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Abstract

P.J.Slater [21] in 1975 introduced the concepts of locating sets and locating number in graphs.
Subsequently with minor changes in terminology, this concept was elaborately studied by Harary and
Melter [14], Chartrand et al [5], Robert C. Brigham et al [19], Chartrand et al [10]and Varaporn

Saenpholphat and Ping Zhang [29][30]. Given an k -tuple of vectors, S=(v,,v,,...,v,), the
neighbourhood adjacency code of a vertex v with respect to .S, denoted by ncg(v) and defined by
(a,,a,,...,a,) where a, is 1 if v and v, are adjacent and 0 otherwise. S is called a
neighbourhood resolving set or a neighbourhood 7 -setif ncg(u) # ncy(v) forany u,velV(G). The

least(maximum) cardinality of a minimal neighbourhood resloving set of G is called the
neighbourhood(upper neighbourhood) resolving number of G and is denoted by nr(G) (NR(G)).
In this paper, Bounds for nr(G), Neighbourhood resolving number for sum and composition of two
graphs are obtained. Neighbourhood resolving number for Mycielski Graphs are discussed. Also nice

results involving neighbourhood resolving numbers of G and G are obtained.

Keywords: locating sets, locating number, neighbourhood resolving sets, neighbourhood resolving
number, Mycielski graph
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1. Introduction

In the case of finite dimensional vector spaces, every ordered basis induces a scalar coding of the
vectors where the scalars are from the base field. While finite dimensional vector spaces have rich
structures, graphs have only one structure namely adjacency. If a graph is connected, the adjacency
gives rise to a metric. This metric can be used to define a code for the verices. P. J. Slater [21] defined
the code of a vertex v with respect to a Kk -tuple of vertices S=(v,v,,...,v,) as

d(v,»),d(v,v,),...,d(v,v,)) where d(v,v;) denotes the distance of the vertex v from the vertex

v, . Thus, entries in the code of a vertex may vary from 0 to diameter of G . If the codes of the vertices

are to be distinct, then the number of vertices in G is less than or equal to (diam(G)+1)*. If it is
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required to extend this concept to disconnected graphs, it is not possible to use the distance property.
One can use adjacenty to define binary codes, the motivation for this having come from finite

dimensional vector spaces over Z,. There is an advantage as well as demerit in this type of codes. The

advantage is that the codes of the vertices can be defined even in disconnected graphs. The drawback is
that not all graphs will allow resolution using this type of codes.

Given an k -tuple of vectors, S = (v,v,,...,V,), the neighbourhood adjacency code of a
vertex v with respect to S is defined as (a,,q,,...,a,) where a; is 1 if v and v, are adjacent
and 0 otherwise. Whereas in a connected graph G =(V,E), V is always a resolving set, the same is

not true if we consider neighbourhood resolvability. If # and v are two vertices which are
non-adjacentand N(u#) = N(v), u and v will have the same binary code with respect to any subset

of V', including V. The least(maximum) cardinality of a minimal neighbourhood resloving set of G
is called the neighbourhood(upper neighbourhood) resolving number of G and is denoted by #n7(G)
(NR(G)).

In section 1, Bounds for Neighbourhood Resolving number of a graph is discussed.

Neighbourhood resolving number for sum and composition of two graphs are obtained. Neighbourhood
resolving number for Mycielski Graphs are also discussed. The second section deals with results

involving neighbourhood resolving numbers of G and G.

2.Bounds for Neighbourhood Resolving number of a Graph
Definition 2.1 Let G be any graph. Let S < V'(G). Consider the k -tuple (u,,u,,...,u,) where S

= {u,uy,...,u, }, k=1.Let veV(G). Define a binary neighbourhood code of v with respect to
the k -tuple (u,,u,,...,u,) , denoted by ncg(v) as a k -tuple (r,r,...,r;) where
Lifve Nu,),1<i<k

r= 0, otherwise

S is called a neighbourhood resolving set or a neighbourhood r -set if ncg(u) # ncg(v) for any
u,velV(G).

The least cardinality of a minimal neighbourhood resloving set of G is called the neighbourhood
resolving number of G and is denoted by nr(G). The maximum cardinality of a minimal

neighbourhood resolving set of G is called the upper neighbourhood resolving number of G and is
denoted by NR(G).

Clearly nr(G)< NR(G) . A neighbourhood resolving set S of G is called a minimum

neighbourhood resolving set or nr-set if .S is a neighbourhood resolving set with cardinality n#(G).

Example 2.2.
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Uy ws
Now S, = {u,,u,,us} isaneighbourhood resolving set of G, since ncy(u,) = (0,1,1); ncg(u,)
= (1,0,1);
neg(uy) = (0,1,0); neg(u,) = (0,0,1) and
neg(us) = (1,1,0) . Also S, = {u,u,u,} , S; = {u,uu,}, S, = {u,u;,us} are
neighbourhood resolving sets of G . For this graph, nr(G)= NR(G)=3.

Observation 2.3.The above definition holds good even if G is disconnected.

Theorem 2.4.[25] Let G be a connected graph of order 7 > 3. Then G does not have any

neighbourhood resolving set if and only if there exist two non adjacent vertices # and v in V(G)

such that N(u)=N(v).
2.1.Bounds for nr(G)
Theorem 2.5.For any graph G, nr(G)<n-1.

Proof : Suppose there exist a graph G such that nr(G)=n.

Then V(G) is the minimal neighbourhood resolving set of G . For any u € V' (G), there exists two
vertices X, ) different from u such that x and y are privately resolved by u. That is one of x
and y isadjacentto u while the otherisnotand N, . (x)= N; ().

Case () : Ny, (x) =N, () =D

Then x is an isolate of G . Therefore V —{x} is a neighbourhood resolving set of G, a
contradiction, since ¥ (G) is a minimal neighbourhood resolving set of G .

Case (i) : N;_,,,(x) = Ny (,, (1) 2D .

Subcase (i) : X and y are non-adjacent.

Subsubcase (i) : T =V —{u,x, y}.

Subsubcase (iA) : u is adjacent with v, forall veT.

Then x does not resolve privately any pair of vertices. Therefore V' —{x} is a neighbourhood
resolving set of G, a contradiction, since V' (G) is a minimal neighbourhood resolving set of G .

Subsubcase (iB) : There exists a vertex V€T such that u is not adjacent to v.
Then y does not resolve partially any pair of vertices. Therefore V —{y} is a neighbourhood
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resolving set of G, a contradiction, since V' (G) is a minimal neighbourhood resolving set of G .
Subsubcase (ii): T <V —{u,x, y}.

Let T = {u,,uy,...,u, }.Then V=T = {u,,,...,u,}.

Subsubcase (iiA) : u is adjacent with v forall veV —{u,x, y}.

Then y does not resolve privately any pair of vertices. Therefore V' —{y} is a neighbourhood
resolving set of G, a contradiction, since V' (G) is a minimal neighbourhood resolving set of G .

Subsubcase (iiB) : There exists Ve T such that u is not adjacentto v.
Then either x or y does not resolve privately any pair of vertices.

Therefore V' —{x} or V' —{y} is a neighbourhood resolving set of G, a contradiction, since V' (G)

is a minimal neighbourhood resolving set of G .
Subcase (ii) : x and y are not adjacent.

Arguing as in Subcase(i) we get a contradiction.
Hence nr(G)<n-—1.

Observation 2.6 If |V(G)|>3 then 2<nr(G)<n-1 and bounds are sharp. (The lower bound is

n
attained in K; and upper bound is attained in K, ). The upper bound is attained in (E) K, if n is

-1
even and (nT)K2 UK, if n isodd.

Theorem 2.7.[26]Let G be a connected graph of order 7 such that nr(G)=k. Then log,n<k

Observation 2.8.[26] There exists a graph G in which n= 2" and there exists a neighbourhood
resolving set of cardinality k such that n7(G) = k. Hence all the distinct binary k -vectors appear as
codes for the n vertices.

Theorem 2.9Let G be a connected graph of order 7 admitting neighbourhood resolving sets of G
and let n7(G) = k.Then k =1ifand only if G iseither K, or K.

Proof : If G is K| or K, then nr(G)=1.
Suppose nr(G)=1.Let S={u} bean nr-setof G.Then ncg(u) =(0). Therefore there exists no

vertex in G which is not adjacent to .
If there exist two vertices X,y €V(G) which are adjacent to u then they have the same

neighbourhood code as (1) with respect to S, a contradiction.
Therefore there exist atmost one vertex other than # in G . Therefore G = K| or K,.

Theorem 2.10.Let G be a connected graph of order # admitting neighbourhood resolving sets of
G.Then nr(G) =2ifand only if G iseither K, or K, + apendantedgeor K, U K, or

K, UK,.

Proof : If G iseither K; or K, + apendantedgeor K; UK, or K, UK, then nr(G)=2.
Suppose nr(G)=2.Let S = {x,y} be a minimum neighbourhood resolving set of G . Then there
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are only two possibilities, either the two vertices say x and y in S adjacent or non adjacent.

If they are non adjacent then there the neighbourhood code of the two vertices with respect to S is
(0,0), which is a contradiction.

If they are adjacent, then since n < 2% there can be at most two more vertices in G . ncg(x) =
(0,1) and ncy(y) = (1,0) . Therefore the neighbourhood code of other two vertices are (1,1) and
(0,0) which means that one vertex is adjacent to both the vertices of S and other vertex is not
adjacent to both the vertices of S.

Hence G iseither K, or K, + apendantedgeor K, UK, or K, UK.

3 Neighbourhood Resolving Number for binary operations on Graphs

Theorem 3.1.Let G, H be two connected vertex disjoint graphs of order > 2. Then we have
nr(G+H)<nr(G)+nr(H)+1. Also nr(G+H) = nr(G)+nr(H) if and only if at least one of

G, H hasan nr-set S for which no vertex receives 1-code with respect to the set S .

Proof: Let ) and S, be nr-setsof G and H .

Suppose both S, and S, allow 1-codes. Then §,U.S, is not a neighbourhood resolving set for
G+H.

Suppose u € V(G) receives 1-code with respect to S, and veV(H) receives 1-code with respect
to S,.

Then S, U{u} is a neighbourhood resolving set for G not allowing 1-code for any vertex in V' (G)
and S, U{V} is a neighbourhood resolving set for H not allowing 1-code for any vertex in V' (H).
Therefore S, U{u}US, and S, US, U{v} are neighbourhood resolving sets of G+ H .
Therefore nr(G+H)<nr(G)+nr(H)+1.

Suppose there exist nr-sets S;, S, for G,H respectively such that at least one of them does not
allow 1-code.

Then S;US, is a neighbourhood resolving set of G+ H .

Therefore nr(G+ H) <nr(G)+nr(H).

Let S bean nr-setof G+H .Let 1, =V(G)NS and T, =V(H)NS.

Clearly 7] cannot resolve any two vertices of V' (G,) and 7, cannot resolve any two vertices of
V(G,). Therefore I} and T, are neighbourhood resolving sets of G and H respectively.
Therefore nr(G)<|1;| and nr(H)<|T,|.

Therefore nr(G)+nr(H)<|T;|+|T,|=|S].

Therefore nr(G)+nr(H)<nr(G+H) and hence nr(G+H) = nr(G)+nr(H).

Suppose nr(G+H) = nr(G)+nr(H).

Let S bean nr-setof G+H .Let 1, =V(G)NS and T, =V(H)NS.

Proceeding as before we get that

nr(G)+nr(H)<|T, |+| T, |=|S|=nr(G+ H).

Suppose nr(G)<|T||. Then nr(G)+ nr(H)<nr(G+ H), a contradiction.
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Therefore nr(G)=|T, |. similarly nr(H)=1T,.
Therefore 7, and 7, are nr-sets of G and H respectively such that 7, U7, is an nr-set of
G + H .Therefore at least one of 7;, T, does not allow 1-code.

Theorem 3.2.Suppose G has a neighbourhood resolving set and H has no neighbourhood resolving
set. Then GoH has no neighbourhood resolving set.

Proof : Since H has no neighbourhood resolving sets, there exists non-adjacent vertices ©# and v
in V(H) suchthat N(u)=N(v).

Let weV(G). Let H, be the copy of H attached with w in GoH . Then u, v in V(H,) are
adjacent to X in addition to their neighbours in /1, which are the same for both # and v.

Therefore N, ()= N, (v).Hence GoH has no neighbourhood resolving set.

Theorem 3.3.There exist examples of graphs G for which neighbourhood resolving set does not exist
but GoH has a neighbourhood resolving set where H admits neighbourhood resolving sets exist.

Illustration 3.4.

10
U1

112

a 13

U20

14
u1g9

15
U18
16

w17
The above graph G is C, 0P, in which C, has no neighbourhood resolving set but in P,
neighbourhood resolving sets exist.
For G, n*(G)=12 and an nr-setis
(s, U g U, 1y Uy Uy Uy 3y Uy g Uy Uy Uy Uyg s g Ug | -

2. K, 0P, has neighbourhood resolving sets even though K, has no such set.

Theorem 3.5.Let G be a simple graph of order 7. Let H be a graph allowing neighbourhood
resolving sets. Then

(1) If there exists an nr -set of H which neither allows 0-code nor the 1-code, then
nr(GoH)=n.nr(H).

(ii) Suppose every nr-set of H allows 0-code but not 1-code, then nr(GoH)=nnr(H)+n—1.
(iil) Suppose every nr-setof H allows 1-code but not 0-code, then nr(GoH) = n.nr(H)+y(G).
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(iv) Suppose every nr-set of H allows both 0-code and 1-code, then

nnr(H)+n, if,Gis totally disconnected
nr(GoH) = . .
nnr(H)+n—-1, otherwise

Proof: Let G be any graph of order n. Let V(G) = {u,,u,,...,u,}. Let H“i’ 1<i<n be n
-copies of H andjoin u, of G with every vertex of H“i’ 1<i<n.

(i) Let u€V(G).Let S, bean nr-setof H, which neither allows 0-code nor the 1-code.

Let T = U S, . Further ugT for any ue€V(G) and nc,(u) receives 1 at every place

ue (G)
corresponding to the vertices of S, and 0 at every other place. Since S, does not allow 0-code or
1-code, nc;(u)#nc,(x) for any xeV(H,). Also for any xeV(H,) and any yeV(H)),
u #v, ncy(x) will receive a non-zero entry in at least one place corredponding to the vertices of S,
and 0 in all other places corresponding to the vertices of S, v#u ,since S, does not admit 0-code.
Therefore nc,(x) #nc,(y).

Therefore T is a neighbourhood resolving set of GoH and also |T |=n.nr(H).

Suppose T' isan nr-setof GoH andlet T' = T'NV(H,).

u can not resolve any two vertices of H ,since u# is adjacent with every vertex of H, . Any vertex

of G other than u as well as any vertex of H,, v#u isnot adjacent with any vertex of H, and

hence it can not resolve any two vertices of .
Therefore T is a neighbourhood resolving set of H, .

If |T)[>nr(H,), then T, can be replaced by an nr-set of H, giving rise to a neighbourhood
resolving set of GoH whose cardinality is less than | 7" |, a contradiction.

Therefore T isan nr-setof H, andhence |T'|=nnr(H).

Therefore nr(GoH)=n.nr(H) and T isan nr-setof GoH.

(ii) Let u€V(G). Let S, be an nr-set of H, . Since every nr-set of H allows 0-code but not
lI-code, S, allows 0-code but not 1-code.

Therefore there exists an unique x, € V() such that code of x, with respectto S, is (0).
Let T= U S, Ulu,,uy,..,u, ).

ul.eV(G)
Since any nr-set of H allows 0-code for exactly one vertex, there exists unique X, receiving
1
0-code with respect to S, . For any xeV(H,) and yeV(H, ), i#j, 1<i,j<n-1, x and
i i J
¥ will be resolved at the places u; and u, even when x and y receives 0-code with respect to

u
1

S and Su/_ respectively.
The vertex x, receiving 0-code with respectto S, is the only vertex receiving 0-code with respect
n n

to T.
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For any er(H”i), 1<i<n-1, and er(Hun), (j#n), y receives a non-zero entry in a
place corresponding to a vertex of S"n and X receives O-code in that place. Any u,, 1<i<n
receives 1-code in the places corresponding to the vertices of S“i and 0 at places corresponding to
vertices of Suj , J#1i, 1<j<n,andcode a, in the place correspondingto u,, 1<r<n-1.

Therefore T' resolves u, and u ;. Since S”i does not resolve 1-code, T resolves x and u, for

any x€V(H,), 1<i<n andhence T is a neighbourhood resolving set of GoH .

Therefore | T |= nnr(H)+n—1.

Therefore nr(GoH)<|T |=nnr(H)+n—1.

Let T' bean nr-setof GoH.Let T' = T'nV(H,) and T} = T' "V (G).

Clearly T isaneighbourhood resolving set of H, .

If |T! [>nr(H, ), then T, can be replaced by an nr-set of H, giving rise to the neighbourhood

resolving set of GoH whose cardinality is less than |T" |, a contradiction.

Therefore T isan nr-setof H, .

Suppose u, and u, & Tu1 .

Suppose |Th|<n—2 . Then the unique vertices x, and X, in S, and S, respectively
g 2 gl 2

receiving 0-code have 0-code with respect to 7' ' a contradiction (since T' isan nr-set of GoH).

Therefore |7} [> n—1 and hence |T" > nnr(H)+n—1.

Therefore nr(GoH)=nnr(H)+n—-1.

Therefore nr(GoH)=nnr(H)+n-1.

(iii) Let S, , 1<i<mn, be an nr-set of H, . Since every nr-set of H allows l-code but not

0-code, S, does not allow 0-code but allows 1-code.

Therefore there exists a unique x, in V(H, ) receiving 1-code with respectto S, , 1<i<n.

Let TZUSu'uD where D isa y setof G.
=1
Let D ={u,,u,,...,u,} . Forany x€S§, and yeS, ,i#j, I<i,j<n, x and y are resolved
i J

by T evenif x=x, and y=x, .Sinceany nr-setof H doesnotallow 0-code, x and y are
1 J

resolved by 7" even when u, and u; donotbelongto D.

n
x, and u, receive same code in all places corresponding to vertices of US'U_ .
1 1
i=1

If u;e D, then x, and u, receive distinct codes 1 and 0 at the place corresponding to ;.
1

If u, ¢ D,then u, is adjacent to some u, € D.

At the place corresponding to #, in 7', u, receives 1 and x receives 0.
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Therefore u;, and x, areresolvedby T .
Clearly u, and u; are resolved by 7', since they receive different codes corresponding to the

vertices of S, aswellas S .
J

1

Therefore T is a neighbourhood resolving set of G and hence nr(GoH) < n.nr(H)+y(G).
Let T' bean nr-setof GoH.

Let T =T'nV(H,) and T, =T' NV (G).

Clearly T MI. is a neighbourhood resolving set of H, .

If |T' [>nr(H,), then T, can be replaced by a nr-set of H, giving rise to the neighbourhood

resolving set of GoH whose cardinality is less than | 7" |, a contradiction.

Therefore T isan nr-setof H, .
1 1
Suppose there exists u; € T, é such that u, is not adjacent with any vertex of 7, Gl .Then x, and u,
) J

receive the same code with respect to 7', a contradiction.

Therefore u , is adjacent with some vertex of T, and hence T is a a dominating set of G, which
means | T} [> 7(G).

Therefore |7 > nnr(H)+y(G).

Thatis nr(GoH) 2 n.nr(H)+y(G).

Therefore nr(GoH)=nnr(H)+y(G).

(iv) Let u€V(G). Let S, be an nr-set of H, . Since every nr-set of H allows 0-code and
l-code, S, allows 0-code and 1-code.

Therefore there exists a unique x, € V' (H,) such that code of x, withrespectto S, is (0,0,...,0)
and a unique x. e V(H,) such that code of x! withrespectto S, is (I,...,1).

Case (i) : Suppose G is not totally disconnected.

Then there exists a (n—1)-subset (say) {u,,u,,...,u, ,} of V(G) which is a dominating set of G .

Let T = U S, Vlu,uy,..u, ).

uer(G)
Arguing as in proof of (i), it can easily seen that that 7 resolves any two vertices W, W, in
V(GoH) where {w,,w,}# {x, ,u,} forsome i, 1<i<n.

Since {u,,u,,...,u, ,} isadominatingstof G, T resolves x and u,, forsome i, 1<i<n.

Therefore T is a neighbourhood resolving set of GoH .
Therefore nr(GoH)<nnr(H)+n—-1.

Similar to the proof of (if) and (i), it is obvious that nr(GoH)>n.nr(H)+n—1.
Therefore nr(GoH)=nnr(H)+n-1.

Case (ii) : Suppose G is totally disconnected.
Since H admits 1-code, nr(GoH)=nnr(H)+y(G)=nnr(H)+n.
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But nr(GoH)<nnr(H)+n, since T = U S, UV(G) is a neighbourhood resolving set of

ul.eV(G)

GoH.
Therefore nr(GoH)=nnr(H)+n.

Theorem 3.6. Let G bea (n,m) graph admitting neighbourhood resolving sets. Then (i) nr(G) =
n—m ifand only if G=K, or K, or K, UK,.

(ii) Let G have ¢ components and let G have no isolates. Then

nr(G)=n—m+t—1 ifand only if G=1K,.

Proof: (i) If G=K, or K, or K, UK, then nr(G)=n—-m .

Conversely, let nr(G)=n—m.

For any connected graph G, n—m<1.

Since nr(G)=1, n—m=1. Therefore nr(G)=1 andhence G is K, or K,.

Suppose G is disconnected .
Let G,,G,,...,G, be the components of G .

Then atmost one G, is K.
Since nr(G,)212n(G,)-m(G,), nr(G,) =2 n(G,)-m(G,).

k k
Now n—m= Y (n(G,)-m(G,)) <> nr(G)).
i=1 i=1
Let S bean nr-setof G.
Let T, =SNV(G,), 1<i<k.
Then 7,, 1<i<k,is aneighbourhood resolving set of G,.
Therefore nr(G,)<|T,|.
K K K
n—m= Y n(G)-mG) < Y (G)< Y| TS |=n—m.
i=1 i=1

i=1

Therefore Zk:(n(Gl) -m(G,)) = Zk:nr(Gi) )

Since (n(G,)—m(G,)) < nr(G,) , we get that

(n(G,)-m(G,))=nr(G,), forevery i, 1<i<k.

Therefore (n(G,)—m(G,))=nr(G;)=1 (Since (n(G,)—m(G;))<1 and nr(G,)=1).
k k

Therefore G, is K| or K, . Also n—m= an(G,.) = Z|T, =S].
i=1 i=1

If k>3, then there exist at least two components in G which are K, .

k k
Therefore an(G,.) < Z | T |, a contradiction.

i=1 =
Therefore k<2.
Therefore G = K, or K, or K, UK,.
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(i)If G=tK, then nr(G)=n—m+t—1.

Conversely, let nr(G)=n—m+t—1.

Case (i): Let t=1.

Then G is connected and nr(G)=n—m.

Therefore G=K, or K, .

Case (ii): Let t=2.Let G,,G,,...,G, be the components of G .
Since G has no isolates, | G, [> 2, for every i.

Since nr(G,)212n(G,)—m(G,), we get nr(G,) =2 n(G,)—m(G,).

! !
n—m=Y(n(G)~m(G)) < Yr(G).

i=1 i1
Let S bean nr-setof G.
Let T, = SNV(G,)), 1<i<t.
Then 7,, 1<i<t is a neighbourhood resolving set of G, .
Therefore nr(G,)<| T, |.

n—m=Zt:(n(G[)—m(G,))SZt:m’(G,v)SZt”7; = SEn—m+r-1.

Suppose n(G,)—m(G,)<0, forsome i, 1<i<t.

Then G, isnot a tree. Therefore G, contains a cycle.

n—mZZt:(n(Gi)—m(Gi))St—l.

|S|= Z |T [>2(t—-1)+1=2¢+1. (since G has no isolates).

i=1
n—m+t—1<t-1+1-1=2t-2<2t < §|, a contradiction.
Therefore n(G,)—m(G,) =1, forevery i.

But n(G,)-m(G,)<1, forevery i.

Therefore n(G,)—m(G,) =1, forevery i.

Therefore G, is atree forevery i and G, # K, for every i.

Therefore n—m=+¢.
Therefore n—m+t—1=¢t+¢t—-1=2¢-1.
Suppose G, #K,. Then |T, |2 3.

|SED T [23+2(t-2)+1=2¢.
i=1

But | S |=2¢—1, a contradiction.
Therefore G=1K,.

Theorem 3.7.Let G be a disconnected graph with #+1 components and one of the components is a
singleton (say) #.Then G =tK, UK, ifand only if nr(G,)=n—m+t-2 where G, =G—{u}.
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Proof : Suppose G=1K, UK,. Then nr(G,)=2t-1.
n—-m+t=2=2t+1-t+t-2=2t-1.

Therefore nr(G,))=n—-m+t-2.

Conversely, let nr(G))=n—m+t—2=n(G,)—m(G;)+t-1, (since n(G,)=n-1).
Now G, has ¢ components and no isolates.

Then by the theorem 3.6, G, =K, .

Therefore G=1tK, UK.

Corollary 3.8.Let G be a disconnected graph with #+1 components and one of the components is a
singleton (say) u.Then G =tK, UK, ifand only if n—m+t—1=nr(G).

Definition 3.9.Mycielski Graphs Let G =(V,E) be a simple graph. The Mycielskian of G is the
graph 1(G) with vertex set equal to the disjoint union V' UV U{u} where V'={x":xeV} and
the edge set EU{xy',x"y:xye E}U{y'u:y" €V'}. The vertex x is called the twin of the vertex
and the vertex u is called the root of 1(G).

Theorem 3.10.For any graph G, nr(G)+1<nr(u(G)) <nr(G)+2.

Proof: Let V' (G)= {u,,u,,...,u,} andlet V(u(G)) = {u,,u,,...,u,,u,,u},...,u) ,u} where
N(u,)=N@u))ufu} and N(u)={u,uy,....u}.

Let S = {u,uy,...,u; ;,u,} be an nr -set of G . Since N@u,)nS=N@u)nS ,
ncg(u,) = ncy(u)). Therefore S cannot be a neighbourhood resolving set of 1(G).

Let D bean nr-setof u(G). Suppose |DI|<S|.

Case (i) : Suppose D V' (G).

Then nc,(u,) = nc,(u,),a contradiction, since D isan nr-setof u(G).

Case (ii) : Suppose D < {uf,u;,...,ui} .

Then nc,(u')=nc, (u;), 1<i,j<n, i# j,acontradiction, since D isan nr-setof u(G).
Case (iii) : Suppose D contains atmost kK —1 elements (say) u,,u,,...,u, where t<k—1 from
{u,,uy,...,u,} and u.

Since u,u,,...,u, €V(G) and t<k-1, the set S' = {u,u,,...,u,} is not a neighbourhood
resolving set of G . Therefore there exist u,,u, €V(G), 1<a,b<n, a#b such that
ne (u,)= ne (u,).

Since u, and u, are not adjacent to u, we have nc,(u,)=ncp,(u,), a contradiction, since D is
an nr-setof u(G).

Case (iv) : Suppose D contains atmost kK —1 elements from {u, ,u;,...,ui} and u.

Then nc,(u) = nc, (u}) =(0,0,...,0,1), 1<i,j<n, i# j,acontradiction, since D isan nr-set
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of u(G).

Case (v) : Suppose D contains / elements (say) u,,u,,...,u, from {u,,u,,...,u,} and (t—1)
elements where [ <t <k from {u/,u},...,u.}.

Since [ <k and u,u,,...,u; €V(G), S" ={u,,u,,...,u,} isnot a neighbourhood resolving set of
G . Therefore there exist u ,u, €V(G), 1<s,6<n, s+t such that ne g, (u,)= ne (u,). Since
<uj,ub,...,ul > is independent and N(u,)NS"=N@u)nS" , nc,(u)=nc,(u)) , a
contradiction, since D isan nr-setof u(G).

Case (vi) : Suppose D contains [/ elements from {u,,u,,...,u,} and (¢—[) elements where
[<t<k-1 from {u,u),...,u)} and u.

Proceeding as in Case (v), this case leads to a contradiction.
Therefore | D [>|S|. Thatis nr(u(G))=nr(G)+1.

Let S, = SU{u}. Then nes, (u) =(0,0,...,0).
Case (A) : Suppose there is no element v €V (u(G)) with v#u such that v receives 0-code with
respect to ;.
Then for 1<i<n, ncg (u,)=(a,,a;,...,a,,0) and ncg (u))=(a,,a,,...,a,,1). Therefore S
is a neighbourhood resolving set of u(G).
Therefore nr(w(G))< S, [=|S|+1=nr(G)+1. Therefore nr(u(G))=nr(G)+1.
Case (B) : Suppose there exists an element v €V (u(G)) with v #u such that v receives 0-code
with respect to S .
Let v=u,, 1<a<n.

Subcase (i) : Suppose u, €S .
Without loss of generality, let v, = u, .
Since S is an nr-set of G, there exist two vertices u ,u, €V(G), 1<s,6<n, s#t, such that
u, privately resolves u, and u, with respect to S. Since u is not adjacent with u, and u,, u,
and u, are privately resolved by 1, with respectto ;.
Subcase (ia) : Suppose u, and wu, are different from .
Consider S, =SU{u/,u}.
Then ncg, (u,)=(a,,a,,...,a,,a,,0); nes, (u,)=(b,,a,,...,a,,b,0). Since u, privately resolves
u, and u, withrespectto S,, a, #b,.

nes, (»,)=1(0,0,...,0,0,0) ; ncs, (u})=(0,0,...,0,0,1) ; nes, (u)=1(0,0,...,0,1,0)

ncg (1) =(¢;,¢5,...,¢,,¢,,0) and ncSS(u})=(cf,cé,...,c,{,o,l), 2<[<n, I#s,t.

Clearly S, resolves any two vertices of V' (1(G)). Therefore S, isaneighbourhood resolving set of
u1(G).
Therefore nr(w(G))< S, [Fnr(G)+2.
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Therefore nr(G)+1<nr(u(G))<nr(G)+2.

Subcase (ib) : Suppose either u, or u, isthe same as ;.

Let u, =u,.Then nes, (u,)=01,a,,...,a,,1,0); nes, (u,)=(0,0,...,0,0,0);

nes, (1)) =(0,0,...,0,0,1) ; N, (u)=1(0,0,...,0,1,0) . nes, (u,)=(c,c5,...,¢;,¢,,0)  and
nes, (u))=(c/,chy...,c;,0,1), 2<I<n, [ #¢.

Therefore S, is a neighbourhood resolving set of £(G).

Therefore nr(u(G))<| S, |Fnr(G)+2.

Therefore nr(G)+1<nr(w(G))<nr(G)+2.

Subcase (ii) : Suppose u, €S .

Let S,=SuU{ul,u}.

Then nes, (u,)=(0,0,...,0,0,0) ; nes, (u)=1(0,0,...,0,0,1) ; nes, (u)=(0,0,...,0,1,0) .
nes, (u,)=(c,,¢y5...,¢,,d,0) and nes, (u)=(c|,c,...,c;,0,0), 2<I<n, [ #t.

Clearly S, is aneighbourhood resolving set of x(G) and nr(u(G))<|S;|=nr(G)+2.

Hence nr(G)+1<nr(u(G))<nr(G)+2.

4 Neighbourhood resolving numbers of G and E
We recall the

Theorem 4.1.Let G be a simple graph and let S’ be a subset of V' (G). Then S does not resolve
x,y€V(G) ifand only if N(x)NS=N(y)NS.

Observation 42.G and G will have neighbourhood resolving sets if and only if N(x)# N(y) for
every non-adjacent pair of vertices x,y in G and V' —N(x)#V —N(»), for every adjacent pair
x,y in G.

Theorem 4.3.Let S bean nr-setof G.Then S isnotaneighbourhood resolving set of G ifand
only if there exist two adjacent vertices x,y in G such that x€§ or yeS and

N[x]nS=N[y]nS in G.
Proof : Let S bean nr-setof G.
Suppose there exist two adjacent vertices X,y satisfying the hypothesis, then x,y ¢S, x and y

are non-adjacent in G and Nz(x)NnS=Nz(y)NS.
Therefore S does notresolve x and y in G . Hence the result,

Conversely, Suppose S is an nr-set of G which is not a neighbourhood resolving set of G . Then

there exist x,y€V(G) such that § does not resolve x and y in G . Therefore
N_(x)nS=N_(3)NS.

If x,y¢#S,then S doesnotresolves x and y in G, acontradiction. Therefore x €S or ye S
Suppose x and y are non-adjacent.
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Then N.(x)NS=N;(y)NS implies that x and y are not resolved by S, a contradiction.
Therefore x and y are adjacent.

Theorem 4.4. Let S be an nr-setof G.Then S is a neighbourhood resolving set of G ifand
only if for every non-adjacent vertices x,y €V (G), N(x)NnS#N(y)NS in G.

Proof : Let S bean nr-setof G.

Let N;(x)NS# N, (y)NS, for every non-adjacent vertices x,y €V (G).

Since Ng(x)NS#Ns(¥)NS, N(x)NS#N-(y)NS.

Therefore x and y areresolvedby S in 6 .

Suppose X and y are adjacent vertices such that N(x)NS=N(y)NS.
Subcase (i): x€S§, ygS.

Then N(x)NS # N(y)NS, a contradiction.

Similarly if xS and y €S, the same result follows.

Subcase (ii): x,y€S.

N(x)NnS#N(y)NS, a contradiction.

Subcase (iii) : x,y &S

Then S does not resolve x and ), a contradiction.

Hence when x and y are adjacent, then N(x)NS = N(y)NS.

Therefore N_(x)NS# N (y)nS and hence § resolves x,y in G . Therefore S is a

neighbourhood resolving set of 6 .

Conversely, let S be an nr-set of G which is also a neighbourhood resolving set of 6 Let
x,y€V(G) andlet x and y be non-adjacentin G .

Suppose N(x)NS=N(y)NS . Then S does not resolve x and y in G, a contradiction.

Therefore N(x)NS#N(y)NS.
Theorem 4.4 can be restated as follows.

Theorem 4.5.Let S be an nr-setof G.Then § is aneighbourhood resolving set of G ifand
only if for every pair of vertices x,y €V (G), N(x)NnS=N(y)NnS.

Corollary 4.6.Suppose S isan nr-setof G such that for every non-adjacent vertices X,y € V(G)
, N(x)nS # N(y)NS . Then nr(G) < nr(G).

Corollary 4.7.Suppose S and S " are nr-setsof G and EG) respectively such that for every pair
of vertices x,yeV(G) , Ng(x)NS#Nyi(y)NS and N (x)NS'#N (»)NS' . Then
nr(G) = nr(G).

Observation 4.8.If G and (_; admit neighbourhood resolving sets, then nr(G)+nr(6) <2n-2

and the upper bound is sharp as seen in F,.
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