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Abstract 

 
 Obtaining a graph from any given graph is a popular area of research in Graph Theory. 
Concept of Total Graph falls under this category. All the vertex-vertex adjacency, vertex-
edge incidence and edge-edge incidence relations are considered in the formation of the 
Total Graph. For a finite simple connected graph G, T(G) can be decomposed into G and 
complete subgraphs of order equal to the degrees of each of the vertices in G. Also, T(G) 
can be decomposed into disjoint union of L(G) and q copies of C3, where q is the size of G. 
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1. Introduction 
We consider a graph G(p, q) with p vertices and q edges which is simple, connected, 
undirected and finite. Here, p and q are respectively called the order and size of G. Let v 
be a vertex of G. The number of edges incident with v is known as the degree of v, 
denoted by degG(v), or merely by deg(v).[Chartrand, 2006] If the degrees of the vertices 
of a graph G are listed in a non-increasing sequence S, then S is called the degree 
sequence of G. For a graph G, obtaining edge disjoint sub-graphs (i.e. intersection of the 
edge set of all the sub-graphs is empty) whose union is the actual graph G is called 
decomposition of the given graph G. Line Graph, L(G), of undirected graph G is a 
graph that represents the adjacencies between the edges of G. Given a graph G, 
each vertex of L(G) represents an edge of G and two vertices of L(G) are adjacent if and 
only if their corresponding edges are adjacent in G. An Incidence Graph, I(G), is a graph 
whose vertices represent vertices and edges in G. Two vertices in I(G) are adjacent if and 
only if there is a vertex-edge incidence in G. Total Graph of a graph G, denoted by T(G), 
is a graph whose vertices are represented by each vertex and each edge of G. There is an 
edge between two vertices in T(G) if and only if there is edge-edge adjacency or edge-
vertex incidence or vertex-vertex adjacency in G. [West, 2002 and Harary, 2001] 
        We know that T(G) is isomorphic to the square of the subdivision graph S(G). 
i.e. T(G) ≈ [S(G)]2.[Harary, 2001] 
But we also know that S(G) ≈I(G). 
Hence, T(G) is isomorphic to the square of the incidence graph I(G). 
i.e. T(G) ≈ [I(G)]2 

From the definition of total graph we can also define the total graph as the disjoint union 
of given graph, line graph and incidence graph. 
i.e. T(G) = G  
This is possible because in T(G) vertex-vertex adjacency will give us G itself, edge-edge 
adjacency gives us line graph of G, denoted by L(G) and vertex-edge incidence will give 
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us incidence graph of G, denoted by I(G). From the definition of total graph G, it is 
obvious that L(G) and I(G) in T(G) are disjoint. 

  
2.  Decomposition of T(G) into G and Kn’s 
Let Kn denote a complete graph of n vertices. Every edge in G becomes a K3 in T(G). If 
we explore this phenomenon, we obtain the following result. 
 
Theorem 2.1. Let G be an undirected simple finite graph. Total Graph of G can be 
decomposed into G and ‘s, where di’s are degrees of each of the vertices in G. i.e. T(G) 
= G U Kd1+1 U Kd2+1 U …….. U Kdn+1, where di‘s are degrees of each vertex in G. 
 
Proof: Since T(G) is the total graph of G, every vertex in T(G) is represented by either a 
vertex or an edge in G. Two vertices in T(G) are adjacent if and only if there is a 
corresponding vertex-vertex adjacency or edge-edge adjacency or an edge-vertex 
incidence in G. Now, the vertex-vertex adjacency in G will give exactly the same copy of 
G in T(G). We also know that for each vertex–edge incidence and edge–edge adjacency 
in G, there exists an edge in T(G). 
Let v1 be an arbitrary vertex in G with degree d1. 
So v1 is incident with d1 edges. 
Let e1,e2…….ed1 be these edges. 
i.e., all these ei’s are incident with v1. Hence in T(G), a vertex corresponding to v1 is 
adjacent to all vertices corresponding to ei’s. 
Since in G, all ei’s are incident to v1, obviously all ei’s are adjacent with each other. 
Hence all ei’s will form a complete graph with di vertices in T(G). 
But all ei’s are incident with v1 and hence with the addition of the corresponding vertex in 
T(G) to the already formed complete graph, the new complete graph is with d1+1 vertices. 
i.e. Kd1+1 is formed in T(G). 
Since v1 is arbitrary, it is true for all vertices. 
Now we have to show that all such complete graphs are disjoint. 
Let w be an edge common to Kd1+1 and Kd2+1 in T(G). 
i.e., w is there in Kd1+1 and w is also there in Kd2+1. 
Hence the end vertices of w must be in both Kd1+1 and Kd2+1. 
Let w=e1e2. 
We know that e1 and e2 are adjacent in T(G) since their corresponding edges are incident with 
some v1 in G. 
Hence they are adjacent in Kd1+1. 
We know that since w is also in Kd2+1 and the corresponding vertices of e1 and e2 are adjacent 
in G, which means they are incident with another vertex other than v1. 
Let it be v2.  
Therefore e1 and e2 are incident with v1 and v2. 
But this will lead to a multiple edge in G. 
It is a contradiction, since G is a simple graph. 
Hence all the complete graphs in T(G) are disjoint. 
Hence we can decompose T(G) into disjoint union of G and p complete graphs with di+1 
vertices, where di  is the degree of each of the p vertices in G. 
Hence the proof. 
 
Corollary 2.1.1. Let Kn be a complete graph with n vertices. Then T(Kn) =  

Kni’s are copies of Kn. 
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Proof: From Theorem 2.1 we get, T(G) = G U Kd1+1 U Kd2+1 U ………. U Kdn+1, where 
di’s are degrees of the vertices in Kn. 
There are n vertices in Kn all of degree n-1. 
i.e. di = n-1 
Hence 
T(G) = G U Kn-1+1 U Kn-1+1 U ………. U Kn-1+1 
T(G) = G U Kn U Kn U ………. U Kn. 
So T(G) can be decomposed into G and union of n copies Kn. 
Here G is Kn.  
Therefore T(G) can be decomposed into union of  (n+1) Kn’s. 
i.e., T(Kn) = ,where Kni’s are copies of Kn. 
Hence the proof. 

 
3.  Decomposition of T(G) into L(G) and C3’s 
We know that total graph of any graph is the disjoint union of line graph, incidence graph 
of the given graph and the given graph itself. The edge-vertex incidence of each edge in 
G is producing a C3 in T(G). It is seen that number of these C3’s can be found out. It is 
described in the next theorem. 
 
Theorem 3.1. Let G(p,q)  be a simple undirected finite simple graph. Then T(G) can be 
decomposed into L(G) and q copies of C3. 
 
Proof: Let G(p,q)  be the given Graph. The total graph of G is the disjoint union of G and 
the line graph of G and incidence graph of G. 
i.e. T(G) = G   where G, L(G) and I(G) are disjoint. 
Clearly, T(G) contains L(G) . 
So when we remove L(G) from T(G) what is remaining T(G) is GUI(G). 
Let e =uv be an edge in G.  
Hence e will become a vertex in I(G) and will be incident with u and v. 
Therefore eu and ev will be two distinct edges in I(G). 
Evidently in GU I(G), e-u-v-e will form C3. 
Since e is arbitrary, for each edge in G we get a new copy of C3. 
Since G contains q edges, we get q copies of C3. 
Thus T(G) can be decomposed into L(G) and q copies of C3. 
Hence the proof. 
 
Corollary 3.1.1. Let Cn be the cycle with n vertices, then T(Cn) can be decomposed into 
Cn and n copies of C3. 
 
Proof: The proof is direct from the Theorem 3.1. 
Here, G is Cn. Cn has n edges. 
Also, L(Cn) = Cn. 
Hence from the above theorem we can conclude that T(Cn) can be decomposed into Cn 
and n copies of C3. 
Hence the proof. 
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4.  Conclusion 
In this paper we had concentrated on decomposition of total graphs. The results that we 
discussed in decomposition of total graph are T(G) = GUKd1UKd2U …….. U Kdn. and 
T(G(p,q)) =L(G)UqC3. There is a lot of scope for the further study of decomposition of 
total graphs of some graph operations like Cartesian product, tensor product etc. 
 

REFERENCES 
 
1. Chartrand, G. and Zhang, P., (2006) “Degree Sequences,” in Introduction to Graph 

Theory, Tata McGraw-Hill Ltd., New York. 
2. Harary, F., (2001) Graph Theory, Narosa Publishing House, New Delhi, India. 
3. West, D. B., (2002) “Graphic Sequences,” in Introduction to Graph Theory (Second 

Edition), Pearson Education, New Delhi, India. 


