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Abstract. In this paper, we propose a iterative method for solving the generalized linear
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under mild conditions. Furthermore, the error bound for GLCP is also given under suitable

conditions, based on this, we prove that the method has R-linear convergence rate.

Keywords: GLCP, iterative method, error bound, global convergence, R-linear convergence

rate.

AMS(2000) Subject Classification: 65H10, 90C33, 90C30

1 Introduction

Let F (x) = Mx+ p,G(x) = Nx+ q, where M,N ∈ Rm×n, p, q ∈ Rm. the generalized linear complemen-

tarity problem, abbreviated as GLCP, is to find vector x∗ ∈ Rn such that

F (x∗) ∈ K, G(x∗) ∈ K0, F (x∗)>G(x∗) = 0, (1)

where K be a nonempty closed convex cone in Rm and K◦ is its dual cone,i.e., K◦ = {u ∈ Rm | u>v ≥
0,∀v ∈ K}. We denote the solution set of the GLCP by X∗ and assume that it is nonempty throughout

this paper.

The GLCP is a direct generalization of the classical linear complementarity problem (LCP) which finds

applications in engineering, economics, finance, and robust optimization operations research (Ref.[1]).
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For example, the GLCP plays a significant role in contact mechanics problems(such as a dynamic rigid-

body model, a discretized large displacement frictional contact problem), structural mechanics problems,

obstacle problems mathematical physics, elastohydrodynamic lubrication problems, traffic equilibrium

problems(such as a path-based formulation problem, a multicommodity formulation problem, network

design problems),etc([1]), and also plays a significant role in economics, such as the supply chain network

equilibrium model(Refs.[2, 3, 4]). Up to now, the issues of numerical methods and existence of the solution

for the problem were discussed in the literature (e.g., Ref. [5]).

In recent years, many effective methods have been proposed for solving GLCP which K is a polyhedral

cone in Rm, that is, there exists A ∈ Rs×m, B ∈ Rt×m, such that K = {v ∈ Rm | Av ≥ 0, Bv = 0},
the basic idea of these methods is to reformulate the problem as an unconstrained or simply constrained

optimization problem ([6, 7, 8, 9, 10, 11]), the condition which the nonsingularity of Jacobian at a

solution guarantees that the L-M method for GLCP has global convergence ([9, 8]), or it which the

mapping G is monotone with respect to F guarantees that method be proposed by Sun also has global

convergence([10, 11]). This motivates us to consider the new method for the GLCP under mild conditions.

So, in this paper, we propose the new iterative method which is different from the algorithms listed above

to solve GLCP, and we establish the global convergence under mild condition. Furthermore, we also

present a error bound for GLCP under the suitable conditions, based on this, the linear convergence rate

analysis of the proposed algorithm also is presented in this paper. Compared with the existing solution

methods in [9, 8, 10, 11], the conditions guaranteed for convergence are weaker.

Some notations used in this paper are in order. Rn be a real Euclidean space, whose inner product

and the Euclidean 2-norm are denoted by 〈·, ·〉 and ‖ · ‖, respectively. We denote the pesudo-inverse of a

matrix M by M+.

2 Preliminary

In this section, we will establish an equivalent reformulation of the GLCP, i.e., convert the GLCP into

a variational inequality problem, and state some well known properties of the projection operator. Now,

we give the following assumptions which is crucial to our method.

Assumption 2.1〈G(x), F (x)− F (x∗)〉 ≥ 0, ∀x ∈ Rn, x∗ ∈ X∗.

Remark 2.1 If G is F− pseudomonotone, then we have assumption 2.1 holds([12]).

In the following, we give the equivalent reformulation of the GLCP.

Theorem 2.1 x∗ is a solution of (1) if and only if x∗ is a solution of the following problem

G(x∗)>((F (x)− F (x∗)) ≥ 0, ∀F (x) ∈ K. (2)

Proof. Suppose that x∗ is a solution of (2). Since vector 0 ∈ K, by substituting F (x) = 0 into (2),
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we have G(x∗)>F (x∗) ≤ 0. On the other hand, since F (x∗) ∈ K, then 2F (x∗) ∈ K. By substituting

F (x) = 2F (x∗) into (2), we obtain G(x∗)>F (x∗) ≥ 0. Consequently, G(x∗)>F (x∗) = 0. For any

F (x) ∈ K, we have G(x∗)>F (x) = G(x∗)>[F (x)−F (x∗)] ≥ 0, i.e., G(x∗) ∈ K◦. Thus, x∗ is a solution of

(1).

On the contrary, suppose that x∗ is a solution of (1), since G(x∗) ∈ K◦, for any F (x) ∈ K, we have

G(x∗)>F (x) ≥ 0, combining G(x∗)>F (x∗) = 0, we have G(x∗)>[F (x)−F (x∗)] ≥ 0, Thus, x∗ is a solution

of (2).

Now, we give the definition of projection operator and some relate properties. For nonempty closed

convex set Ω ⊂ Rn and any vector x ∈ Rn, the orthogonal projection of x onto Ω, i.e., argmin{‖y−x‖|y ∈
Ω}, is denoted by PΩ(x).

Lemma 2.1 For any u ∈ Rn, v ∈ Ω, then

(i) 〈PΩ(u)− u, v − PΩ(u)〉 ≥ 0,

(ii) ‖PΩ(u)− PΩ(v)‖ ≤ ‖u− v‖.

From Theorem 2.1, one can prove that (2) is equivalent to the fixed-point problem, this result is due

to Noor([13]). For convenience, throughout this paper, we define the projection residue vector

R(x, ρ) := F (x)− PK[F (x)− ρG(x)], ρ > 0.

Lemma 2.2 x∗ is a solution of the GLCP if and only if R(x∗, ρ) = 0, for some ρ > 0.

Based on this fixed-point formulation, various projection type iterative method for solving variational

inequalities have been suggested and analyzed, see[14, 13, 15].

To propose algorithm for solving the GLCP, we also need the following conclusion in [16].

Lemma 2.3 For the non-homogeneous linear equation system Hy = b. Then y = H+b is unique least

square solution with the minimum 2-norm, where H+ is the pesudo-inverse of H.

3 Algorithm and Global Convergence

Now, we formally describe our method for solving the GLCP.

Algorithm 3.1

Step1 Choose x0 ∈ Rn such that F (x0) ∈ K, select any 0 < σ < min{1, ‖NM+‖−1}, ρ−1 = 1, 0 < ϕ <

2(1− σ‖NM+‖)/(1− σ), θ > 0, set k := 0.

Step2 For F (xk) ∈ K, take yk−1 ∈ Rn such that

F (yk−1) = PK{F (xk)− ρk−1[NM+F (xk)−NM+p+ q]}.
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If R(xk, ρk−1) = F (xk) − F (yk−1) = 0, then go to Step 3. Otherwise, Let ρk = θγmk , where mk

being the smallest nonnegative integer m satisfying

ρk‖F (xk)− F (xk(ρk))‖ ≤ σ‖R(xk, ρk)‖, (3)

where

F (xk(ρk)) = PK{F (xk)− ρk[NM+F (xk)−NM+p+ q]}. (4)

Compute xk+1 by solving the following equation

F (xk+1) = PK[F (xk) + ϕαkdk],

where

dk = −{R(xk, ρk)− ρk(NM+F (xk)−NM+F (xk(ρk)))}, (5)

αk = (1− σ)‖R(xk, ρk)‖2/‖dk‖2.

Step3 Let xk+1 = M+(F (xk+1)− p), stop.

Remark 3.1 In algorithm 3.1, several implicit equation of F needn’t be solved at each iteration. ρk, αk

are said to be predictor stepsizes and the corrector stepsizes, respectively.

Remark 3.2 we recall the searching direction −{ηkR(uk, ρ)+ηkT (uk)+ρT (vk} appear in [14] for solving

general variational inequalities by Noor, Wang and Xiu, and differ from the direction in our algorithm.

Now, we discuss the feasibility of stepsize rule of (3).

Lemma 3.1 If xk is not a solution of GLCP, then for any σ ∈ (0, 1), there exists ρ̂(uk) ∈ (0, 1], for any

ρ ∈ (0, ρ̂(xk)], we have

ρ‖F (xk)− F (xk(ρ))‖ ≤ σ‖R(xk, ρ)‖. (6)

where xk ∈ Rn and F (xk) ∈ K, F (xk(ρ)) be defined in (4).

Proof. Assume that there exists σ ∈ (0, 1), for any 0 < ρ̂ ≤ 1, there exists 0 < ρ ≤ ρ̂ such that

ρ‖F (xk)− F (y(ρ))‖ > σ‖R(xk, ρ)‖. (7)

Let ρ̂ goes to 0, then we have that ρ tends to 0, furthermore, for any ε > 0, we take δ̄ = ε such that

‖F (xk)− F (xk(ρ))‖ = ‖F (xk)− PK(F (xk)− ρG(xk))‖
= ‖PKF (xk)− PK(F (xk)− ρG(xk))‖
≤ ‖G(xk)‖ρ ≤ δ̄,

(8)

combining this with (7), using continuity of G, F , we have

σ‖R(xk, ρ)‖ < ρ‖‖F (xk)− F (xk(ρ))‖ ≤ ρε,
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combining Lemma 2.2, we know that xk ∈ X∗, it contradicts that xk isn’t a solution of GLCP.

To establish the global (linear) convergence of Algorithm 3.1, we also need the following technical

lemmas.

Lemma 3.2 Under Assumption 2.1, for given x∗ ∈ X∗, then

〈F (xk)− F (x∗),−dk〉 ≥ (1− σ‖NM+‖)‖R(xk, ρk)‖2.

Proof. From the iterative procedure, for any positive integer k, we know that F (xk), F (xk(ρk)) ∈ K.
By x∗ ∈ X∗, Lemma 2.1(i), we have

〈[F (xk)− ρkG(xk)]− F (xk(ρk)), F (xk(ρk))− F (x∗)〉 ≥ 0,

combining this with definition of R(u, ρ), we know that

〈R(xk, ρk)− ρkG(xk), F (xk)− F (x∗)−R(xk, ρk)〉 ≥ 0,

we obtain

〈R(xk, ρk), F (xk)− F (x∗)〉 − ‖R(xk, ρk)‖2 − 〈ρkG(xk), F (xk)− F (x∗)〉+ 〈ρkG(xk), R(xk, ρk)〉 ≥ 0. (9)

From Lemma 2.3, we have xk = M+F (xk)−M+p. Thus, we also have G(xk) = Nxk+q = NM+F (xk)−
NM+p+ q. Combining this with (9), we obtain

〈R(xk, ρk)− ρk[NM+F (xk)−NM+p+ q], F (xk)− F (x∗)〉
≥ ‖R(xk, ρk)‖2 − 〈ρk[NM+F (xk)−NM+p+ q], R(xk, ρk)〉.

(10)

On the other hand, by Assumption 2.1, we have

〈G(xk(ρk)), F (xk(ρk))− F (x∗)〉 ≥ 0, (11)

combining definition of F (xk(ρk)) in Algorithm 3.1 with definition of R(u, ρ), we know that F (xk(ρk)) =

F (xk)−R(xk, ρk). Thus, substituting F (xk(ρk)) in (11) with F (xk)−R(xk, ρk), we get

0 ≤ 〈F (xk(ρk))− F (x∗), G(xk(ρk))〉
= 〈F (xk)−R(xk, ρk)− F (x∗), G(xk(ρk))〉
= 〈F (xk)− F (x∗), G(xk(ρk))〉 − 〈R(xk, ρk), G(xk(ρk))〉,

i.e.,

〈F (xk)− F (x∗), [NM+F (xk(ρk))−NM+p+ q]〉 ≥ 〈R(xk, ρk), [NM+F (xk(ρk))−NM+p+ q]〉. (12)
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Using definition of dk in Algorithm 3.1, we have

〈F (xk)− F (x∗),−dk〉 = 〈F (xk)− F (x∗), R(xk, ρk) + ρk{[NM+F (xk(ρk))−NM+p+ q]

− [NM+F (xk)−NM+p+ q]}〉
= 〈F (xk)− F (x∗), R(xk, ρk)− ρk[NM+F (xk)−NM+p+ q]〉

+ 〈F (xk)− F (x∗), ρk[NM+F (xk(ρk))−NM+p+ q]〉
≥ ‖R(xk, ρk)‖2 − 〈ρk[NM+F (xk)−NM+p+ q], R(xk, ρk)〉

+ 〈ρkR(xk, ρk), [NM+F (xk(ρk))−NM+p+ q]〉
= ‖R(xk, ρk)‖2 − ρk〈NM+F (xk)−NM+F (xk(ρk)), R(xk, ρk)〉
≥ ‖R(xk, ρk)‖2 − ρk‖NM+F (xk)−NM+F (xk(ρk))‖‖R(xk, ρk)‖
≥ (1− σ‖NM+‖)‖R(xk, ρk)‖2.

where the first inequality is by (10) and (12), the second inequality is based on Cauchy-Schwarz inequality,

the third inequality is by (3).

Lemma 3.3 Under Assumption 2.1, the sequence {αk} and {ρk} generated by algorithm 3.1 both have

a uniformly positive bound from below, respectively.

Proof. Firstly, we shall show that αk have a uniformly positive bound from below. Using representation

of dk and (3), we know that

‖dk‖2 ≤ 2‖R(xk, ρk)‖2 + 2ρ2
k‖NM+F (xk)−NM+F (yk)‖2

≤ 2(1 + (σ‖NM+‖)2)‖R(xk, ρk)‖2.

By representation of αk again in Algorithm 3.1, we have that there exists a constant η > 0 such that

αk = (1− σ)‖R(xk, ρk)‖2/‖dk‖2

≥ 1−σ
2(1+(σ‖NM+‖)2) =: η.

In the following, we also prove that ρk also have a uniformly positive bound from below. By stepsize

rule of Algorithm 3.1, we have

σ‖R(xk, ρ)‖ < ρ‖F (xk)− F (xk(ρ))‖
= ρ‖R(xk, ρ)‖,

i.e., ρ > σ.

Lemma 3.4 Under Assumption 2.1, and ‖M+‖‖M‖ ≤ 1, we have that the sequence {xk} generated by

Algorithm 3.1 is bounded.
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Proof. Given x∗ ∈ X∗, then we have

‖F (xk+1)− F (x∗)‖2 = ‖PK[F (xk) + ϕαkdk]− PK[F (x∗)]‖2

≤ ‖F (xk)− F (x∗) + ϕαkdk‖2

= ‖F (xk)− F (x∗)‖2 + 2ϕαk(F (xk)− F (x∗))>dk + ϕ2α2
k‖dk‖2

≤ ‖F (xk)− F (x∗)‖2 − 2ϕαk(1− σ‖NM+‖)‖R(xk, ρk)‖2 + ϕ2α2
k‖dk‖2

= ‖F (xk)− F (x∗)‖2 − 2ϕαk(1− σ‖NM+‖)‖R(xk, ρk)‖2

+ ϕ2αk(1− σ)‖R(xk, ρk)‖2

= ‖F (xk)− F (x∗)‖2 − ϕαk[2(1− σ‖NM+‖)− ϕ(1− σ)]‖R(xk, ρk)‖2

≤ ‖F (xk)− F (x∗)‖2 − ηϕ[2(1− σ‖NM+‖)− ϕ(1− σ)]‖R(xk, ρk)‖2.

(13)

where the third inequality is derived from Lemma 3.2, the third equation uses algorithm 3.1 representation

of αk in Algorithm 3.1. From (13), we obtain

‖xk+1 − x∗‖2 = ‖M+(F (xk+1)− p)−M+(F (x∗)− p)‖2

≤ ‖M+‖2‖F (xk+1)− F (x∗)‖2

≤ ‖M+‖2‖M‖2‖xk − x∗‖2 − η‖M+‖2ϕ[2(1− σ‖NM+‖)− ϕ(1− σ)]‖R(xk, ρk)‖2

≤ ‖xk − x∗‖2 − η‖M+‖2ϕ[2(1− σ‖NM+‖)− ϕ(1− σ)]‖R(xk, ρk)‖2,
(14)

Combining (14) with definition of ϕ, σ in Algorithm 3.1, we show that the sequence ‖xk−x∗‖ is decreasing

and nonnegative, it is bounded, and so is also {xk}.
Theorem 3.1 Under Assumption 2.1, and ‖M+‖‖M‖ ≤ 1, the sequence {xk} are generated by Algorithm

3.1 converges globally to a solution of GLCP.

Proof. Using (14), we know that the sequence ‖xk − x∗‖ is decreasing and nonnegative, it is bounded,

it must converges, and we have
∞∑
k=0

‖R(xk, ρk)‖2 ≤ ∞,

i.e.,

lim
k→∞

‖R(xk, ρk)‖ = 0. (15)

Thus, we know that any cluster x̄ of the sequence {xk} is a solution of GLCP. Since the sequence ‖xk−x∗‖
is non-increasing and nonnegative, it is bounded, if we take x∗ = x̄, then {xk} converges globally to x̄.

To establish the global convergence rate of Algorithm 3.1, we will give the following definition.

Definition 3.1. G(u) is said to be F−strongly monotone on Rn, if for all u, v ∈ Rn, ∃β > 0, such

that

〈G(u)−G(v), F (u)− F (v)〉 ≥ β‖F (u)− F (v)‖2.

Lemma 3.6 Suppose G is F−strongly monotone on Rn, for xk ∈ Rn and a constant ρk > 0, we have

‖R(xk, ρk)‖
2 + ρk‖NM+‖

≤ ‖F (xk)− F (x∗)‖ ≤ ρk‖NM+‖+ 1

ρkβ
‖R(xk, ρk)‖. (16)
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Proof. We assume that x∗ be a fixed solution of GLCP, and by Theorem 2.1, we have

〈ρkG(x∗), PK(F (xk)− ρkG(xk))− F (x∗)〉 ≥ 0, (17)

By Lemma 2.1 (i) and F (x∗) ∈ K, we know that

〈PK(F (xk)− ρkG(xk))− (F (xk)− ρkG(xk)), F (x∗)− PK(F (xk)− ρkG(xk))〉 ≥ 0, (18)

by(17),(18),

〈PK(F (xk)− ρkG(xk))− F (xk) + ρk(G(xk)−G(x∗)), F (x∗)− PK(F (xk)− ρkG(xk))〉 ≥ 0,

i.e.,

〈ρk(G(xk)−G(x∗))−R(xk, ρk), F (x∗)− F (xk) +R(xk, ρk)〉 ≥ 0,

we have

〈ρk(G(xk)−G(x∗)) + (F (xk)− F (x∗)), R(xk, ρk)〉 ≥ 〈ρk(G(xk)−G(x∗)), F (xk)− F (u∗)〉.

i.e.,

〈ρk(G(xk)−G(x∗), F (xk)− F (x∗)〉 ≤ ‖R(xk, ρk)‖ · (ρk‖G(xk)−G(x∗)‖+ ‖F (xk)− F (x∗)‖).

By definition 3.1, there exists β > 0 such that,

ρkβ‖F (xk)− F (x∗)‖2 ≤ 〈ρk(G(xk)−G(x∗)), F (xk)− F (x∗)〉
≤ ‖R(xk, ρk)‖ · (ρk‖NM+‖‖F (xk)− F (x∗)‖+ ‖F (xk)− F (x∗)‖)
= ‖R(xk, ρk)‖ · (ρk‖NM+‖+ 1)‖F (xk)− F (x∗)‖,

i.e.,

ρkβ‖F (xk)− F (x∗)‖ ≤ ‖R(xk, ρk)‖ · (ρk‖NM+‖+ 1), (19)

using (19), we know that the right-hand side inequality of (16) holds.

On the other hand, by Lemma 2.2-2.1(ii), we have

‖R(xk, ρk)‖ = ‖R(xk, ρk)−R(x∗, ρk)‖
≤ ‖F (xk)− F (x∗)‖+ ‖PK(F (xk)− ρkG(xk))− PK(F (x∗)− ρkG(x∗))‖
≤ ‖F (xk)− F (x∗)‖+ ‖F (xk)− ρkG(xk)− F (x∗) + ρkG(x∗)‖
≤ 2‖F (xk)− F (x∗)‖+ ρk‖NM+‖‖F (xk)− F (x∗)‖
= (2 + ρk‖NM+‖)‖F (xk)− F (x∗)‖.

Thus, the left-hand side inequality of (16) follows.
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Theorem 3.2 Suppose G is F−strongly monotone on Rn, and ‖M+‖‖M‖ ≤ 1, then the sequence

{xk} generated by Algorithm 3.1 converges globally to a solution of GLCP at R−linear rate, where

τ := ηϕ[2(1− σ‖NM+‖)− ϕ(1− σ)](σβ/[‖NM+‖+ 1])2 < 1.

Proof. Using (13), and the right-hand side of (16), we have

‖F (xk+1)− F (x∗)‖2 ≤ ‖F (xk)− F (x∗)‖2

−ηϕ[2(1− σ‖NM+‖)− ϕ(1− σ)]
(

ρkβ
ρk‖NM+‖+1

)2

‖F (xk)− F (x∗)‖2.

i.e.,

‖F (xk+1)− F (x∗)‖2

‖F (xk)− F (x∗)‖2
≤ 1− ηϕ[2(1− σ‖NM+‖)− ϕ(1− σ)]

(
ρkβ

ρk‖NM+‖+ 1

)2

.

Combining σ ≤ ρk ≤ 1, we know that

‖F (xk+1)− F (x∗)‖2

‖F (xk)− F (x∗)‖2
≤ 1− ηϕ[2(1− σ‖NM+‖)− ϕ(1− σ)]

(
σβ

‖NM+‖+ 1

)2

,

i.e.,

‖F (xk+1)− F (x∗)‖ ≤
√

1− τ‖F (xk)− F (x∗)‖
≤ (
√

1− τ)2‖F (xk−1)− F (x∗)‖
≤ · · · · · ·
≤ (
√

1− τ)k+1‖F (x0)− F (x∗)‖.

(20)

By 0 < τ := ηϕ[2(1 − σ‖NM+‖) − ϕ(1 − σ)](σβ/[‖NM+‖ + 1])2 < 1, then 0 < 1 − τ < 1. Combining

this with (20), we have

‖xk+1 − x∗‖ ≤ ‖M+‖‖F (xk+1)− F (x∗)‖ ≤ ‖M+‖(
√

1− τ)k+1‖F (x0)− F (x∗)‖.

Thus, the sequence {xk} converges globally to a solution of GLCP at R−linear rate.

4 Conclusions

In this paper, we presented a new iterative method for solving GLCP, which ensures that the corrector

stepsizes and predictor stepsizes both have a uniformly positive bound from below, under mild conditions,

we prove its global convergence. Furthermore, the error bound for GLCP is also given under suitable

conditions, based on which we prove that the method has global and R-linear convergence rate.
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