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Abstract 
 

P.J.Slater [21] in 1975 introduced the concepts of locating sets and locating number in graphs. 
Subsequently with minor changes in terminology, this concept was elaborately studied by Harary and 
Melter [14], Chartrand et al [5], Robert C. Brigham et al [19], Chartrand et al [10]and Varaporn 
Saenpholphat and Ping Zhang [29][30]. Given an k -tuple of vectors, ),,,(= 21 kvvvS K , the 
neighbourhood adjacency code of a vertex v  with respect to S , denoted by )(vncS  and defined by 

),,,( 21 kaaa K  where ia  is 1 if v  and iv  are adjacent and 0 otherwise. S  is called a 
neighbourhood resolving set or a neighbourhood r -set if )()( vncunc SS ≠  for any )(, GVvu ∈ . The 
least(maximum) cardinality of a minimal neighbourhood resloving set of G  is called the 
neighbourhood(upper neighbourhood) resolving number of G  and is denoted by )(Gnr  ( )(GNR ). 
In this paper, Bounds for )(Gnr , Neighbourhood resolving number for sum and composition of two 
graphs are obtained. Neighbourhood resolving number for Mycielski Graphs are discussed. Also nice 
results involving neighbourhood resolving numbers of G  and G  are obtained. 
 
Keywords: locating sets, locating number, neighbourhood resolving sets, neighbourhood resolving 
number, Mycielski graph  
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1. Introduction 
In the case of finite dimensional vector spaces, every ordered basis induces a scalar coding of the 
vectors where the scalars are from the base field. While finite dimensional vector spaces have rich 
structures, graphs have only one structure namely adjacency. If a graph is connected, the adjacency 
gives rise to a metric. This metric can be used to define a code for the verices. P. J. Slater [21]  defined 
the code of a vertex v  with respect to a k -tuple of vertices ),,,(= 21 kvvvS K  as 

)),(,),,(),,(( 21 kvvdvvdvvd K  where ),( jvvd  denotes the distance of the vertex v  from the vertex 

jv . Thus, entries in the code of a vertex may vary from 0 to diameter of G . If the codes of the vertices 

are to be distinct, then the number of vertices in G  is less than or equal to kGdiam 1))(( + . If it is 
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required to extend this concept to disconnected graphs, it is not possible to use the distance property. 
One can use adjacenty to define binary codes, the motivation for this having come from finite 
dimensional vector spaces over 2Z . There is an advantage as well as demerit in this type of codes. The 
advantage is that the codes of the vertices can be defined even in disconnected graphs. The drawback is 
that not all graphs will allow resolution using this type of codes. 

Given an k -tuple of vectors, ),,,(= 21 kvvvS K , the neighbourhood adjacency code of a 
vertex v  with respect to S  is defined as ),,,( 21 kaaa K  where ia  is 1 if v  and iv  are adjacent 
and 0 otherwise. Whereas in a connected graph ),(= EVG , V  is always a resolving set, the same is 
not true if we consider neighbourhood resolvability. If u  and v  are two vertices which are 
non-adjacent and )(=)( vNuN , u  and v  will have the same binary code with respect to any subset 
of V , including V . The least(maximum) cardinality of a minimal neighbourhood resloving set of G  
is called the neighbourhood(upper neighbourhood) resolving number of G  and is denoted by )(Gnr  
( )(GNR ). 

In section 1, Bounds for Neighbourhood Resolving number of a graph is discussed. 
Neighbourhood resolving number for sum and composition of two graphs are obtained. Neighbourhood 
resolving number for Mycielski Graphs are also discussed. The second section deals with results 
involving neighbourhood resolving numbers of G  and G .  

 
2.Bounds for Neighbourhood Resolving number of a Graph 
Definition 2.1 Let G  be any graph. Let )(GVS ⊂ . Consider the k -tuple ),,,( 21 kuuu K  where S  
= },,,{ 21 kuuu K , 1≥k . Let )(GVv∈ . Define a binary neighbourhood code of v  with respect to 
the k -tuple ),,,( 21 kuuu K , denoted by )(vncS  as a k -tuple ),,,( 21 krrr K  where 







 ≤≤∈
otherwise

kiuNvif
r

i

i 0,
),1(1,

=  

S  is called a neighbourhood resolving set or a neighbourhood r -set if )()( vncunc SS ≠  for any 
)(, GVvu ∈ . 

The least cardinality of a minimal neighbourhood resloving set of G  is called the neighbourhood 
resolving number of G  and is denoted by )(Gnr . The maximum cardinality of a minimal 
neighbourhood resolving set of G  is called the upper neighbourhood resolving number of G  and is 
denoted by )(GNR . 
Clearly )()( GNRGnr ≤ . A neighbourhood resolving set S  of G  is called a minimum 
neighbourhood resolving set or nr-set if S  is a neighbourhood resolving set with cardinality )(Gnr .  

 
 
 
 
 
 
 
 
Example 2.2. 
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Now 1S  = },,{ 521 uuu  is a neighbourhood resolving set of G , since )( 1uncS  = (0,1,1) ; )( 2uncS  
= (1,0,1) ; 

)( 3uncS  = (0,1,0) ; )( 4uncS  = (0,0,1)  and  

)( 5uncS  = (1,1,0) . Also 2S  = },,{ 431 uuu  , 3S  = },,{ 421 uuu , 4S = },,{ 531 uuu  are 
neighbourhood resolving sets of G . For this graph, 3=)(=)( GNRGnr .  

 
Observation 2.3.The above definition holds good even if G  is disconnected.  

 
Theorem 2.4.[25] Let G  be a connected graph of order 3≥n . Then G does not have any 
neighbourhood resolving set if and only if there exist two non adjacent vertices u  and v  in )(GV  
such that )(=)( vNuN .  

 
2.1.Bounds for )(Gnr  
 
Theorem 2.5.For any graph G , 1)( −≤ nGnr .  
 
Proof : Suppose there exist a graph G  such that nGnr =)( . 
Then )(GV  is the minimal neighbourhood resolving set of G . For any )(GVu∈ , there exists two 
vertices yx,  different from u  such that x  and y  are privately resolved by u . That is one of x  
and y  is adjacent to u  while the other is not and )(=)( }{}{ yNxN uGuG −− .  
Case (i) : ∅−− =)(=)( }{}{ yNxN uGuG . 

Then x  is an isolate of G . Therefore }{xV −  is a neighbourhood resolving set of G , a 
contradiction, since )(GV  is a minimal neighbourhood resolving set of G .  
Case (ii) : ∅≠−− )(=)( }{}{ yNxN uGuG .  
Subcase (i) : x  and y  are non-adjacent.  
Subsubcase (i) : },,{= yxuVT − .  
Subsubcase (iA) : u  is adjacent with v , for all Tv∈ . 
Then x  does not resolve privately any pair of vertices. Therefore }{xV −  is a neighbourhood 
resolving set of G , a contradiction, since )(GV  is a minimal neighbourhood resolving set of G .  
Subsubcase (iB) :  There exists a vertex Tv∈  such that u  is not adjacent to v . 
Then y  does not resolve partially any pair of vertices. Therefore }{yV −  is a neighbourhood 
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resolving set of G , a contradiction, since )(GV  is a minimal neighbourhood resolving set of G . 
Subsubcase (ii) : },,{ yxuVT −⊂ . 
Let T  = },,,{ 21 kuuu K . Then TV −  = },,{ 1 nk uu K+ .  
Subsubcase (iiA) : u  is adjacent with v  for all },,{ yxuVv −∈ . 
Then y  does not resolve privately any pair of vertices. Therefore }{yV −  is a neighbourhood 
resolving set of G , a contradiction, since )(GV  is a minimal neighbourhood resolving set of G .  
Subsubcase (iiB) :  There exists Tv∈  such that u  is not adjacent to v . 
Then either x  or y  does not resolve privately any pair of vertices. 
Therefore }{xV −  or }{yV −  is a neighbourhood resolving set of G , a contradiction, since )(GV  
is a minimal neighbourhood resolving set of G .  
Subcase (ii) : x  and y  are not adjacent. 
Arguing as in Subcase(i) we get a contradiction. 
Hence 1)( −≤ nGnr .            
Observation 2.6 If 3|)(| ≥GV  then 1)(2 −≤≤ nGnr  and bounds are sharp. (The lower bound is 

attained in 3K  and upper bound is attained in nK ). The upper bound is attained in 
2

(n ) 2K  if n  is 

even and 12)
2

1( KKn
∪

−
 if n  is odd.  

 
Theorem 2.7.[26]Let G  be a connected graph of order n  such that kGnr =)( . Then knlog ≤2  
 
Observation 2.8.[26] There exists a graph G  in which kn 2=  and there exists a neighbourhood 
resolving set of cardinality k  such that kGnr =)( . Hence all the distinct binary k -vectors appear as 
codes for the n vertices.  

 
Theorem 2.9Let G  be a connected graph of order n  admitting neighbourhood resolving sets of G  
and let )(Gnr  = k . Then k  = 1 if and only if G  is either 2K  or 1K .  
 
Proof : If G  is 1K  or 2K  then 1=)(Gnr . 
Suppose 1=)(Gnr . Let }{= uS  be an nr -set of G . Then )(uncS  = (0). Therefore there exists no 
vertex in G  which is not adjacent to u .  
If there exist two vertices )(, GVyx ∈  which are adjacent to u  then they have the same 
neighbourhood code as (1) with respect to S , a contradiction. 
Therefore there exist atmost one vertex other than u  in G . Therefore G  = 1K  or 2K .            
Theorem 2.10.Let G  be a connected graph of order n  admitting neighbourhood resolving sets of  

.G Then )(Gnr  = 2 if and only if G  is either 3K  or +3K  a pendant edge or 13 KK ∪  or 

.12 KK ∪  
 
Proof : If G  is either 3K  or +3K  a pendant edge or 13 KK ∪  or 12 KK ∪ , then 2=)(Gnr . 
Suppose 2=)(Gnr . Let S  = },{ yx  be a minimum neighbourhood resolving set of G . Then there 
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are only two possibilities, either the two vertices say x  and y  in S  adjacent or non adjacent. 
If they are non adjacent then there the neighbourhood code of the two vertices with respect to S  is 
(0,0) , which is a contradiction.  
If they are adjacent, then since kn 2≤  there can be at most two more vertices in G . )(xncS  = 
(0,1)  and )(yncS  = (1,0) . Therefore the neighbourhood code of other two vertices are (1,1)  and 
(0,0)  which means that one vertex is adjacent to both the vertices of S  and other vertex is not 
adjacent to both the vertices of S . 
Hence G  is either 3K  or +3K  a pendant edge or 13 KK ∪  or 12 KK ∪ .            
3  Neighbourhood Resolving Number for binary operations on Graphs 

 
Theorem 3.1.Let G , H  be two connected vertex disjoint graphs of order 2≥ . Then we have 

1)()()( ++≤+ HnrGnrHGnr . Also )( HGnr +  = )()( HnrGnr +  if and only if at least one of 
G , H  has an nr -set S  for which no vertex receives 1-code with respect to the set S .  
 
 Proof : Let 1S  and 2S  be nr -sets of G  and H . 
Suppose both 1S  and 2S  allow 1-codes. Then 21 SS ∪  is not a neighbourhood resolving set for 

HG+ . 
Suppose )(GVu∈  receives 1-code with respect to 1S  and )(HVv∈  receives 1-code with respect 
to 2S . 
Then }{1 uS ∪  is a neighbourhood resolving set for G  not allowing 1-code for any vertex in )(GV  
and }{2 vS ∪  is a neighbourhood resolving set for H  not allowing 1-code for any vertex in )(HV . 

Therefore 21 }{ SuS ∪∪  and }{21 vSS ∪∪  are neighbourhood resolving sets of HG+ . 
Therefore 1)()()( ++≤+ HnrGnrHGnr . 
Suppose there exist nr -sets 1S , 2S  for G ,H  respectively such that at least one of them does not 
allow 1-code. 
Then 21 SS ∪  is a neighbourhood resolving set of HG+ . 
Therefore )()()( HnrGnrHGnr +≤+ . 

Let S  be an nr -set of HG+ . Let SGVT ∩)(=1  and SHVT ∩)(=2 . 
Clearly 1T  cannot resolve any two vertices of )( 2GV  and 2T  cannot resolve any two vertices of 

)( 1GV . Therefore 1T  and 2T  are neighbourhood resolving sets of G  and H  respectively. 
Therefore ||)( 1TGnr ≤  and ||)( 2THnr ≤ . 

Therefore ||=||||)()( 21 STTHnrGnr +≤+ . 
Therefore )()()( HGnrHnrGnr +≤+  and hence )( HGnr +  = )()( HnrGnr + . 
Suppose )( HGnr +  = )()( HnrGnr + . 

Let S  be an nr -set of HG+ . Let SGVT ∩)(=1  and SHVT ∩)(=2 . 
Proceeding as before we get that  

)(|=|=||||)()( 21 HGnrSTTHnrGnr ++≤+ . 

Suppose ||<)( 1TGnr . Then )(<)()( HGnrHnrGnr ++ , a contradiction.  
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Therefore |=|)( 1TGnr . similarly 2=)( THnr . 
Therefore 1T  and 2T  are nr -sets of G  and H  respectively such that 21 TT ∪  is an nr -set of 

HG+ .Therefore at least one of 1T , 2T  does not allow 1-code.           
 

Theorem 3.2.Suppose G  has a neighbourhood resolving set and H  has no neighbourhood resolving 
set. Then GoH  has no neighbourhood resolving set.  
 
Proof : Since H  has no neighbourhood resolving sets, there exists non-adjacent vertices u  and v  
in )(HV  such that )(=)( vNuN . 

Let )(GVw∈ . Let 1H  be the copy of H  attached with w  in GoH . Then u , v  in )( 1HV  are 
adjacent to x  in addition to their neighbours in 1H  which are the same for both u  and v . 
Therefore )(=)( vNuN GoHGoH . Hence GoH  has no neighbourhood resolving set.     
 
Theorem 3.3.There exist examples of graphs G  for which neighbourhood resolving set does not exist 
but GoH  has a neighbourhood resolving set where H  admits neighbourhood resolving sets exist.  

 
Illustration 3.4. 

 
 

The above graph G  is 44 PoC  in which 4C  has no neighbourhood resolving set but in 4P  
neighbourhood resolving sets exist. 
For G , 12=)(Gnr  and an nr -set is  

},,,,,,,,,,,,,,{ 20191817161514131211109865 uuuuuuuuuuuuuuu .  
2. mnoPK1,  has neighbourhood resolving sets even though nK1,  has no such set.  
 
Theorem 3.5.Let G  be a simple graph of order n . Let H  be a graph allowing neighbourhood 
resolving sets. Then 
(i) If there exists an nr -set of H  which neither allows 0-code nor the 1-code, then 

)(.=)( HnrnGoHnr . 
(ii) Suppose every nr -set of H  allows 0-code but not 1-code, then 1)(.=)( −+ nHnrnGoHnr . 
(iii) Suppose every nr -set of H  allows 1-code but not 0-code, then )()(.=)( GHnrnGoHnr γ+ . 
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(iv) Suppose every nr -set of H  allows both 0-code and 1-code, then 





−+
+

otherwise1,)(.
eddisconnect totally isG if,,)(.

=)(
nHnrn
nHnrn

GoHnr .  

 
Proof: Let G  be any graph of order n . Let )(GV  = },,,{ 21 nuuu K . Let 

iu
H , ni ≤≤1  be n

-copies of H  and join iu  of G  with every vertex of 
iu

H , ni ≤≤1 . 

(i) Let )(GVu∈ . Let uS  be an nr -set of uH  which neither allows 0-code nor the 1-code. 

Let T  = u
GVu

SU
)(∈

. Further Tu∉  for any )(GVu∈  and )(uncT  receives 1 at every place 

corresponding to the vertices of uS  and 0 at every other place. Since uS  does not allow 0-code or 

1-code, )()( xncunc TT ≠  for any )( uHVx∈ . Also for any )( uHVx∈  and any )( vHVy∈ , 

vu ≠ , )(xncT  will receive a non-zero entry in at least one place corredponding to the vertices of uS  
and 0 in all other places corresponding to the vertices of vS , uv ≠ , since uS  does not admit 0-code. 

Therefore )()( yncxnc TT ≠ . 
Therefore T  is a neighbourhood resolving set of GoH  and also )(.|=| HnrnT . 
Suppose 1T  is an nr -set of GoH  and let 1

uT  = )(1
uHVT ∩ . 

u  can not resolve any two vertices of uH , since u  is adjacent with every vertex of uH . Any vertex 
of G  other than u  as well as any vertex of vH , uv ≠  is not adjacent with any vertex of uH  and 
hence it can not resolve any two vertices of uH . 
Therefore 1

uT  is a neighbourhood resolving set of uH . 

If )(|>| 1
uu HnrT , then uT  can be replaced by an nr -set of uH  giving rise to a neighbourhood 

resolving set of GoH  whose cardinality is less than || 1T , a contradiction. 
Therefore 1

uT  is an nr -set of uH  and hence )(.|=| 1 HnrnT . 
Therefore )(.=)( HnrnGoHnr  and T  is an nr -set of GoH . 
(ii) Let )(GVu∈ . Let uS  be an nr -set of uH . Since every nr -set of H  allows 0-code but not 
1-code, uS  allows 0-code but not 1-code. 
Therefore there exists an unique )( uu HVx ∈  such that code of ux  with respect to uS  is (0). 

Let },,,{= 121
)(

−
∈

∪ niu
GViu

uuuST KU . 

Since any nr -set of H  allows 0-code for exactly one vertex, there exists unique 
iu
x  receiving 

0-code with respect to 
iu

S . For any )(
iu

HVx∈  and )(
ju

HVy∈ , ji ≠ , 1,1 −≤≤ nji , x  and 

y  will be resolved at the places iu  and ju  even when x  and y  receives 0-code with respect to 

iu
S  and 

ju
S  respectively. 

The vertex 
nu
x  receiving 0-code with respect to 

nu
S  is the only vertex receiving 0-code with respect 

to T . 
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For any )(
iu

HVx∈ , 11 −≤≤ ni , and )(
nu

HVy∈ , )( nj ≠ , y  receives a non-zero entry in a 

place corresponding to a vertex of 
nu

S  and x  receives 0-code in that place. Any iu , ni ≤≤1  

receives 1-code in the places corresponding to the vertices of 
iu

S  and 0 at places corresponding to 

vertices of 
ju

S , ij ≠ , nj ≤≤1 , and code ra  in the place corresponding to ru , 11 −≤≤ nr . 

Therefore T  resolves iu  and ju . Since 
iu

S  does not resolve 1-code, T  resolves x  and iu  for 

any )(
iu

HVx∈ , ni ≤≤1  and hence T  is a neighbourhood resolving set of GoH . 

Therefore 1)(.|=| −+ nHnrnT . 
Therefore 1)(.|=|)( −+≤ nHnrnTGoHnr . 
Let 1T  be an nr -set of GoH . Let 1

iu
T  = )(1

iu
HVT ∩  and 1

GT  = )(1 GVT ∩ . 

Clearly 1

iu
T  is a neighbourhood resolving set of 

iu
H . 

If )(|>| 1

iuiu
HnrT , then 

iu
T  can be replaced by an nr -set of 

iu
H  giving rise to the neighbourhood 

resolving set of GoH  whose cardinality is less than || 1T , a contradiction. 
Therefore 1

iu
T  is an nr -set of 

iu
H . 

Suppose 
1i
u  and 1

2 ui Tu ∉ . 

Suppose 2|| 1 −≤ nTG . Then the unique vertices 
1i
ux  and 

2i
ux  in 

1i
uS  and 

2i
uS  respectively 

receiving 0-code have 0-code with respect to 1T , a contradiction (since 1T  is an nr -set of GoH ). 
Therefore 1|| 1 −≥ nTG  and hence 1)(.|| 1 −+≥ nHnrnT . 
Therefore 1)(.)( −+≥ nHnrnGoHnr . 
Therefore 1)(.=)( −+ nHnrnGoHnr . 
(iii) Let 

iu
S , ni ≤≤1 , be an nr -set of 

iu
H . Since every nr -set of H  allows 1-code but not 

0-code, 
iu

S  does not allow 0-code but allows 1-code. 

Therefore there exists a unique 
iu
x  in )(

iu
HV  receiving 1-code with respect to 

iu
S , ni ≤≤1 . 

Let DST
iu

n

i

∪U
1=

=  where D  is a γ  set of G . 

Let },,,{= 21 γuuuD K . For any 
iu

Sx∈  and 
ju

Sy∈ , ji ≠ , nji ≤≤ ,1 , x  and y  are resolved 

by T  even if 
iu
xx =  and 

ju
xy =  . Since any nr -set of H  does not allow 0-code, x  and y  are 

resolved by T  even when iu  and ju  do not belong to D . 

iu
x  and iu  receive same code in all places corresponding to vertices of 

iu

n

i

SU
1=

. 

If Dui ∈ , then 
iu
x  and iu  receive distinct codes 1 and 0 at the place corresponding to iu . 

If Dui ∉ , then iu  is adjacent to some Dut ∈ . 
At the place corresponding to tu  in T , iu  receives 1 and x  receives 0. 
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Therefore iu  and 
iu
x  are resolved by T . 

Clearly iu  and ju  are resolved by T , since they receive different codes corresponding to the 

vertices of 
iu

S  as well as 
ju

S . 

Therefore T  is a neighbourhood resolving set of G  and hence )()(.)( GHnrnGoHnr γ+≤ . 
Let 1T  be an nr -set of GoH . 
Let )(= 11

iuiu
HVTT ∩  and )(= 11 GVTTG ∩ . 

Clearly 1

iu
T  is a neighbourhood resolving set of 

iu
H . 

If )(|>| 1

iuiu
HnrT , then 

iu
T  can be replaced by a nr-set of 

iu
H  giving rise to the neighbourhood 

resolving set of GoH  whose cardinality is less than || 1T , a contradiction. 
Therefore 1

iu
T  is an nr -set of 

iu
H . 

Suppose there exists 1
Gj Tu ∈  such that ju  is not adjacent with any vertex of 1

GT . Then 
ju

x  and ju  

receive the same code with respect to 1T , a contradiction. 
Therefore ju  is adjacent with some vertex of 1

GT  and hence 1
GT  is a a dominating set of G , which 

means )(|| 1 GTG γ≥ . 
Therefore )()(.|| GHnrnT γ+≥ . 
That is )()(.)( GHnrnGoHnr γ+≥ . 
Therefore )()(.=)( GHnrnGoHnr γ+ . 
(iv) Let )(GVu∈ . Let uS  be an nr -set of uH . Since every nr -set of H  allows 0-code and 
1-code, uS  allows 0-code and 1-code. 
Therefore there exists a unique )( uu HVx ∈  such that code of ux  with respect to uS  is ,0)(0,0,K  
and a unique )(1

uu HVx ∈  such that code of 1
ux  with respect to uS  is ,1)(1,K .  

Case (i) : Suppose G  is not totally disconnected. 
Then there exists a 1)( −n -subset (say) },,,{ 121 −nuuu K  of )(GV  which is a dominating set of G . 

Let T  = },,,{ 121
)(

−
∈

∪ niu
GViu

uuuS KU . 

Arguing as in proof of )(ii , it can easily seen that that T  resolves any two vertices 21,ww  in 
)(GoHV  where },{},{ 1

21 iiu
uxww ≠  for some i , ni ≤≤1 . 

Since },,,{ 121 −nuuu K  is a dominating st of G , T  resolves 1

iu
x  and iu , for some i , ni ≤≤1 . 

Therefore T  is a neighbourhood resolving set of GoH . 
Therefore 1)(.)( −+≤ nHnrnGoHnr . 
Similar to the proof of )(ii  and )(iii , it is obvious that 1)(.)( −+≥ nHnrnGoHnr . 
Therefore 1)(.=)( −+ nHnrnGoHnr .  
Case (ii) : Suppose G  is totally disconnected. 
Since H  admits 1-code, nHnrnGHnrnGoHnr ++≥ )(.=)()(.)( γ . 
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But nHnrnGoHnr +≤ )(.)( , since )(=
)(

GVST
iu

GViu

∪
∈
U  is a neighbourhood resolving set of 

GoH . 
Therefore nHnrnGoHnr +)(.=)( .            
Theorem 3.6. Let G  be a ),( mn  graph admitting neighbourhood resolving sets. Then (i) )(Gnr  = 
mn−  if and only if 1= KG  or 2K  or 21 KK ∪ . 

(ii) Let G  have t  components and let G  have no isolates. Then 
1=)( −+− tmnGnr  if and only if 2= tKG . 

 
Proof : (i) If 1= KG  or 2K  or 21 KK ∪  then mnGnr −=)(  . 
Conversely, let mnGnr −=)( . 
For any connected graph G , 1≤−mn . 

Since 1)( ≥Gnr , 1=mn− . Therefore 1=)(Gnr  and hence G  is 1K  or 2K . 
Suppose G  is disconnected . 
Let kGGG ,,, 21 K  be the components of G . 

Then atmost one iG  is 1K . 

Since )()(1)( iii GmGnGnr −≥≥ , )()()( iii GmGnGnr −≥ . 

Now )())()((=
1=1=

i

k

i
ii

k

i
GnrGmGnmn ∑∑ ≤−− . 

Let S  be an nr -set of G . 
Let )(= ii GVST ∩ , ki ≤≤1 . 
Then iT , ki ≤≤1 , is a neighbourhood resolving set of iG . 

Therefore ||)( ii TGnr ≤ . 

mnSTGnrGmGnmn i

k

i
i

k

i
ii

k

i
−≤≤−− ∑∑∑ |=|=||)())()((=

1=1=1=
. 

Therefore )(=))()((
1=1=

i

k

i
ii

k

i
GnrGmGn ∑∑ − . 

Since )())()(( iii GnrGmGn ≤− , we get that 

)(=))()(( iii GnrGmGn − , for every i , ki ≤≤1 . 

Therefore 1=)(=))()(( iii GnrGmGn −  (Since 1))()(( ≤− ii GmGn  and 1))( ≥iGnr . 

Therefore iG  is 1K  or 2K . Also ||=||=)(=
1=1=

STGnrmn i

k

i
i

k

i
∑∑− . 

If 3≥k , then there exist at least two components in G  which are 2K . 

Therefore ||<)(
1=1=

i

k

i
i

k

i
TGnr ∑∑ , a contradiction. 

Therefore 2≤k . 
Therefore G  = 1K  or 2K  or 21 KK ∪ . 
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(ii)If 2= tKG  then 1=)( −+− tmnGnr . 
Conversely, let 1=)( −+− tmnGnr .  
Case (i) :  Let 1=t . 
Then G  is connected and mnGnr −=)( . 
Therefore 1= KG  or 2K .  
Case (ii) :  Let 2≥t . Let tGGG ,,, 21 K  be the components of G . 
Since G  has no isolates, 2|| ≥iG , for every i . 
Since )()(1)( iii GmGnGnr −≥≥ , we get )()()( iii GmGnGnr −≥ . 

)())()((=
1=1=

i

t

i
ii

t

i
GnrGmGnmn ∑∑ ≤−− . 

Let S  be an nr -set of G . 
Let iT  = )( iGVS ∩ , ti ≤≤1 . 
Then iT , ti ≤≤1  is a neighbourhood resolving set of iG . 
Therefore ||)( ii TGnr ≤ . 

1|=|=||)())()((=
1=1=1=

−+−≤≤−− ∑∑∑ tmnSTGnrGmGnmn i

t

i
i

t

i
ii

t

i
. 

Suppose 0)()( ≤− ii GmGn , for some i , ti ≤≤1 . 

Then iG  is not a tree. Therefore iG  contains a cycle. 

1))()((=
1=

−≤−− ∑ tGmGnmn ii

t

i
. 

12=11)2(|||=|
1=

++−≥∑ ttTS i

t

i
. (since G  has no isolates). 

||2<22=111 1 Stttttmn ≤−−+−≤−+− , a contradiction. 
Therefore 1)()( ≥− ii GmGn , for every i . 
But 1)()( ≤− ii GmGn , for every i . 
Therefore 1=)()( ii GmGn − , for every i . 
Therefore iG  is a tree for every i  and 1KGi ≠ , for every i . 
Therefore tmn =− . 
Therefore 12=1=1 −−+−+− ttttmn . 
Suppose 2KGi ≠ . Then 3|| ≥iT . 

ttTS i

t

i
2=12)2(3|||=|

1=
+−+≥∑ . 

But 12|=| −tS , a contradiction. 
Therefore 2= tKG .            
 
Theorem 3.7.Let G  be a disconnected graph with 1+t  components and one of the components is a 
singleton (say) u . Then 12= KtKG ∪  if and only if 2=)( 1 −+− tmnGnr  where }{=1 uGG − .  
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Proof : Suppose 12= KtKG ∪ . Then 12=)( 1 −tGnr . 

12=212=2 −−+−+−+− tttttmn . 
Therefore 2=)( 1 −+− tmnGnr . 
Conversely, let 1)()(=2=)( 111 −+−−+− tGmGntmnGnr , (since 1=)( 1 −nGn ). 

Now 1G  has t  components and no isolates. 
Then by the theorem 3.6, 21 = tKG . 
Therefore 12= KtKG ∪ .            
 
Corollary 3.8.Let G  be a disconnected graph with 1+t  components and one of the components is a 
singleton (say) u . Then 12= KtKG ∪  if and only if )(=1 Gnrtmn −+− .  

 
Definition 3.9.Mycielski Graphs   Let ),(= EVG  be a simple graph. The Mycielskian of G  is the 
graph )(Gµ  with vertex set equal to the disjoint union }{uVV ∪′∪  where }:{= VxxV ∈′′  and 
the edge set }:{}:,{ VyuyExyyxyxE ′∈′′∪∈′′∪ . The vertex x′  is called the twin of the vertex 
and the vertex u  is called the root of )(Gµ .  
 
Theorem 3.10.For any graph G , 2)())((1)( +≤≤+ GnrGnrGnr µ .  
 
Proof: Let )(GV = },,,{ 21 nuuu K  and let ))(( GV µ  = },,,,,,,,{ 11

2
1
121 uuuuuuu nn KK  where 

}{)(=)( 1
iii uuNuN ∪  and },,,{=)( 11

2
1
1 nuuuuN K . 

Let S  = },,,,{ 121 kk uuuu −K  be an nr -set of G . Since SuNSuN ii ∩∩ )(=)( 1 , 

)(=)( 1
iSiS uncunc . Therefore S  cannot be a neighbourhood resolving set of )(Gµ . 

Let D  be an nr -set of )(Gµ . Suppose |||| SD ≤ .  
Case (i) : Suppose )(GVD⊆ . 
Then )(=)( 1

iDiD uncunc , a contradiction, since D  is an nr -set of )(Gµ .  
Case (ii) : Suppose },,,{ 11

2
1
1 nuuuD K⊆ . 

Then )(=)( 11
jDiD uncunc , nji ≤≤ ,1 , ji ≠ , a contradiction, since D  is an nr -set of )(Gµ .  

Case (iii) : Suppose D  contains atmost 1−k  elements (say) tuuu ,,, 21 K  where 1−≤ kt  from 

},,,{ 21 nuuu K  and u . 

Since )(,,, 21 GVuuu t ∈K  and 1−≤ kt , the set 1S  = },,,{ 21 tuuu K  is not a neighbourhood 

resolving set of G . Therefore there exist )(, GVuu ba ∈ , nba ≤≤ ,1 , ba ≠  such that 

)(=)( 11 bSaS
uncunc . 

Since au  and bu  are not adjacent to u , we have )(=)( bDaD uncunc , a contradiction, since D  is 
an nr -set of )(Gµ .  
Case (iv) : Suppose D  contains atmost 1−k  elements from },,,{ 11

2
1
1 nuuu K  and u . 

Then ,0,1)(0,0,=)(=)( 11 KjDiD uncunc , nji ≤≤ ,1 , ji ≠ , a contradiction, since D  is an nr -set 
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of )(Gµ .  
Case (v) : Suppose D  contains l  elements (say) luuu ,,, 21 K  from },,,{ 21 nuuu K  and )( lt −
elements where ktl ≤<  from },,,{ 11

2
1
1 nuuu K . 

Since kl <  and )(,,, 21 GVuuu l ∈K , },,,{= 21
11

luuuS K  is not a neighbourhood resolving set of 

G . Therefore there exist )(, GVuu ts ∈ , nts ≤≤ ,1 , ts ≠  such that )(=)( 1111 tSsS
uncunc . Since 

>,,,< 11
2

1
1 nuuu K  is independent and 11111 )(=)( SuNSuN ii ∩∩ , )(=)( 11

tDsD uncunc , a 
contradiction, since D  is an nr -set of )(Gµ .  
Case (vi) : Suppose D  contains l  elements from },,,{ 21 nuuu K  and )( lt −  elements where 

1< −≤ ktl  from },,,{ 11
2

1
1 nuuu K  and u . 

Proceeding as in Case (v), this case leads to a contradiction. 
Therefore ||>|| SD . That is 1)())(( +≥ GnrGnr µ . 
Let 1S  = }{uS ∪ . Then ,0)(0,0,=)(

1
KuncS .  

Case (A) : Suppose there is no element ))(( GVv µ∈  with uv ≠  such that v  receives 0-code with 
respect to 1S . 
Then for ni ≤≤1 , ,0),,,(=)( 211 ikiiiS aaaunc K  and ,1),,,(=)( 21

1

1 ikiiiS aaaunc K . Therefore 1S  

is a neighbourhood resolving set of )(Gµ . 
Therefore 1)(=1||=||))(( 1 ++≤ GnrSSGnr µ . Therefore 1)(=))(( +GnrGnr µ .  
Case (B) : Suppose there exists an element ))(( GVv µ∈  with uv ≠  such that v  receives 0-code 
with respect to 1S . 
Let auv = , na ≤≤1 .  
 Subcase (i) : Suppose Sua ∈ . 
Without loss of generality, let 1= uva . 
Since S  is an nr -set of G , there exist two vertices )(, GVuu ts ∈ , nts ≤≤ ,1 , ts ≠ , such that 

1u  privately resolves su  and tu  with respect to S . Since u  is not adjacent with su  and tu , su  

and tu  are privately resolved by 1u  with respect to 1S .  

Subcase (ia) : Suppose su  and tu  are different from 1u . 

Consider },{= 1
12 uuSS ∪ . 

Then ,0),,,,(=)( 1212
aaaaunc ksS K ; ,0),,,,(=)( 1212

baabunc ktS K . Since 1u  privately resolves 

su  and tu  with respect to 1S , 11 ba ≠ . 

,0,0,0)(0,0,=)( 12
KuncS ; ,0,0,1)(0,0,=)( 1

12
KuncS ; ,0,1,0)(0,0,=)(

2
KuncS . 

,0),,,,(=)( 1212
ccccunc klS K  and ,0,1),,,(=)( 11

2
1
1

1

3 klS cccunc K , nl ≤≤2 , tsl ,≠ . 

Clearly 2S  resolves any two vertices of ))(( GV µ . Therefore 2S  is a neighbourhood resolving set of 
)(Gµ . 

Therefore 2)(|=|))(( 2 +≤ GnrSGnr µ . 
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Therefore 2)())((1)( +≤≤+ GnrGnrGnr µ .  
Subcase (ib) : Suppose either su  or tu  is the same as 1u . 

Let 1= uus . Then ,1,0),,(1,=)( 22 ktS aaunc K ; ,0,0,0)(0,0,=)( 12
KuncS ; 

,0,0,1)(0,0,=)( 1
12

KuncS ; ,0,1,0)(0,0,=)(
2

KuncS . ,0),,,,(=)( 1212
ccccunc klS K  and 

,0,1),,,(=)( 11
2

1
1

1

3 klS cccunc K , nl ≤≤2 , tl ≠ . 

Therefore 2S  is a neighbourhood resolving set of )(Gµ . 

Therefore 2)(|=|))(( 2 +≤ GnrSGnr µ . 
Therefore 2)())((1)( +≤≤+ GnrGnrGnr µ .  
Subcase (ii) :  Suppose Sua ∉ . 
Let },{= 1

3 uuSS a∪ . 

Then ,0,0,0)(0,0,=)(
3

KaS unc ; ,0,0,1)(0,0,=)( 1

3
KaS unc ; ,0,1,0)(0,0,=)(

3
KuncS . 

,0),,,,(=)( 212
dcccunc klS K  and ,0,0),,,(=)( 11

2
1
1

1

3 klS cccunc K , nl ≤≤2 , tl ≠ . 

Clearly 3S  is a neighbourhood resolving set of )(Gµ  and 2)(|=|))(( 3 +≤ GnrSGnr µ . 
Hence 2)())((1)( +≤≤+ GnrGnrGnr µ .            

4  Neighbourhood resolving numbers of G  and G  
 We recall the  
 
Theorem 4.1.Let G  be a simple graph and let S  be a subset of )(GV . Then S  does not resolve 

)(, GVyx ∈  if and only if SyNSxN ∩∩ )(=)( .  
 

Observation 4.2.G  and G  will have neighbourhood resolving sets if and only if )()( yNxN ≠  for 
every non-adjacent pair of vertices yx,  in G  and )()( yNVxNV −≠− , for every adjacent pair 
yx,  in G .  

Theorem 4.3.Let S  be an nr -set of G . Then S  is not a neighbourhood resolving set of G  if and 
only if there exist two adjacent vertices yx,  in G  such that Sx∈  or Sy∈  and 

SyNSxN ∩∩ ][=][  in G .  
Proof : Let S  be an nr -set of G . 
Suppose there exist two adjacent vertices yx,  satisfying the hypothesis, then Syx ∉, , x  and y  

are non-adjacent in G  and SyNSxN GG ∩∩ )(=)( . 

Therefore S  does not resolve x  and y  in G . Hence the result. 

Conversely, Suppose S  is an nr -set of G  which is not a neighbourhood resolving set of G . Then 
there exist )(, GVyx ∈  such that S  does not resolve x  and y  in G . Therefore 

SyNSxN GG ∩∩ )(=)( . 

If Syx ∉, , then S  does not resolves x  and y  in G , a contradiction. Therefore Sx∈  or Sy∈
. 
Suppose x  and y  are non-adjacent. 
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Then SyNSxN GG ∩∩ )(=)(  implies that x  and y  are not resolved by S , a contradiction. 
Therefore x  and y  are adjacent.            

Theorem 4.4. Let S  be an nr -set of G . Then S  is a neighbourhood resolving set of G  if and 
only if for every non-adjacent vertices )(, GVyx ∈ , SyNSxN ∩≠∩ )()(  in G .  
Proof : Let S  be an nr -set of G .  
Let SyNSxN GG ∩≠∩ )()( , for every non-adjacent vertices )(, GVyx ∈ . 
Since SyNSxN GG ∩≠∩ )()( , SyNSxN GG ∩≠∩ )()( . 

Therefore x  and y  are resolved by S  in G . 
Suppose x  and y  are adjacent vertices such that SyNSxN ∩∩ )(=)( .  
Subcase (i) : Sx∈ , Sy∉ . 
Then SyNSxN ∩≠∩ )()( , a contradiction. 
Similarly if Sx∉  and Sy∈ , the same result follows.  
Subcase (ii) : Syx ∈, . 

SyNSxN ∩≠∩ )()( , a contradiction.  
Subcase (iii) : Syx ∉, . 
Then S  does not resolve x  and y , a contradiction. 
Hence when x  and y  are adjacent, then SyNSxN ∩≠∩ )()( . 

Therefore SyNSxN GG ∩≠∩ )()(  and hence S  resolves yx,  in G . Therefore S  is a 

neighbourhood resolving set of G . 
Conversely, let S  be an nr -set of G  which is also a neighbourhood resolving set of G . Let 

)(, GVyx ∈  and let x  and y  be non-adjacent in G . 
Suppose SyNSxN ∩∩ )(=)( . Then S  does not resolve x  and y  in G , a contradiction. 
Therefore SyNSxN ∩≠∩ )()( . 
Theorem 4.4 can be restated as follows.            
Theorem 4.5.Let S  be an nr -set of G . Then S  is a neighbourhood resolving set of G  if and 
only if for every pair of vertices )(, GVyx ∈ , SyNSxN ∩≠∩ )()( .  

 
Corollary 4.6.Suppose S  is an nr -set of G  such that for every non-adjacent vertices )(, GVyx ∈
, SyNSxN ∩≠∩ )()( . Then )()( GnrGnr ≤ .  

Corollary 4.7.Suppose S  and 1S  are nr -sets of G  and )(G  respectively such that for every pair 
of vertices )(, GVyx ∈ , SyNSxN GG ∩≠∩ )()(  and 11 )()( SyNSxN GG ∩≠∩ . Then 

)(=)( GnrGnr .  

Observation 4.8.If G  and G  admit neighbourhood resolving sets, then 22)()( −≤+ nGnrGnr  
and the upper bound is sharp as seen in 4P .  
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