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Abstract 

 
(0,1)L -labelling of a graph ),(= EVG  is a function f  from the vertex set )(GV  to the set of 

non-negative integers such that adjacent vertices get number zero apart, and vertices at distance two get 
distinct numbers. The goal of (0,1)L -labelling problem is to produce a legal labelling that minimize 
the largest label used. Since (0,1)L -labelling problem is NP-complete for general graph, we 
investigate the problem for interval graph and present an efficient algorithm for finding the (0,1)L
-labelling of the said graph.  
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1.  Introduction 
In radio frequency assignment, the aim is to assign radio frequency to transmitters at different locations 
without causing interference. The problem is related to graph coloring problem where the vertices of a 
graph represent the transmitters and the edges indicate possible interferences between adjacent vertices. 
The frequencies are modeled as non-negative integers, which we shall refer to as labels or colours. 

   (0,1)L -labelling problem is a special type of graph labelling problem. It is the problem of assigning 
radio frequencies to transmitters such that transmitters that are closed (distance two apart) receive 
different frequencies and transmitters that are very close together (distance one apart) receive 
frequencies zero apart. The span of (0,1)L -labelling is the difference between highest and lowest 
labeled used. The aim is to minimize the span. The minimum span over all possible labelling functions 
is denoted by )(0,1 Gλ  and is called 0,1λ  number of G . 
   In the area of graph labelling problem there are two special type of collisions (frequency 
interference) have been studied, namely direct collisions and hidden collisions. In direct collisions, a 
radio station and its neighborhood must have different frequencies, so their signals will not collide. This 
is nothing but a normal vertex coloring or (0,1)L -labelling problem. In hidden collisions, a radio 
station must receive signals of the same frequencies from any of its neighbour. Thus the only 
requirement here is that for every station, all its neighbour must have distinct frequencies or labels, but 
there is no requirement on the label of the station itself. Bertossi et al. [2] studied the case of avoiding 
hidden collision in the multihop radio networks. To avoid the hidden collision from its adjacent stations, 
we require distinct labels for its intermediate adjacent stations. Here we suppose that there is a little 
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direct collision in the system. Direct collision is so week that we can ignore it. Hence we allow the same 
labels for two adjacent stations. Therefore, this problem can be formulated as (0,1)L -labelling 
problem. 
   Frequency assignment problem has been widely studied in the past [1, 4, 5, 7, 8, 18]. We focus our 
attention on (0,1)L -labelling of graphs. Different bounds for )(0,1 Gλ  were obtained for various type 

of graphs. The upper bound of )(0,1 Gλ  of any graph G  is ∆−∆2  [9], where ∆  is the degree of the 
graph. In [3], Bodlaender et al. compute upper bounds for graphs of treewidth bounded by t  proving 
that ttG −∆≤)(0,1λ . They also shown that (0,1)L -labelling number of a permutation graph not 
exceed 22 −∆ . In [2], the NP-completeness result for the decision version of the (0,1)L -labelling 
problem is derived when the graph is planar by means of a reduction from 3-vertex colouring of 
straight-line planer graph. Very recently Khan et al. [10] investigated the problem on cactus graph. In 
this paper, we investigate the problem on interval graph. 
   This paper is organized as follows. Some preliminaries are discussed in Section 2. Then an algorithm 
of (0,1)L -labelling of interval graph and some results related to the algorithm are presented in Section 
3 . Finally, in Section 4  conclusions are made. 

 
2.  Preliminaries and notations 
Throughout the paper we consider finite undirected interval graphs without multiple edges or loops. 
The vertex set (edge set) of a graph G  is denoted by )(GV  ( )(GE  respectively). 
   Let ),( yxd  be denot the distance between x  and y  in a graph G , which is the length of the 
shortest path joining x  and y . 
   Let )}(),(:)({=)( GEvuGVuvN ∈∈  denotes the set of neighbours called the open 
neighborhood of the vertex v . The set }{)(=][ vvNvN ∪  denoted the closed neighborhood of v . 
The symbol n  is reserved for the number of vertices of the graph ),(= EVG . 

 
Definition 1. (Interval graph) An undirected graph ),(= EVG  is an interval graph if the vertex set 
V  can be put into one-to-one correspondence with a set of intervals I  on the real line R  such that 
two vertices are adjacent in G  iff their corresponding intervals have non-empty intersection.  

 
   The intervals and the vertices of an interval graph are the same things. The set I  is called an 
interval representation of G and G is referred to as the intersection graph of I  . Here, we assume that 
the input graph is given by an interval representation I  which is the set of n  sorted intervals labelled 
by n,1,2,K . 
   Let },,,{= 21 nIIII K , where ],[= jjj baI , nj K1,2,= ; be the interval representation of the 

given interval graph ),(= EVG , },{1,2,= nV L , ja  and jb  are respectively the left and the right 

end points of the interval jI . Without any loss of generality, we assume that each interval contains both 
its end points and that no two intervals share a common end point. Also, we assume that the intervals in 
I  are indexed by increasing right end points, that is, nbbb <<< 21 L . This indexing is known as IG 
ordering. 
   Adjacency of two intervals (also vertices) can be tasted using the result of the following lemma.  
 
Lemma 1. [17] If ],[ ii ba  and ],[ jj ba  are endpoints of the vertices i  and j  respectively then i , 



An Efficient Algorithm to Solve L(0,1)-Labelling Problem on Interval Graphs 
 

33 
 

j  are non-adjacent if and only if ji ab <  or ij ab < .  
 

Interval graphs and many of its applications are discussed extensively in [6, 11, 12, 13, 14, 15, 16, 17]. 
This graph satisfies lot of intersecting properties. We just point out some of them. 

 
Lemma 2.  For the vertices kji ,,  of an interval graph G , if jik <<  and 2>),( jid , then 

2>),( jkd .                                                     
 
Proof.  Let G  be an interval graph and 2>),( jid , where ij > . Also we assume that the interval 
in I  are indexed by increasing right end points. So when ik <  then ik bb < (right end point of the 
interval kI  is less than the right end point of the interval iI ). Thus the distance from k  to j  is 
obviously grater than 2 as 2>),( jid . Hence the result.                                                        

 
Lemma 3. ([14]) The graph G  is an interval graph if and only if there exist an ordering of its vertices 

nvvvv <....<<< 321  such that lji vvv <<  and Evv li ∈),(  then Evv lj ∈),( .  
 

Lemma 4. ([6]) The maximal clique of an interval graph G  can be linearly ordered such that for 
every vertex Gv∈ , the maximal clique containing v  occurs consecutively.  
   We now define some special types of sets of vertices. 

 
Definition 2. Let αB  is the set of 2 -nbd vertices of α with index greater than α . 
i.e., |)({= GVjB ∈α  2=),( αjd  and }.> αj   
 
For example, for the graph of Figure 1, {7,10}=5B .  
 
Definition 3. iBα  is the set of 2 -nbd vertices of α  passing through i  and index greater than α . 

i.e., |)({= GVjBi ∈α  2=),( αjd  and the path joining j  and α  passing through i  and 
}.>αj   

 
For the graph of Figure 1, {7,10}=8

5B  but φ=6
5B .  

 
Definition 4. For an interval graph G  we define a set iS , where )(GVi∈  such that 
(i) all the vertices of iS  are adjacent to i . 
(ii) no two vertices of iS  are adjacent. 
(iii) each iS  is maximal.  

 
Some characteristic of the set iS  are state below. 
(i) iS , for all ni ,1,2= K  is not a singleton set. 

(ii) The set iS  for some )(GVi∈  may not be unique, but the cardinality of the set is unique. For 
example, in Figure 1, {7,9}=10S  or {7,12} or {8,9} or {8,12}. That is 10S  is not unique but 
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2|=| 10S . 
(iii) The vertices of iS  are independent, follows from the condition (ii) 

(iv) If iSyx ∈, , then 1=),(=),( iydixd , but 2=),( yxd . 
 

Lemma 5.  If φ=iS , for all )(GVi∈ , then G  is complete.  
 
Proof.  If φ=iS  for some )(GVi∈ , then there does not exist at least two vertices x  and y  in 

iS  such that 2=),( yxd  via i . That is, the vertices of G  are adjacent to each other. This is true for 
all )(GVi∈ . Hence the result.                 
   In the next lemma we established a relation between )(0,1 Gλ  and ||max iS , ni ,1,2,= K  for an 
interval graph.                                               

 
Lemma 6.  Let ||max=

)(
i

GVi
Sk

∈
, ni ,1,2,= K . Then at least k  labels are needed to label an interval 

graph by (0,1)L -labelling.  
 
Proof.  Let )(GV∈α  such that kSS i

GVi
|=|max|=|

)(∈
α . Clearly αα ∪S  forms a subgraph of G . 

Thus when we label this subgraph by (0,1)L -labelling then any one member of αS  and α  takes 
same label and all other member(s) get distinct labels. Thus exactly k -labels (namely 1,0,1, −kK ) 
needed to label the subgraph αα ∪S . Hence 1)(0,1 −≥ kGλ .                                                
From this lemma one can conclude that the lower bound of )(0,1 Gλ  of interval graph is 

.1||max
)(

−
∈

i
GVi

S  

The algorithm max S , generates all niSi ,1,2,=|,| K , and then computes the value of max
},1,2,=|:{| niSi K  . 

 
Algorithm max S   
Input: Interval represent of the interval graph. 
Output: Maximum || iS , for .,1,2,= ni K  
Step 1.  Repeat steps 1 to 3 for .,1,2,= ni K  

  Choose ],[ ii ba  // ia  and ib  represent left and right end points of             
                    the  Interval i  respectively//  

Step 2. Search an interval ],[ yx ab  on the real line R  such ],[],[ iiyx baab ⊂    

Step 3.  If there   exist no x  and y  such that ],[],[ iiyx baab ⊂ , then 

   set 0|=| iS ; 
     else  
        choose ],[ iij bab ∈  such that no other right end points of some        

        intervals appear between ],[ ji ba ; 
     set temp= j ; 
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   count=1; 
Step 3.1.  Find i

tempB  // by definition 3// 

Step 3.2.  If φ=i
tempB  then go to Step 3.3;  

            else 
               find min i

tempB ;  

                set temp=min ;i
tempB  

               count=count+1; 
             go to Step 3.1;  
Step 3.3.  Set || iS =count; 

Step 4. Find maximum of { |}|,|,||,| 21 nSSS K  
end max S . 

 
3.  The Algorithm 
The strategy of our proposed algorithm is as follows. First of all we partition the vertex set )(GV  into 
a minimum number of disjoint sets (say p ) in such a way that each set forms a clique. Let 

},,,{=)( 21 pUUUGV K  be such a partition, where φ=ji UU ∩  for all, pji ,1,2,=, K , ji ≠  

and each iU  is a clique.  
The following algorithm is used to partition the set of vertices. 
 
Algorithm VP 
Input: Interval representation of the interval graph G . 
Output: Partition }....,,,{ 321 nUUUU of the vertices of G . 
Step 1. (Initialization) 

 VS =1  (Set of vertices of G ). 
 [1]=1 NU  // 1U  is the first partition.//  
 Set 1=i . 

Step 2. Compute iii USS −+ =1 . 
    If φ=1+iS  then 
     stop; 
        else  
          Compute 1+iminS ; 
       set 1= +iminSj ; 
     find ][ jN ; 

Step 3. Set 11 ][= ++ ∩ ii SjNU ; 
Step 4. Set 1= +ii  and go to step 2;  
end VP. 
 
   Throught the paper, labelling of a partition means the labelling of its vertices by a label and 
unlabelled partition means the vertices of this partition are not labeled by any label. 
   After partition of the vertices we label the vertices of the graph using (0,1)L -labelling. First we 
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define a set 1},{0,1,= −kL L , that is, the set of labels which are initially used to label the graph, 
where 1−k  is the lower bound of the label (by Lemma 6). Then we label the partitions kUUU ,,, 21 L  
by 1,0,1, −kL  respectively. The remaining partitions (if exist) are labeled one by one in ascending 
order of their suffixes. The choice of label for an unlabeled partition depend on its previous partition. 
Let mU  was already been labeled but 1+mU  is unlabeled, then we choose the label 1)( +mUf  (mod  

|| L ) for the partition 1+mU . Then we check the validity of the label )( 1+mUf  for the partition 1+mU . 
If the label is not valid(does not fulfill the condition of (0,1)L -labelling) for the partition 1+mU , then 

we choose another label 2)( +mUf  (mod |)| L  for the partition 1+mU  and again check the validity 
of this new label for the partition 1+mU . If all the labels of the set L  are not valid for 1+mU , then we 
choose a new label which does not belong to L  and assign this new label for the partition 1+mU . 
   We now define a P-set as follows. 

 
Definition 5. Suppose lUf m =)( . To check the validity of the label l  for the partition mU , we find a 
partition jU  such that lUf j =)( , where mj <  and there exist no partition kU , where lkj <<  

such that lUf k =)( . We define a set called P-set corresponding to mU  is denoted by m
jP  and is 

define as  
 }.2,),(:{= mjj

m
j UvandUuwherevudUuP ∈∈≤∈  

If no partition jU  for mj <  exist then we say that the P-set corresponding to mU  is the null set.  
 

   Here we observe two situations stated below. 
(I) Situation 1: Let lUf i =)( . To check the validity of the label l  for the partition iU , we find i

jP . 

If 1+∪ j
i
j UP  does not form a clique and there exist a vertex kUx∈ , where ijk <<  such that 

)(=)( 1+jUfxf  and 2=),( yxd , where kUx∈  and i
jPy∈ . 

(II) Situation 2: Let lUf i =)( . To check the validity of the label l  for the partition iU , we find i
jP

. If 1+∪ j
i
j UP  does not form a clique and there exist no vertex kUx∈ , where ijk <<  such that 

)(=)( 1+jUfxf  and 2=),( yxd , where kUx∈  and i
jPy∈ . 

   When Situation 2 occurs then we define the set i
mq  and iT  as follows.             

2=),(:{= vudVwqi
m ∈  passing through w , where i

mPu∈  and iUv∈ } 

and i
mQ  is the set of all 1-nbd vertices of i

mq . The set xT  is the set of all 2-nbd vertices of x . 
   Assume that xL  is the set of labels of all the vertices of xT . 
   Finally, we present the formal algorithm to label the vertices of an interval graph using (0,1)L
-labelling. 
 
 
 
 
 
Algorithm L01 
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Input: Interval represent of the interval graph G . 
Output: Optimal (0,1)L -labeling of G . 
Step 1. Construct a set 1},{0,1,= −kL L  using the Algorithm max S .  
Step 2. Construct all the partitions using algorithm VP and label the partitions     
        kUUU ,,, 21 L  by 1,0,1, −kL  respectively. That is, 1=)( −iUf i ,       
        ki ,1,2,= K . 
Step 3. Set 1)(=)( 1 ++ kk UfUf (mod  || L ). 

 That is the value of )( 1+kUf  must be equal to one of the values of    

 )(,),( 1 kUfUf K . 
Suppose )(=)( 1 sk UfUf + , ks ≤≤1 . 

Step 4. Find the P-set corresponding to 1+kU . That is, .1+k
sP  

Step 5. If φ=1+k
sP , i.e. if there is no vertex sq Uv ∈  such that 2),( ≤rq vvd   for all   

        1+∈ kr Uv , then )( 1+kUf  is the valid label for the vertices of 1+kU ,  then     
        )( 1+kUf  is valid for 1+kU . 

Step 6. If s
k

s UP =1+ , i.e. if all the vertices of sU  are at a distance 2 from at least   
        one vertex of 1+kU , then )( 1+kUf  is not valid label for 1+kU . 
Step 7. If some vertices of sU  are at a distance 2 from at least one vertex of  

        1+kU , then two cases may aries. 

   Step 7.1. If 1
1

+
+ ∪ k

ss PU  form a clique then shift the vertices of 1+k
sP  from sU   

             to  1+sU  and set )(=)( 1
1

+
+

s
k

s UfPf .  
     Now check the validity of the label )( 1+sUf  for the new partition   
     1+sU  proceed same as above. 
      If )( 1+sUf  is valid for 1+sU  then )( 1+kUf  is valid for 1+kU . 

      Otherwise )( 1+kUf  is not valid for 1+kU . 

Step 7.2. If 1
1

+
+ ∪ k

sk PU  does not form a clique then either Situation 1 or    
          Situation 2 occurs. 
   Subcase 7.2.1. If Situation 1 occurs then )( 1+kUf  is not a valid label for      
                  1+kU . 
   Subcase 7.2.2. If Situation 2 occurs then 
                  (i) Find 1+k

sq  and 1+k
sQ . 

                  (ii) Remove the labels of all the vertices of 1+k
sQ  and   

                      label the  vertices of 1+k
sQ  in the following fashion. 

                   Find the minimum index vertex (say y ) from the set   
                   1+k

sQ . 
                   Find yT  and yL . 

                   Set }{=)( yLLminyf − . 
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                   Now find the next minimum index vertex (unlabelled)     
                   of the  set 1+k

sQ  and to label this vertex, follow the   
                   same procedure. 
                   If all the vertices of 1+k

sQ  are labelled by the above        
                   way, then  )( 1+kUf  is a valid label for 1+kU . 

                   Otherwise (i.e, if φ=yLL −  for some 1+∈ k
sQy ) )( 1+kUf         

                   is  not a valid label for 1+kU . 
Step 8. If the label )( 1+kUf  for 1+kU  is not valid, then reset )( 1+kUf  as   
       |)| (45)( 1 LmodptiUf k ++ , and repeat the above steps for 1,2,3,= −ki K . 

 If )( 1+kUf  is not valid label then use a new label which does not belongs   
 to  L . This new label is taken as the least integer which does not belongs   
 to L ,  let it be j . Update L  as }{ jL∪  and set jUf k =)( 1+ . 

end L01  
 

3.1.  Proof of correctness and time complexity 
Lemma 7.  If 1+∪ i

j
i UP  forms a clique, then )(=)( 1+i

j
i UfPf  preserve the (0,1)L -labelling 

condition between the labels of new )(= 11
j

iii PUU ∪++  and mU , where 1> +im .  
 
Proof.  For the sake of simplicity, we use the term “right side of a partition xU " means a partition yU
, where xy > . 
   Let aUf j =)(  and we now check the validity of the label l  for the partition jU . So first we have 

to find j
iP . 

   Let aUf i =)(  and bUf i =)( 1+ . 
Case 1: When there is no partition with label b  in the right side of 1+iU . 

In this case shift the vertices of j
iP  from iU  to 1+iU  and set )(=)( 1+i

j
i UfPf . Thus the label of 

the new )(= 11
j

iii PUU ∪++  preserve (0,1)L -labelling condition in the right side of new 1+iU  as 
there is no partition with label ))((= 1+iUfb  in the right side of new 1+iU . 
Case 2: When there exist at least one partition with label b  in the right side of 1+iU . 
   Let sjii UUUU ,,,, 1 K+ , where sjii <<<1< K+  be some partition which are already 

labelled. Again, let bUfaUfbUfaUf sjii =)(,=)(,,=)(,=)( 1 K+ . Here sU  is the first partition 

labelled by b  in the right side of 1+iU . Now we check the validity of the label a  for the partition jU
. 
   Let ir

j
i UP ⊂},,,{= 21 ααα K . 

Subcase 2.1: If there exist at least one vertex 1+∈ iUx  such that ix α> , for all j
ii P∈α . Here two 

partitions 1+iU  and sU  are already labelled. So they satisfy the labelling condition. That is, 

2>),( vud , for all 1+∈ iUu  and for all sUv∈ . Thus by Lemma 2, 2>),( vd iα  for all j
ii P∈α  

and sUv∈ . 
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   Hence )(=)( 1+i
j

i UfPf  satisfy the labelling condition between the labels of new 1+iU  and mU , 
where 1> +im . 
Subcase 2.2: If there exist no vertex 1+∈ iUx  such that ix α> , for all j

ii P∈α . If possible let 

2),( ≤yd lα  for all j
ii P∈α  and sUy∈ . That is, )(=)( 1+i

j
i UfPf  violate the labelling condition 

between the labels of new 1+iU  and sU . But bUfUf si =)(=)( 1+ . That is, they satisfy the labelling 
condition. Thus this case is possible only when ty aa < , for all jUt∈  and sUy∈  ( ya  and ta  are 

the left end points of the vertices of y  and t  respectively). Thus by Algorithm VP initially jUy∈ . 

So when we are going to label the partition jU  then j
il P∈α . By Algorithm L01, at that time lα  was 

transform from iU  to 1+iU , which contradicts our assumption that il U∈α . Thus we conclude that 
this case (subcase 2.2) cannot occur in our labelling procedure. Hence prove the lemma.               
 
Theorem 1. Algorithm L01 correctly gives the value of )(0,1 Gλ .  
 
Proof.  Case 1: If the set 1},{0,1,= −kL K  is sufficient to label the whole graph, then the theorem 
is obviously true as by Lemma 6, 1−k  is the lower bound of G  by (0,1)L -labelling. 
Case 2: If we use extra label then we have to show that previous set of labels are not sufficient to label 
the graph. 
   Suppose we now going to label the partition tU  by label l . We now explain the different cases 
when l  is not valid label for tU . 

(a) Suppose i
j

i UP =  occur at any stage when we check the validity of the label l  for the partition 

tU . Now if )( jUf  is valid, then l  is valid label for tU . 

Subcase 2.1. When all labels are present between )( iUf  and )( jUf , where ji <1≤ . 

In this case there exist a partition jxiU x <<,  such that LlkUf x ∈≠ )(=)( . Again i
j

i UP = , i.e, 
for all iUa∈  and some 2),(, ≤∈ badUb j  passing through xUc∈ . Hence we cannot use the same 

label for the partition xU  and iU . Thus we cannot assign any Llk ∈≠ )(  for iU . Thus 

) ( jUnewf  is not valid for jUnew  and consequently lUf t ≠)( . 

Subcase 2.2. When all the labels are not present between )( iUf  and )( jUf , where ji <1≤ . 

Let jxxii UUUUU ,,,,,, 11 KK ++  be some consecutive partitions and let 1+m -labelled partition is 

absent between )( iUf  and )( jUf . By subcase 2.1 we cannot update the label of iU  by a label 

which are present between )( iUf  to )( jUf . So we try to update the label of iU  by 1+m . 

   Let 1=)( +mUf b , where ib <  and 1)(,=)( 1 +≠+ mUfmUf xx  and there exist no partition 
labelled by 1+m  between bU  and 1+xU . Now 1< +xi , thus by Algorithm VP there exist some 
vertex iUp∈  and 1+∈ xUq  such that qp aa < , ( pa  and qa  are the left end points of pI  and qI
). Since 1+m  is not valid for the partition 1+xU  (as 11 +≠+ mU x ) due to )( bUf . Therefore, 1+m  
is also not valid label for the partition iU  as qp aa < , where iUp∈  and 1+∈ xUq . So )( iUf  
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cannot be updated by the label 1+m . Therefore, we cannot assign l  for the partition tU . 

(b) When situation 1 occurs then we cannot set )(=)( 1+i
j

i Ufpf  as 2=),( qpd  for some j
iPp∈  

and some 1+∈ iUq . 
   Again, from situation 1 there exist some partition kU  such that )(=)( 1+ik UfUf , where 

jik <<  and there exist no partition with label )( 1+iUf  between kU  and 1+iU . So the partitions 

kU  and 1+iU  satisfy labelling condition. So all the labels of L  are either present or some label are 
absent between )( kUf  and ).( 1+iUf  
   If all the labels are present, then the explanation is same as subcase 2.1 of (a) and if some labels are 
absent then follow the explanation of subcase 2.2 of (a). 
(c) If situation 2 occur then we follow step 7 of our algorithm. If all the vertices of j

iQ  are labelled then 

there is no problem. But if φ=yLL −  occur for some j
iQy∈  then we cannot label y  by a label 

which belongs to L . But initially all the vertices of j
iQ  was labelled. Now we cannot label y  due to 

) ( jUnewf . So ) ( jUnewf  is not a valid label for jUnew  and consequently lUf t ≠)( . 

   Here we discuss about a particular label l  which is not valid for the partition tU . In this way, when 
all the labels of the set L  are not valid for the partition tU  then we conclude that previous set of 

labels are not sufficient to label the vertices from 1U  to tU . So we introduce a new label for the 
partition tU . 
   Therefore, any interval graph label by algorithm L01 gives the correct value of 0,1λ .                                

            
Theorem 2. The algorithm L01 takes |)|( 2 LnO  time to label all the vertices of an interval graph, 
where n  is the number of vertices of the graph and || L  is the cardinality of the set of labels L .  
 
Proof.  In Step 1 of algorithm L01, the set L can be computed from the algorithm Smax . In 
algorithm Smax , to find || αS  for an arbitrary interval α , it takes at most )(nO  times. Thus the 

total time complexity of the algorithm Smax  is )( 2nO . 
   Adjacency of any two vertices can easily be determined from the interval represent of an interval 
graph. Unit time required to determine the adjacency of any two vertices. To partition the vertices each 

iU  takes || iU  times. Again nUi

p

i

|=|
1=
∑ , where p  is the number of partitions. Therefore the 

algorithm VP takes )(nO  times. 
   In algorithm L01, label a vertex )(GVx∈  for a particular label(say l ), we have to scan at most all 
the labeled vertices. Thus to label a vertex for a particular label it takes at most )(nO  time. But this 
label l  may not be a valid label for the vertex x . So we have to choose another label from the set L  
and check the validity of this label for x . So it takes again )(nO  time. In worst case, we have to check 
the validity of all the labels of the set L  for the vertex )(GVx∈ . Thus algorithm L01 takes at most 

|)|( LnO  time to label a vertex. Therefore, to label all the vertices of G , algorithm L01 takes 

|)|( 2 LnO  time, where || L  is the cardinality of the label set L .                                                  
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3.2  Verification of the algorithm 
Suppose we are to find the value of 0,1λ  and label the interval graph ),(= EVG , where 

,14}{1,2,= KV  shown in Figure 1. First of all we have to find the value of 1−k , i.e, the lower 
bound of the graph G . To find the lower bound, we use algorithm max || iS . 

   First set )(1= GVi ∈  and choose ],[ 11 ba . Now we have to find an interval ],[ yx ab  for some 

)(, GVyx ∈  such that ],[],[ 11 baab yx ⊂ . In fact no )(, GVyx ∈  can found for 1=i . So by Step 3, 

0|=| 1S . 
For 2=i , choose ],[ 22 ba . In this case there exist an interval ],[ 41 ab  such that ],[],[ 2241 baab ⊂ . 

By step 3, set temp=1 and count=1. By step 3.2, 4=2
1B . That is, φ≠2

1B  (by Step 3.2). So we find 
new value of temp. Now temp=min 4=2

1B . So count is increased by 1. That is, count=1+1=2. Again 

by step 3.1, φ== 2
4

2 BBtemp . Thus by step 3.3, set 2|=| 2S . 

Similarly 0|=|2,|=|,2,|=|2,|=|2,|=| 1413543 SSSSS K . 
Therefore, by Lemma 2, 2=k . So 1 is the lower bound of G . 
   Now we follow Algorithm VP to partition the vertex set )(GV . 
By Step 1, ,14}{1,2,3,=1 KS  and {1,2,3}=[1]=1 NU  is the first partition. 
For 1=i , ,13,14}{4,5,== 112 KUSS − . Now φ≠2S . So we compute min 2S . Here min 

4=2S . Set 4=j  and }{2,3,4,5,6=[4]=][ NjN . By Step 3, {4,5,6}=[4]= 22 SNU ∩ . 
Similarly, {14}={11,13},={9,12},={7,8,10},= 6543 UUUU . 
   Now to label the graph, we follow Algorithm L01. 

 
Figure 1: interval representation and L(0,1)-labelling of the corresponding interval graph G. 

 
 
By Step 1, {0,1}=L . Now we collect all the partitions and set .1=)(0,=)( 21 UfUf  
For 3U , set 0=2) 1(1=|)| 1()(=)( 23 modLmodUfUf ++ . Now we check whether 0 is a valid  

label for 3U . 

First we find 3
1P . Here φ=3

1P . So by Step 4, 0=)( 3Uf  is valid.                                                   
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For 4U  set 1=2) 1(0=|)| 1()(=)( 34 modLmodUfUf ++ . 

Now we find the P-set corresponding to 4U , i.e, 4
2P . Here φ=4

2P . So by Step 4,  
1=({9,12})=)( 4 fUf  is valid. 

For 5U  set 0=2) 1(1=|)(| 1()(=({11,13})=)( 45 modLmodUffUf ++  

Now to check the validity of the label 0 for the partition 5U we find φ≠{10}=5
3P . Now by case 1 of 

step 7, {9,10,12}={10} 4U∪  forms a clique. So we move the vertex {10} from 3U  to 4U . So 

new {7,8}=3U  and new {9,10,12}=4U  and set 1=({10})f .  

      Therefore 1=({9,10,12}=) ( 4 fUnewf . Now we check the validity of the label 1 for the 
partition new 4U . Here φ≠{5,6}=4

2P . Now }{5,6,7,8,9=3
4

2 UP ∪  does not form a clique. 
Therefore either situation 1 or situation 2 occur. 
Here 1{2,3} U∈  and ({7,8})=)(=({2,3}) 3 fUff  and 2=(3,6)=(3,5)=(2,6)=(2,5) dddd . 
Thus situation 1 occur. 
So 1=)({9,10,12}=) ( 4 fUnewf  is not valid for the partition new 4U  and consequently 

0=({11,13})=)( 5 fUf  is also not valid. Thus we back to our previous valid labelled partition, i.e, 

.1=({9,12})=)( and  0=({7,8,10})=)( 43 fUffUf
1=2) 2(1=|)| 2()(=)(set  7, StepBy 45 modLmodUfUf ++ . 

Now we check the validity of the label 1 for the partition 5U . 

Here 4
5

4 ={9,12}= UP . By Step 6, 1=)( 5Uf  is not a valid label. 

Thus 0 and 1 both are not valid for the partition 5U . So by Step 7, we introduce a new label namely 2. 
Now the new set L  is {0,1,2} and set 2=)( 5Uf  by Step 8. 
For 6U  set 0=3) 1(2=|)| 1()(=)( 56 modLmodUfUf ++ . 

Now φ=6
3P . Thus 0 is valid for the partition 6U . Hence 0=({14})=)( 6 fUf . 

   Thus, finally the label of all the vertices of the graph of Figure 1 are  

0=(14)  and 2=(13)1,=(12)2,=(11)0,=(10)
1,=(9)0,=(8)0,=(7)1,=(6)1,=(5)1,=(4)0,=(3)0,=(2)0,=(1)

fffff
fffffffff

 

 
4.  Conclusion 
In this paper, we consider the frequency assignment problem for a particular class of graphs, viz. 
interval graphs. Computation of )(0,1 Gλ  of general graph is NP-hard and also for some other graphs. 

But, we have shown that the value of 0,1λ  can be computed for interval graph using polynomial time. 

An |)|( 2 LnO  time algorithm is design to solve this problem on interval graph, where || L  is the 
cardinality of the st of labels used. We expected that this is not the optimal time and hence there is a 
scope to reduce the time complexity. We are trying to solve this problems on other class of intersection 
graphs. 
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