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Abstract 

 

We [4] have earlier provided solutions to the problem of the optimal control of lower 

order waves, using a Hamiltonian approach to solve the model optimization problem 

with the resulting semi-analytical solutions computationally simulated for analysis. In 

this paper, a variant of the problem is studied employing a sequence of constraint 

differential equations in the state functions, arising from the Hamiltonian approach. 

As usual, our results are computationally simulated for analysis, comparing results 

with those earlier obtained by Reju et al [4] 
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1. Introduction 

 

As stated in [4], the higher order non-dispersive or hyperbolic wave equation with 

prototype: 

 

                                       
2

2
2

02

2 ),(),(

x

txz
c

t

txz

∂

∂
=

∂

∂
                                                       (1.1) 

arises in many fields such as acoustics, elasticity and electromagnetism. The lower 

order form: 
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is a simpler variant of (1.1). 

 

We consider the following constrained optimal control problem for a quadratic 

objective functional: 

 

Problem 1: 

            Minimize J[z(x, t), u(x, t)] = Minimize ∫ ∫ +
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subject to the lower order wave propagation: 
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with the following boundary and initial  conditions: 
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where u(x, t) is our control function and c0 is a constant, being the speed of 

propagation. 

Now, formulating a Hamiltonian akin to that of Singh and Titli [5], we have: 
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where  



Optimal control of non-dispersive waves using state variable system approach 

483 

 

                              
),(

),(
)),(),,((

),(),()),(),,((

0

22

txu
x

txz
ctxutxzg

txutxztxutxzf

+
∂

∂
−=

+=

                                         (1.7) 

The optimality conditions are as follows: 
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From the above equations, we have: 
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Equation (1.9) describes the wave propagation displacement as a time derivative of 

the control function akin to Reju’s result [1].  

 

We shall now proceed to the focus of the paper in the next section.  

 

2 Model Problem 

 

We now assume Fourier solutions of the following forms: 
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In [4], the following problem was considered 

                                        Minimize dttutu iit )]()([ 2
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subject to a system of equations: 
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However, in this paper, we substitute (2.1) in our problem to convert Problem 1 to 

the following problem: 

 

Problem 2: 

                                 Minimize dttutu iit )]()([ 2
1
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2 +∫                                                (2.2) 

subject to a system of state variable equations:  
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Using (1.9) and (2.1), we solve the general equation of (2.3) to obtain the control and 

state functions given by the following: 
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where )cot(0 ixick ππ−=   

and z(x, t) is given by: 

                           ( ) )sin())cot(exp((),( 000 ixtutixicztxz πππ∑ +−=                           (2.5)  

 

 



Optimal control of non-dispersive waves using state variable system approach 

485 

 

 

3. Numerical Simulations of Results and Analysis 

Below, we present the surface plots for the control function U = u(x, t) and the state  

function Z = z(x, t): 

 

 

Figure 3.1: Surface Plot with Periodic Cosine Iterates and Small Space Dimension 

 

Figure 3.2: Surface Plot with Periodic Sine Iterates and Small Space Dimension 
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Figure 3.3: Surface Plot with Cosine Periodic Iterates, Small Initial Control  
                  and Increased Space Dimension 
 

 

 
Figure 3.4: Surface Plot with Sine Periodic Iterates, Small Initial Control  
                  and Increased Space Dimension 
 

 

 

Figure 3.5: Surface Plot Using Fig 3.3 Data with Reduced Space Dimension 
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Figure 3.6: Surface Plot Using Fig 3.1 Data with Non Periodic Iterate Definition 

 

 

Figure 3.7: Surface Plot with Linear Iterate Definition and Small Space Dimension 

 

 

Figure 3.8: Surface Plot with Linear Iterate Definition and Increased Initial State 
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Closely studying the above simulated solutions, the following remarks are in order: 

 

i. The optimal values depend very much on the space dimension either for 

periodic or non-periodic definition of the iterates. 

ii. As we have in this paper attempted to introduce periodicity into the iterate’s 

definition to see how this affects the optimal values, the results obviously 

reveal that periodicity increases the optimum values as shown in Figure 3.1 

when compared with Figure 3.6. 

iii. Figure 3.6 simply depicts the profiles when the periodicity introduced by the 

transcendental function is removed. As shown, this gives better disturbance-

free (or stable) region.  

iv. With linear iterate definition akin to those employed throughout our results’ 

simulations in [4], Figures 3.4 and 3.5 of this paper reveal that with increased 

initial state value, higher optimal control values are obtained alongside with 

increased optimal state, however, characterised by reduced multi-modal 

optimum propagations of the state. Moreover, the wave propagation profile 

depicts a situation where energy released at some other points seems to have 

been absorbed by the dominating point of disturbance to increase its optimum 

release. 

 

4 Conclusion 

 

The model variant of our earlier work [4] presented in this paper seems 

comparatively simpler but yet with some good simulation similarities as seen in 

Figures 3.4 and 3.5 of this paper and the last two figures of [4]. The wave 

propagation profiles for the cited figures are both of dominantly stable region with 

optimum points of the control occurring at the boundary, within the same vicinity. 

This for example underscores the importance of the state variable approach 

employed in this paper, for the first time in the series of research models earlier 

studied by Reju [1, 2]. 

 

The introduction of periodicity in the definition of the iterates has its significance as 

seen in the simulated results, since the whole results in this paper reveal that the 
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way iterates are defined can significantly affect our computationally simulated 

results.   

 

On the whole, our results show, as expected, great dependence of the optimum 

values on the initial values and the space dimensions. Further studies of the 

nonlinear models of the lower order wave propagations should take into 

consideration some of the vital dimensions introduced in the paper so as to provide a 

good direction towards a unified approach. 
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