ( 1) / 2)2 2 ... 2L K L K L K L− + − + − + −+ + + , if L = 2n+1 (3.2) 

in other terms, 
( ) ( / 2) 12 (2 1)L K L− + − , if L = 2n    (3.3) 

( 1) ( 1) / 2 12 (2 1)L K L− + − + − , if L = 2n+1   (3.4) 

Because  ( ) ( / 2) 12 (2 1)L K L− + −  > ( 1) ( 1) / 2 12 (2 1)L K L− + − + − , we can consider the (3.3) an upper bound 
of the problem 
We can approximate (3.3) by / 2 1 3 / 2 12 2L K L L K− + + − +=    
If L → ∞  and k = L we have in worst case / 2 1( ) 2LO L += , so we can say, that in this 
approximation is NP complex problem. 
In practice we found few entries upper than the 42 unit length square (1 piece of 44, 2 of 43). 
 

3.3 Practical result for Large Object 64x64 
 

Like we show in the previous paper [IL04], we have over 300,000 results for the Area 
Problem. We chose chromosomes that satisfy the l1+l2=64 where l1 and l2 are the sizes of the 
two biggest square, and the “almost” Divide et Impera (33+31) and (34+30). The best result 
until now is when 35 unit square is not covered. 
 

 
Fig. 5. Square of 64x64 
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Conclusions 
 
We found the length of chromosome for the Area Problem in general case. 
We found the deep of a general graph tree. (The maximum number of small squares.) 
We found 19 the minimum size of the Square Large Object for this problem. 
We found, that the Area Problem is an NP complex problem. 
We found the constraints between the Alleles of a chromosome, that describes the area of 
solutions. 
We found better solution, than in the previous paper , where was 107 uncovered unit [IL04]. 
Our conjecture is that combining genetic algorithm with the „Divide et Impera” method 
gave good results, but not the global optimum in this problem. 
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