
 
 
 

AMO - Advanced Modeling and Optimization, Volume 15, Number 1, 2013 

121 
 

CompleteGraphSort is a Complete Graph Structure based New 
Sorting Algorithm 

Rajat Kumar Pal 

Department of Computer Science and Engineering 
University of Calcutta 

92, Acharya Prafulla Chandra Road 
Kolkata – 700 009, West Bengal, India 

E-mail: pal.rajatk@gmail.com 
 
 

Abstract 
 

Sorting is a well-known problem frequently used in many aspects in the world of computational 
applications. Sorting means arranging a set of records (or a list of keys) in some (non-increasing or 
non-decreasing) order. In this paper, a complete graph structure based comparison sorting algorithm, 
CompleteGraphSort has been proposed that takes time Θ(n2) in the worst-case, where n is the number 
of records in the given list to be sorted. 
 
Keywords: Sorting, Comparison sort, Record, Satellite data, Graph, Algorithm, Complexity. 
 
2010 Mathematics Subject Classification: 68R10 
  

1. Introduction: The Sorting Problem 

Sorting is a well-known problem in literature [1-3, 5, 7, 9]; the problem is stated as follows: 
Input: A sequence of n elements 〈a1, a2, …, an〉. 
Output: A permutation (or reordering) 〈a1′, a2′, …, an′〉 of the input sequence such that a1′ ≤ 

a2′ ≤ … ≤ an′. 
 
The input sequence is usually an n-element array; although it may be represented in some 

other fashion, such as linked list. In practice, the numbers to be sorted are rarely isolated values. Each 
is usually part of a collection of data called a record. Each record contains a key, which is the value to 
be sorted, and the remainder of the record consists of satellite data, which are usually carried around 
with the key. In practice, when a sorting algorithm permutes the keys, it also permutes the satellite 
data as well. 

 
As for example, let us assume that a given unsorted list of keys (or sequence of numbers) is as 

follows. 
25     17     57     5     37     78     29     9     13 

 
The consequent sorted sequence of the elements in this list is given below, in non-decreasing 

fashion. 



R.K. Pal 
 

122 
 

5     9     13     17     25     29     37     57     78 
 
Here the satellite information may be to identify whether two keys ai and aj in their respective 

positions i and j in the given list are in order, in computing the sequence in some sorted form. 
 
In this paper, we develop a complete graph structure based sorting algorithm 

CompleteGraphSort that sorts the elements (or keys) in a given list, based on their values and 
irrespective to their positions in the list (whether one is on the left or on the right of the other between 
a pair of distinct elements) as satellite data. That means the satellite information that the sorting 
algorithm captures in its graph theoretic modeling is that whether a pair of elements is distinct and 
different, and at the same time it is irrelevant whether they are in order or in out of order in a given 
sequence. The computational (time) complexity of this algorithm is Θ(n2) in all the cases, where n is 
the number of records (or keys) in the given sequence (or list) to be sorted. 

 

The paper is organized as follows. In Section 2, we do a brief survey on graph theory and 
sorting problem. The new sorting algorithm is proposed in Section 3. Section 4 describes the 
complexity issues of the algorithm developed herein. Some salient features and comparative benefits 
are discussed in Section 5, and we conclude the paper with few remarks in Section 6.   

2. A Brief General Background 

On General Graph Theory and Complete Graph: Graph is a mathematical tool or object consisting of 
two sets, a set V of vertices and a set E of edges, which is written as G = (V, E), where each element 
of set E is represented by an unordered pair of distinct elements of set V (for the case of simple 
symmetric graphs). 

 
A graph in which edges have no orientation, i.e., they are not ordered pairs is called an 

undirected graph. A directed graph (or digraph) is an ordered pair D = (V, A) with V a set whose 
elements are called vertices (or nodes), and A a set of ordered pairs of vertices, called directed edges 
(or arcs). That is, a directed graph is a graph with orientations assigned on the edges in making its 
unordered edges ordered. Complete graphs have the feature that each pair of vertices has an edge 
connecting them. Incidentally, the graph under consideration is a general, simple, symmetric graph. 
As the graph G is a complete graph, it is somehow special in the domain of general graphs. 
Undirected graphs are also known as symmetric graphs as for any edge {u, v} of such a graph, {u, v} 
= {v, u}; the pair of vertices is unordered. A simple graph is an undirected graph that has no self loops 
and no more than one edge connecting any two distinct vertices of the graph. In some other word, in a 
simple graph the edges of the graph form a set and no two pairs of edges connect a distinct pair of 
vertices. In a simple graph with n vertices every vertex has a degree that is less than n. 

 
On Sorting Problem: Sorting is a well-known problem frequently used in many aspects of the 

world of computational applications. Sorting means arranging a set of records (or a list of keys) in 
some (non-increasing or non-decreasing) order. There are several sorting algorithms in the present day 
world. Out of which, insertionsort, selectionsort take O(n2) time in the worst-case whereas mergesort 
has a better asymptotic running time, Θ(nlgn), in the worst-case. Heapsort sorts n elements in O(nlgn) 
time, whereas the worst-case running time of quicksort is O(n2). The average-case running time of 
quicksort is O(nlgn), though, it generally outperforms heapsort in practice [3]. 

Insertionsort, selectionsort, mergesort, heapsort, and quicksort are all comparison sorts: they 
determine the sorted order of a given sequence by comparing elements, and it has been proved that 
heapsort and mergesort are asymptotically optimal comparison sorts [1-3, 5, 7, 9], as each of these 



 
 
 

CompleteGraphSort is a Complete Graph Structure based New Sorting Algorithm 
 

123 
 

two sorting algorithms is a tree structure based (nonlinear) sorting algorithm. Insertionsort and 
selectionsort are linear structure based sorting algorithms, whereas quicksort is theoretically a tree 
structure based sorting algorithm though its practical implementation follows a linear structure based 
comparison sorting. 

 
Although Ω(nlgn) is a lower bound on the worst-case running time of any comparison sort of 

a sequence of n elements, there are a few mechanical sorting algorithms, viz., counting sort, radix 
sort, bucket sort, etc. that run in linear time, if the size of each of the numbers to be sorted is bounded 
by some constant [3]. 

 
On Topological Sorting: In graph theory, a topological sort (or topological ordering) of a 

directed acyclic graph (DAG) is a linear ordering of its vertices in which each vertex comes before all 
vertices to which it has outbound (or outgoing) edges. Every DAG has one or more topological sorts. 

 
Now we apply the topological sorting algorithm [3, 5] to compute the desired sorted sequence 

in non-decreasing order, as stated below. In topological sorting, we consider the partial orders vi < vj, 
often denoted by directed edges (vi, vj) of an oriented graph (which is certainly a DAG), and assign vi 
earlier than vj, in computing a sorted sequence. This has clearly been explained in Figure 1. 

 
The topological sorting algorithm is an iterative algorithm. In each iteration, it selects an 

element (from the partial orders) to include it and update the sorted sequence. So, for a set of partial 
orders of n elements, Θ(n) iterations are required. 

 
                        a < b   a          c   
    c < b                 
                          b < d             
          c < f                 b                  f   
                             b < e          
     f < e        d                          e   

             (a)                             (b)   

Figure 1: (a) Six partial orders between the keys a through f. (b) The graph theoretic representation of 
the partial orders, in the form of directed edges in a graph. This graph is a directed acyclic graph 
(DAG); otherwise, no sorted sequence is computable. According to the topological sorting algorithm 
we may have several sorted sequences, some of which are as follows: (i) a c f b d e, (ii) c f a b e d, (iii) 
a c b f e d, (iv) a c b d f e, (v) c a f b e d, etc. 

Clearly, topologically computed sorted sequence is not unique based on the set of given 
partial orders, as at the beginning of an iteration, we may have two or more source vertices in the 
graph. Consequently, among these source vertices, any one (vertex) could be considered for its 
placement in computing a sorted sequence, in that iteration. As a result, the topological sorting 
algorithm may produce several valid solutions for a given instance of partial orders (see Figure 1). 
Incidentally, CompleteGraphSort, the sorting algorithm proposed in this paper applies topological 
sorting that computes the desired sorted sequence for a DAG G* (for the given sequence, or any of its 
permutations) where we have only one source vertex (and only one sink vertex) at the beginning of 



R.K. Pal 
 

124 
 

each iteration. This is because the computed graph structure G is always complete for any given 
sequence П of length n and G* is completely transitive from a single source vertex to a single sink 
vertex through exactly n−2 intermediate vertices, where no two such vertices having the same 
indegree (or outdegree). 

3. The Sorting Algorithm 

Let П = 〈a1, a2, …, an〉 be the given sequence (or list) of n unsorted elements (or keys). The algorithm 
proposed in this paper sorts the elements in П in non-decreasing order by computing a complete graph 
structure as stated below. The algorithm consists of two parts: an initial part of construction of graphs 
and an iterative part of computing the desired sorted sequence. 

 
For each element ai in П, we introduce a vertex vi to the graph; hence (initially) the graph 

contains exactly n isolated vertices, where 1 ≤ i ≤ n. Now we introduce edges to the graph, obeying 
the following logic. For the sake of simplicity we assume that the entire elements in П are distinct 
(and different). Later we would consider a case where П may contain several same keys. So, we 
compute a complete graph G of n vertices corresponding to the n elements in П (see Figure 2 for the 
sequence assumed in Section 1). In other words, we introduce an edge between vertices vi and vj, if the 
corresponding elements ai and aj are in (ascending) order by scanning the sequence П from left to 
right. In a similar way, we also introduce an edge between vertices vk and vl, if the corresponding 
elements ak and al are in (ascending) order by scanning the sequence П from right to left. So, in the 
later case the elements ak and al are in reverse (or descending) order, if we scan П from left to right. In 
this way a complete graph is obtained (see Figure 2) as the elements in П are distinct. 

 
Note that the computed graph, G is transitively orientable [4, 8], as stated below. 
 

Lemma 3.1. For any three vertices vi, vj, and vk in the computed graph G corresponding to the 
elements ai, aj, and ak in П, such that ai < aj and aj < ak at any positions i, j, and k in П, if the edge {vi, 
vj} is oriented from vi to vj (i.e., vi → vj) and the edge {vj, vk} is oriented from vj to vk (i.e., vj → vk), 
then the edge {vi, vk} must be there in G and this edge is oriented from vi to vk (i.e., vi → vk). 

                                                                                                                  
                                             13               25 
 
  
                                                    9                               17 
  
 
  
                                               29                                                           57 
    
           
                                                        78                                     5 
 

                                                                                   37 

Figure 2: The complete graph G for the given sequence П = 〈25 17 57 5 37 78 29 9 13〉 to be sorted. 

 

 



 
 
 

CompleteGraphSort is a Complete Graph Structure based New Sorting Algorithm 
 

125 
 

                                                                  13                25 
 

  
                                                    9                               17 
  
 
  
                                               29                                                            57 
    
           
                                                        78                                       5 
 
                                                                                   37 

Figure 3: The directed acyclic graph (DAG) G* obtained by orienting each of the edges of the 
complete graph G (computed in Figure 2) for the given sequence П = 〈25 17 57 5 37 78 29 9 13〉 to be 
sorted. 

Now we make the graph directed in the way it is orientable, as stated in Lemma 3.1 above, 
and obtain a directed acyclic graph (or DAG). We orient an edge {vi, vj} from vi to vj, i.e., we make 
{vi, vj} to (vi, vj), only if the value of ai is less than the value of aj in П. Needless to mention that we 
orient an edge {vk, vl} from vl to vk, i.e., we make {vk, vl} to (vl, vk), only if the value of ak is greater 
than the value of al in П. Hence we orient the graph, which is absolutely a natural orientation (from a 
vertex with smaller key value to a vertex with larger key value in П); the oriented graph G* is shown 
in Figure 3. Hence, we conclude the following theorem. 

 
Theorem 3.2. Since G is a complete graph, so after orienting the edges of G from vi to vj, if ai is less 
than aj in П, the (directed) graph (i.e., G*) obtained is entirely transitively closed from the source 
vertex vs to the sink vertex vt, where the maximum path length from vs to vt is exactly n (in terms of 
vertices) for a given sequence П of n elements. 
 
Proof. The proof is straightforward from Lemma 3.1 above. Pointless to mention that G is a complete 
graph of n vertices as П contains n (distinct) elements. We orient an edge {vi, vj} in G from vi to vj, if 
ai is less than aj in П; otherwise, we orient {vi, vj} from vj to vi. So, if vs (vt) is the vertex 
corresponding to the smallest (largest) element in П, then for any of the remaining n−2 vertices vr, the 
corresponding element ar > as but ar < at in П. Hence we orient {vs, vr} from vs to each such vertex vr 
and {vr, vt} from each such vertex vr to vt. Moreover, for any three among n−2 vr vertices, say vra, vrb, 
and vrc, we orient {vra, vrb} from vra to vrb, if ara < arb, orient {vrb, vrc} from vrb to vrc, if arb < arc, and 
thus we orient {vra, vrc} from vra to vrc, as ara < arc. Needless to mention that we also orient the edge 
{vs, vt} in G from vs to vt, as as is less than at in П. Hence we conclude the theorem. ♦ 
 

Now it is straightforward (as well as motivating) to point out the significant observations in 
the oriented graph G*. These are enlisted in the form of lemmas and corollaries as follows. 

 
Lemma 3.3. There is only one source (sink) vertex in the oriented graph G*, which is the smallest 
(largest) element in П.   



R.K. Pal 
 

126 
 

 
A source (sink) vertex is a vertex in a directed graph whose indegree (outdegree) is zero. Here 

indegree (of a vertex) is defined as the number of incoming edges to a vertex in G*. Similarly, 
outdegree (of a vertex) can also be defined as follows: Outdegree of a vertex vi in G* is the number of 
outgoing edges from vi to some other vertices in the graph.  

 
Lemma 3.3 follows the following corollary. 
 

Corollary 3.4. Neither of the remaining elements in П is the smallest or largest in П, as for each of 
these elements in П the corresponding vertex in G* is an intermediate vertex. 

 
For an intermediate vertex in a directed graph neither the indegree nor the outdegree is zero. 
 

Lemma 3.5. As G is a complete graph and G* is a directed acyclic graph (DAG), if the indegree of 
vertex vi is p, then ai would get the (p+1)th position if the elements in П are sorted in ascending order. 

 
Following Lemma 3.5, we find the beauty (as well as the novelty) of the sorting algorithm 

CompleteGraphSort as follows. If the elements in П are distinct (and different), as soon as G* is 
computed, we can easily identify the kth smallest (or the kth largest) element in П, 1 ≤ k ≤ n, prior to 
computing the sorted sequence (in some order). Corollaries 3.6 and 3.7 below tell about the same. 

 
Corollary 3.6. The indegree (outdegree) of the vertex in G* corresponding to the kth smallest element 
in П is k−1 (n−k), 1 ≤ k ≤ n. 
 
Corollary 3.7. The indegree (outdegree) of the vertex in G* corresponding to the kth largest element 
in П is n−k (k−1), 1 ≤ k ≤ n. 

 
This is because separately the indegree and also the outdegree of each of the vertices in G* is 

distinct (and different), and they vary from 0 through n−1. Moreover, the summation of indegree and 
outdegree for each of the vertices in G* is exactly n−1. 
 
 
                                                                  13                25 
 

  
                                                    9                              17 
  
 
  
                                                29                                                          57 

    
           
                                                        78  
 

                                                                                    37 

Figure 4: The modified directed acyclic graph (DAG) G* obtained after deleting 5 as the smallest 
element in the given sequence П = 〈25 17 57 5 37 78 29 9 13〉 to be sorted. 



 
 
 

CompleteGraphSort is a Complete Graph Structure based New Sorting Algorithm 
 

127 
 

However, this completes the initial part of construction of graphs. Then we move into the 
iterative part of the algorithm starting with G*. Note that at the beginning of each iteration (initially) 
in G* and afterwards, in the modified G*, we have only one source vertex to be considered. So, the 
basic topological sorting algorithm suffices to follow over G* (or over the modified G*) in order to 
compute a desired sorted sequence [1-3, 5, 9]. A few steps of the iterative part of the algorithm are 
shown and explained below. 

 
The iterative part of the algorithm starts with G* as it is in Figure 3. Here 5 is the (only) 

source vertex; so we delete it (and its associated edges), and obtain the modified G* as shown in 
Figure 4. 

 
Note that 5 is the smallest element in П. After deleting its corresponding vertex and the 

associated edges from G* we obtain the modified G* as shown in Figure 4 that now contains the only 
one source vertex 9. So in the next iteration we delete 9 and its associated edges to obtain the 
modified G* after the second iteration, as shown in Figure 5. In order to compute a sorted sequence in 
ascending order, we place 9 after 5 in some array. 

 
This is how the algorithm goes on for n iterations and computes a sorted sequence as we 

desire. Certainly, 13 is the third smallest, 17 is the fourth smallest, and so on, that are identified at the 
beginning of next subsequent iterations and deleted along with their adjacent edges till the graph 
exhausts. 

 
                                                                  13                 25 
 

  
                                                                                     17 
  

 
  
                                               29                                                             57 
    
           
                                                        78  
 

                                                                                    37 

Figure 5: The modified directed acyclic graph (DAG) G* obtained after deleting 9 as the second 
smallest element in the given sequence П = 〈25 17 57 5 37 78 29 9 13〉 to be sorted. 

This completes the simplest version of the algorithm as and when П contains only distinct 
elements. Complicacy may arise if the elements in П are not distinct; that means some of them may 
repeat, for example, as it is assumed below. 

24     36     55     5     36     48     13     5     36 
 
Here the desired sorted sequence in ascending order is as follows. 

5     5     13     24     36     36     36     48     55 



R.K. Pal 
 

128 
 

                                                                  36               24 
 
  
                                                    5                              36 
  
 
  
                                               13                                                           55 
    

           
                                                        48                                     5 
 

                                                                                    36 

Figure 6: The complete graph G for the given sequence П = 〈24 36 55 5 36 48 13 5 36〉 to be sorted. 

In our proposed sorting algorithm CompleteGraphSort, we do the following modifications in 
computing G and G* as shown in Figures 6 and 7, respectively. At the same time in making the 
proposed sorting algorithm stable, we do the following. Note that a sorting algorithm is called a stable 
sorting algorithm, if the elements with equal keys (or values) are left in the same order as they occur 
in the given input sequence [1, 3, 5, 7, 9]. So, if the elements in the given sequence are differentiated 
by their positions in П as suffixed after each element below, 

241     362     553     54     365     486     137     58     369 

then a stable sorting algorithm would always compute the following sorted sequence in ascending 
order. 

54     58     137     241     362     365     369     486     553 

 
                                                                36               24 
 

  
                                                   5                              36 
  
 
  
                                              13                                                            55 
    
  
                                                      48                                     5 
 
                                                                                   36 

Figure 7: The directed graph G* obtained from G (computed in Figure 6) for the sequence П = 〈24 36 
55 5 36 48 13 5 36〉 under consideration. 

In order to establish our claim that CompleteGraphSort is a stable sorting algorithm, we do 
the following in computing G*. Certainly, G is a complete graph as shown in Figure 6. Here the 
elements in П starting with 24 are introduced clockwise as vertices of G. 

 



 
 
 

CompleteGraphSort is a Complete Graph Structure based New Sorting Algorithm 
 

129 
 

In computing G* from G, what we do, we orient an edge {vi, vj} from vi to vj, i.e., we make 
{vi, vj} to (vi, vj), only if the value of ai is less than or equal to the value of aj (i.e., ai ≤ aj) in П in 
scanning the sequence from left to right. Whereas, in the other case, when we consider the sequence 
from right to left, we orient an edge {vk, vl} from vl to vk, i.e., we make {vk, vl} to (vl, vk), only when 
the value of ak is greater than the value of al (i.e., ak > al) in П. Hence, we obtain the oriented 
complete graph G* for the above unsorted sequence, as it is shown in Figure 7, that does not contain 
any two-cycle [6], i.e., a cycle between a pair of vertices (whose corresponding elements contain the 
same key value in П). The remaining part (i.e., the iterative part) of the algorithm is same as before. 
As a result, we conclude the following lemmas. 

 
Lemma 3.8. The CompleteGraphSort always computes a complete graph of n vertices at the 
constructive part of the sorting algorithm for any given sequence П of n elements, where some of the 
elements may repeat. 
 
Lemma 3.9. The CompleteGraphSort is a stable sorting algorithm. 

 
After each iteration, the smallest and/or the largest key(s) is (are) identified and deleted from 

the graph in order to place it (them) in its (their) own position(s) in the desired sorted sequence being 
computed. The vertex (vertices) and its (their) associated edges are then deleted to start with the next 
iteration till the graph exhausts.  

 
Needless to mention further that the initially computed graph G is an undirected complete 

graph and a sort of natural (transitive) orientation on the edges of this graph results a directed acyclic 
graph (DAG) G*. So, the sorting algorithm proposed in this paper always terminates, exactly after n 
iterations, outputting a sorted sequence of the elements in П in non-decreasing order. The method can 
also be used for computing a sorted sequence in non-increasing order, when we select and delete the 
sink vertex (and its associated edges) from the oriented graph in the ith iteration for its position (i.e., 
the ith position) in the sorted sequence, 1 ≤ i ≤ n. 

4. An Improved Version of the Sorting Algorithm and Its Complexity Issues 

Now we mention an important improvement of the proposed sorting algorithm so that the number of 
iterations in computing a desired (sorted) sequence is reduced to n/2 for a given sequence of n 
elements. Here in the ith iteration, instead of deleting only the ith smallest element (i.e., the source 
vertex at the beginning of this iteration) or only the ith largest element (i.e., the sink vertex at the 
beginning of this iteration), we delete both of them (along with their adjacent edges) for their 
respective positions in the computed sorted sequence, where 1 ≤ i ≤ n/2. If n is odd, then in the 
n/2th iteration we place the remaining element to the middlemost position of the sorted sequence. In 
fact, a bit later we will see that only  n/2 iterations are sufficient in computing the desired sorted 
sequence of length n. This improvement is eventually obtained from Lemmas 3.3 and 3.5. Following 
Figure 3, we briefly state it as follows. 

 
Note that 5 (78) is the only source (sink) vertex in G* (see Figure 3). In our algorithm, in the 

first iteration we delete 5 (78) (and their associated edges) to place it in the first (last) position in the 
sorted sequence we like to compute. Hence we obtain the modified oriented graph, as shown in Figure 
8, at the beginning of the second iteration. From this figure it is clear that 9 and 57 are the next 



R.K. Pal 
 

130 
 

vertices for their own positions (that are the second smallest and second largest) in the desired sorted 
sequence. So, we delete them in the second iteration and in this way after execution of the fourth 
iteration the only element 25 remains to place it in the middlemost position of the desired sorted 
sequence being computed; the middlemost position being the n/2th position for a given sequence of 
n elements (where n is odd). Here the middlemost position is the fifth position, as the number of 
iterations already executed is n/2 = 9/2 = 4 for the given sequence П of 9 elements only. Hence 
only n/2 iterations are sufficient to compute a desired sorted sequence of n elements. This is because 
after the execution of the n/2th iteration, only one element is there to place it in the middlemost 
position of the sorted sequence (if n is odd). We conclude the result in the following lemma. 

 
                                                                  13               25 
 

  
                                                   9                              17 
  
 
  
                                               29                                                            57 
    
           
  
 

                                                                                    37 

Figure 8: The modified directed acyclic graph (DAG) G* obtained after deleting 5 and 78 as the 
smallest and the largest elements in the given sequence П = 〈25 17 57 5 37 78 29 9 13〉 to be sorted. 

 
Lemma 4.1. The sorting algorithm CompleteGraphSort requires n/2 iterations in the worst-case in 
computing a sorted sequence for any given sequence П of n elements. 

 
Even for the improved version of the algorithm, where the number of iterations is n/2, the 

algorithm remains stable. Now we study the computational complexities of the algorithm developed 
in this paper. The worst-case complexity of the algorithm is stated in the following theorem. 

 
Theorem 4.2. The sorting algorithm CompleteGraphSort requires Θ(n2) time in the worst-case, 
where n is the number of records (or keys) in the given list (or sequence) to be sorted. 
 
Proof. The algorithm consists of two parts: an initial part of computation of the complete graph G and 
its oriented counterpart G*, and an iterative part. The initial part of the algorithm takes time Θ(n2), 
where n is the size of the given sequence П. On the other hand, the worst-case time taken by the 
iterative part of the algorithm is Θ(n). Hence, the overall worst-case running time of 
CompleteGraphSort is Θ(n2). ♦ 
 

This is worth mentioning that the best-case, average-case, and worst-case running time of the 
iterative part of the algorithm is Θ(n), when a set of n elements is given in any order in П.  

5. Comparative Benefits and Advantages 

Here we briefly state some salient features of the sorting algorithm developed in this paper. The 
proposed sorting algorithm is a complete graph structure based sorting algorithm. This is the first 



R.K. Pal 
 

131 
 

complete graph structure based sorting algorithm in the world. Yes, it is also a comparison sorting 
algorithm for which it takes the worst-case computational time complexity Θ(n2) for a given list of n 
elements. Graph structures that are computed in developing a sorting algorithm designed earlier were 
at most trees but never complete graphs, except the RKPianGraphSort [7]. 
 

The RKPianGraphSort is a perfect graph based modeling in designing a sorting algorithm that 
actually captures the inherent satellite information between a pair of elements in a given sequence, 
which is represented in the form of an edge (either it is there or it is not there) in computing the 
perfect graph. In practice, the perfect graph that we obtained in the RKPianGraphSort is a 
comparability graph [4, 8]. In this case the graph we compute is either sparse or dense though the 
complexity is always Θ(n2) time for a sequence of n elements, which is asymptotically tight. 
Incidentally, the iterative part of this algorithm might take time O(n2) time in the worst-case for a 
given sequence of length n, whereas the iterative part of CompleteGraphSort (the sorting algorithm 
proposed in this paper) never takes worse than O(n) time. One more thing we like to mention is that 
the RKPianGraphSort uses positional values of the elements (that are associated to the vertices) in the 
given sequence. Our proposed algorithm CompleteGraphSort does not use any positional value of the 
elements in the given sequence. 

 
Another uniqueness of CompleteGraphSort is that it is a sequence independent sorting 

algorithm; for any permutation of a given set of elements this algorithm computes the same G and the 
same G*, though the sorted sequence computed is always a stable sorted sequence following a given 
permutation of the elements. 

 
 The proposed sorting algorithm always takes Θ(n2) time in the worst-case for a given 

sequence of n elements. Moreover, the innovation of the sorting algorithm is that it can easily identify 
the kth smallest (or the kth largest) element in the given sequence following the (initial) constructive 
part of the algorithm (i.e., computation of the graph), 1 ≤ k ≤ n, prior to computing the sorted 
sequence (in some order); this task of sorting (from the computed complete graph structure) might 
take O(n) time in the worst-case. The iterative part of the algorithm is also very fast, which is no 
worse than n/2 iterations, in general. 

 
Regarding memory requirement, the proposed complete graph structure based sorting 

algorithm developed in this paper takes space O(n2), where n is the number of elements in the given 
sequence. This representation of the graph is based on n linked linear (adjacency) lists, lead by n 
distinct vertices of the graph corresponding to n elements in the given sequence. An adjacency matrix 
representation is also equally good as the graph structure is complete. Hence the space requirement 
and its manipulation in representing the graph(s) is O(n2). 

 
As already mentioned that the proposed algorithm is also a stable sorting algorithm like 

RKPianGraphSort [7]. Furthermore, the algorithm requires at most n/2 iterations to sort a given 
sequence of n elements whereas RKPianGraphSort requires exactly n iterations. 

6. Conclusion 

In this paper, we have developed a new, complete graph structure based comparison sorting algorithm 
CompleteGraphSort that sorts a given list (or sequence) in some sorted order and takes time Θ(n2) in 
the worst-case, where n is the number of records (or keys) to be sorted in the given list. The sorting 
algorithm developed in this paper is a stable sorting algorithm that requires n/2 iterations in 
computing the desired sorted sequence. In addition, the sorting algorithm can compute the kth 



CompleteGraphSort is a Complete Graph Structure based New Sorting Algorithm 
 

132 
 

smallest or the kth largest element in the given sequence, 1 ≤ k ≤ n, prior to computing the sorted 
sequence in some order. 

REFERENCES 

1. A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis of Computer Algorithms, 
Addison-Wesley: An Imprint of Addison Wesley Longman, Inc., Reading Massachusetts, 1999. 

2. G. Brassard and P. Bratley, Fundamentals of Algorithmics, Prentice-Hall of India Pvt. Ltd., New 
Delhi, 1999. 

3. T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, Prentice-Hall of India 
Pvt. Ltd., New Delhi, 2001. 

4. M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 
1980. 

5. D.E. Knuth, The Art of Computer Programming: Sorting and Searching, Vol. 3, Second 
Edition, Addison-Wesley: An Imprint of Pearson Education Asia, New Delhi, 2000. 

6. R.K. Pal, Multi-Layer Channel Routing: Complexity and Algorithms, Narosa Publishing 
House, New Delhi (Also from CRC Press, Boca Raton, USA and Alpha Science International Ltd., 
UK), 2000. 

7. R.K. Pal, RKPianGraphSort: A Graph based Sorting Algorithm, International Journal of ACM 
Ubiquity, 8.41 (Oct. 16-22, 2007), 16 pages. 

8. J.L. Ramirez Alfonsin and B.A. Reed (Editors), Perfect Graphs, John Wiley and Sons Ltd., 
Chichester, 2001.  

9. M.A. Weiss, Data Structures and Algorithm Analysis in C, Second Edition, Pearson Education 
Asia, New Delhi, 2002. 

 

 


