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Abstract: The predictive maintenance based on dynamic response information obtained 
by sensors is important to identify the possibility of equipment damage. Optimal number 
and placement of sensors is an essential problem in structural health monitoring. The 
paper refers to this problem by formulation of multi-criteria model. The formulated 
model takes into account all sensors locations and corresponding to a time-varying 
distributed load mode shapes. Based on this model, a multi-criteria optimization task is 
formulated where one of the criteria maximizes information supplied from sensors and 
the other minimizes sensors number. The lexicographic method is used to solve multi-
criteria optimization task. The sensors’ number and locations are defined taking into 
account some given acceptable tolerance about information loss compared with the ideal 
case when all sensors are present. The results of numerical validation show the possibility 
for practical application of this approach in predictive maintenance structural health 
monitoring.  

Keywords: combinatorial optimization model, Lexicographic method, multi-criteria 

problem, optimal sensors’ number and locations, structural health monitoring. 
 
 
1. INTRODUCTION 

Predictive maintenance helps to determine the condition of in-service equipment in 
order to predict when proper maintenance should be performed. Implementation of 
condition monitoring and fault detection system entail initial investment but these 
costs are being offset by the benefits of continuous production, minimum downtimes 
and early planning to replace the defected parts [Hameed, et al., 2009)]. Sensors 
placement for structural health monitoring plays a key role in structural control and 
damage detection. It has increased interest in development of methods for 
determination of number and locations of sensors for characterizing the dynamic 
behaviour of a given structure. Optimization of sensors placement has an essential 
effect on the structural health monitoring system due to the need to collect sufficient 
data and associated costs. The ultimate goal is to use a minimum number of sensors, 
placed at the right locations, so that both data loss can be minimal and presence of 
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damage of the structure system can be identified effectively. The system of sensors is 
a fundamental for mechanical analyses of the structure and condition evaluation. 
Structural health monitoring relies on the data acquired from the sensors. The 
number of sensors installed in a structure could be intensely increased but it is 
constrained by the cost associated with data acquisition systems as well as the initial 
installation of the sensors. This means that how to deploy an optimal number of 
sensors is of crucial importance in the design and construction of an effective 
structural health monitoring [Li et al., 2011]. 

The problem of determining the optimum number of sensors for a particular 
application, together with their best possible locations, received considerable 
attention recently. For the optimal sensor placement problem it is important not only 
to find the best positions of sensors for a specific task but also to estimate the 
required number of sensors for the best sensor performance. An efficient method for 
optimal sensor placements can dramatically reduce the computational efforts for 
optimization [Li et al., 2004]. A number of different optimization techniques are 
developed over the last decades including heuristic approaches, classical and 
combinatorial optimization. Many early optimization methods are based on rough 
and ready ideas without much use of theoretical background. The state of the 
technology for structure fault detection is reviewed in [Doebling et all., 1996; Farrar 
& Worden, 2007]. Integrating the advances in various disciplines for optimum sensor 
layout design under uncertainty can be defined [Guratzsch & Mahadevan, 2006]. By 
improved genetic algorithm it is possible to find the optimal placement of sensors 
[Liu et al, 2008]. Various methods share a common basis on sensor placement in the 
field of structural dynamics and especially concerned with fault detection [Kaveh, et 
al., 2014; Wang et al., 2012; Yi et al., 2011; Worden & Burrows, 2001]. Stepwise 
techniques can add or remove one or more sensor at the time in order to find the best 
combination [Staszewski & Worden, 2001]. Optimal positions deciding and optimal 
number of sensors defining are two separate problems. The knowledge and 
experience of engineers are combined with signal processing for the proper solving 
of optimal sensors locations problem. The problem of optimal number of sensors 
relies very much on advanced signal processing techniques [Staszewski & Worden, 
2001].  

In the paper a multi-criteria combinatorial approach that optimizes sensors number 
and locations is proposed. The sensors are defined in such way that loss of the 
required information is minimal in some specified limits. For the goal, multi-criteria 
optimization problem is formulated to define minimal sensors number and maximal 
data acquisition toward numerous given dynamic response curves. The proposed 
optimal sensor placement approach is based on dropping out the sensors with 
smallest information loss to provide the real functions of structural dynamic 
response to be the closest ones to the functions of structural dynamic response curve 
with all sensors present. 
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2. OPTIMAL SENSORS LOCATION PROBLEM  

The predictive maintenance monitoring is essential for any successful system 
application. Maintenance monitoring is based on dynamic response information 
(mode shape curves) to identify the possibility of system faults. In structural 
vibration measurements, the locations of sensors are essential for determination of 
structure response to dynamic loads. The structure could be simplified as a system 
with more degrees-of-freedom or as a lumped mass system. The goal is to have more 
nodal points for detailed data of structural responses and a part of these nodes could 
be used as sensors locations. In general the more sensors are used; the more detailed 
information of the structure can be obtained. However, the more number of sensors 
are used, the more instruments and workloads are required and in practice a fixed 
number of sensors should be located on the structure positions that best characterize 
the structure response to dynamic loading.  

As a result of dynamic analysis the natural frequencies and mode shapes of the 
structure with dumping neglected can be defined. The natural frequencies of the 
structure are the frequencies at which structure vibrates if it is subjected to a 
disturbance. The deformed shape of structure at a specific frequency of vibration is 
known as mode shape. 

Let us consider a vibrating cantilever beam that is subject to a time-varying 
distributed load. By the method of dynamic equilibrium are determined the 
corresponding mode shapes shown on Fig. 1 [Tejada, 2009]. 

 
Fig. 1.  Cantilever beam vibration mode shape functions 

If more modal points for data structural responses are used as sensors locations, the 
more detailed information of the structure status can be obtained. In practice, some 
fixed number of sensors is to be located on the optimal positions. The optimal 
location of sensors is determined by past experience of knowledge of structure or by 
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finite elements analysis. In the paper, for the sake of clarity we assume 10 sensors 
evenly distributed on the cantilever beam (Fig. 1).  

The problem of sensors optimization can be described as: which sensors to be 
dropped out without essential loss of information accuracy taking into account all 
vibration mode shape functions simultaneously. For example, if sensor #7 is 
dropped out its data will be replaced by linear interpolation of the two neighbouring 
point’s data (Fig. 2).  
 

a)  

 
 
 
 
 
 

→ 
 
 
 
 
 
 

b) 

 

Fig. 2. Linear interpolation when sensor #7 is dropped out (a) and  
corresponding data deviation for 3-th mode shape (b)  

As it can be seen from Fig. 2, the data deviation for omitted sensor #7 is negligibly 
small for mode shapes 1, 2, and 4, but is considerable for mode shapes 3 and 5. 
Taking into account all mode shapes simultaneously and all sensors as candidates to 

be dropped out while keeping deviation as *
jjj φφ −=∆  in all modes and for all 10 

locations as minimum as possible, the sensors optimization problem turn out to be a 
complex combinatorial optimization problem.  Having in mind the requirement of 
sensors’ number minimization and sensors’ data maximization, this problem can be 
considered as multi-criteria problem. 

 
3. MULTI-CRITERIA MODEL FOR OPTIMAL NUMBER AND PLACEMENT 

OF SENSORS    

The mode shape matrix of a structure for p modes can be represented as [Li et al., 
2004]: 
 ],....,,,[ 321 pφφφφ=Φ  (1) 

Let assume that the structure has n degrees of freedom or nodes where the sensors 
can be located. The goal is to define optimal number of sensors and their locations 
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considering all p mode shapes of a structure simultaneously. To define optimal 
number of sensors some of them are to be dropped without considerable loss of 
information. If j-th sensor for i-th mode shape is missing, its data can be calculated as 

linear interpolation of data of its neighbours as  
2

)( 11*
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+− +

=
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φ . The deviation of 

data if j-th sensor for i-th mode shape is missing i
j∆  is calculated as *i

j
i
j

i
j φφ −=∆ . 

The choice of sensors to be present or to be dropped out is done by assigning of 
binary integer variables xj to each of sensors.  

Using all of these assumptions a multi-criteria problem can be formulated as follows: 
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where xj are binary integer variables assigned to sensors; *
, jiφ  is linear interpolation 

value if sensor j is missing; yj are binary integer variables assigned to *
, jiφ ; p is the 

number of mode shapes; n is the number of sensors. The relation (5) represents the 
fact that if sensor j is present there is no interpolation of data and vice versa.   

There exist different approaches for solving of multi-criteria problems. Multi-criteria 
decision making approach is characterized by the use of mathematical programming 
techniques and some decision making method. In most multi-criteria decision 
making methods, the decision maker plays a major role in providing information for 
his preferences that influence on the final solution [Miettinen, 2008]. In general, the 
multi-criteria problems can be handled in different ways depending on when the 
decision-maker expresses his preference on the different objectives: never, before, 
during or after the actual optimization procedure. Depending on this, different 
multi-criteria solution methods can be used. The most widely used methods are 
based on a priori expressing of the decision makers preferences. The specificity of 
the investigated problem requires minimize the number of sensors while keeping the 
structure health monitoring information as close to the maximal (when all sensors 
are available) as it is possible. For the goal, the lexicographic method is chosen as 
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most appropriate. This method is a priory aggregation of preference information 
method that requires arranging of objective functions in order of importance. Then 
multi-criteria problem is solved as a sequence of single objective optimization 
problems solved one at a time.  

 
4. DETERMINATION OF OPTIMAL NUMBER OF SENSORS AND THEIR 

PLACEMENT BY LEXICOGRAPHIC METHOD  

In order to verify the developments in the paper, the example of vibrating cantilever 
beam structure [Tejada, 2009] shown in Fig. 1 is used. The adapted for the example 
data for first 5 mode shapes of structure are shown in Table 1. Every mode shape is 
normalized to have maximum value of each mode shape equal to 1.  
 

Table 1. Data for first 5 mode shapes of structure 

Node, j Mode 1, (φ1,j)  Mode 2, (φ2,j)  Mode 3, (φ3,j) Mode 4, (φ4,j)  Mode 5 (φ5,j) 
1 0,102 0,294 0,370 0,576 0,610 
2 0,202 0,581 0,766 0,820 0,722 
3 0,335 0,770 0,872 0,370 -0,090 
4 0,467 0,870 0,604 -0,384 -0,724 
5 0,590 0,807 -0,020 -0,810 -0,020 
6 0,720 0,579 -0,670 -0,430 0,726 
7 0,810 0,269 -0,854 0,410 0,050 
8 0,890 -0,187 -0,465 0,820 -0,735 
9 0,950 -0,603 0,251 0,230 -0,037 
10 1,000 -1,000 1,000 -1,000 1,000 

 
4.1. Lexicographic Method Implementation  

Implementation of lexicographic method based on the data from Table 1 for the 
formulated model (2) – (7), requires solving in the first place single criterion 
optimization task toward the most preferable criterion for maximizing of structure 
health monitoring information:  

 ∑∑
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  }1,0{∈jy  (12) 

 11 =x , 110 =x  (13) 

In current example, it is assumed that the first and last sensors have to be present 
always (13). The solution of this problem represents the ideal case where all 10 
sensors are present and will provide the maximal value of objective function (8) that 
can be used on the next step of the method.  

On the second step of the lexicographic method implementation, a single criterion 
task for second by importance criterion of multi-criteria problem is solved. The 
objective function of the task solved in the first step is set as restriction in second 
single criterion task with some acceptable tolerance toward its optimal value.  The 
corresponding optimization problem solved on the second step is: 
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α is a coefficient that defines the required data accuracy when some sensors are to be 
dropped out.     

 
4.2. Lexicographic Method Results  

The results of lexicographic method implementation for definition of optimal 
number and placement of sensors are illustrated in Fig. 3.  

Fig. 3a represents the case when all 10 sensors are present. In this case all of the 
information for health structure monitoring is available. Fig. 3b, 3c and 3d represent 
the solutions for α set to be equal to 98%, 97% and 95%, respectively.  Setting  
α = 98% results in dropping out sensor #9. In Fig. 3b the corresponding mode shapes 
curves are plotted with dotted line for the missing sensor. Analogically, for α = 97% 



Ivan Mustakerov and Daniela Borissova 

110 
 

sensors #3 and #9 are dropped out (Fig 3c) and for α = 95% sensors #3, #5 and #9 are 
dropped out (Fig 3d). 
 

a)  b)  

c)  d)  

Fig. 3. Results of lexicographic method implementation: a) ideal case for 10 sensors;  
b) 9 sensors  and α = 0.98%; c) 8 sensors  and α = 0.97%; d) 7 sensors and α = 0.95%. 

 

The formulated optimization tasks are solved by LINGO2 ver. 12 on a desktop PC 
with Intel® Celeron® 2.93 GHz CPU and 2 GB of RAM under MS© Windows XP 
operating system. The solution times for the described numerical examples are of 
order of seconds but obviously depend on the size of the problems.  

 
4.3. Discussion of Results  

The main problem of sensors' number and locations optimization for structure 
health monitoring is to provide as minimum loss of information as possible when 
some of sensors are dropped out. This problem is mathematical formalized by the 
proposed combinatorial optimization model (2) – (5). The formulated mixed-integer 
nonlinear model takes into account both different sensors locations and mode shapes 
corresponding to a time-varying distributed load. Based on this model, a multi-
criteria optimization task is formulated where one of the criteria maximizes 
information supplied from sensors and the other minimizes sensors number. The 
lexicographic method is used to solve multi-criteria optimization task. An essential 
advantage of using this method is its easiness and intuitive understanding from 
engineers that are not familiar with multi-criteria optimization. Along with this, the 
implementation of lexicographic method for described problem allows setting of 
acceptable accuracy for sensors’ information as a required deviation from the ideal 
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case when all sensors are present. The multi-criteria task solution based on real data 
shows that sensors corresponding to minimal data loss are dropped out. The 
described approach defines sensors on particular locations that can be dropped out 
in order to provide best fit to the given acceptable accuracy. In this way, both of 
sensors’ number and their locations are defined considering all mode shapes 
simultaneously. Regardless of the various mode shape curves, the solutions results 
provide an accuracy of 98, 97 and 95 percents when dropping out one, two or three 
sensors.  The results of the proposed approach approbation prove its practical 
applicability.  

 
5. CONCLUSION  

The current paper describes an approach to determination of optimal number and 
locations of sensors for structure health monitoring application. This approach is 
based on combinatorial optimization modelling and multi-criteria optimization task 
formulation. The lexicographic method is used for solution of multi-criteria task.  
The solution of formulated multi-objective nonlinear discrete mixed-integer 
optimization task provides Pareto-optimal configuration of sensors locations. The 
sensors’ number and locations are defined taking into account given acceptable 
tolerance about information loss toward the ideal case when all sensors are present. 
Pareto-optimal solution of the formulated multi-criteria task considers all of the 
mode shapes and sensors locations simultaneously. The proposed approach is 
illustrated on the example of vibrating cantilever beam structure. The results of 
numerical experiments show the possibility for practical application of this approach 
for structural health monitoring sensors optimization. From a practical prospective, 
an interesting further research is to consider bigger sets of mode shapes and sensors 
locations and to test the corresponding large scale optimization problems.  
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