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Abstract 

 

We can majorly distinguish two main classes of waves, namely, dispersive and non-

dispersive waves. The latter class, also termed the hyperbolic waves, are so-called 

since they can be formulated in terms of hyperbolic partial differential equations. 

Generally, there are waves that exhibit both types of behaviours but dispersive 

waves are not classified as easily as non-dispersive. This paper considers the 

optimal control of lower order wave which has its essential role in applications. For 

example, the higher order waves, whose optimal control was studied by Reju [1, 2], 

often carry the “first signal” when combined with lower order waves, but the main 

disturbance or propagation travels with the lower order waves as confirmed by some 

of our simulated results in this work when compared with the higher order control 

problem of Reju [1, 2 ]. A Hamiltonian approach is employed to solve the model 

optimization problem with the resulting semi-analytical solutions computationally 

simulated for analysis. 
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1. Introduction 

 

Avoiding any restrictive definition, a wave has been defined as any recognizable 

signal that is transferred from one part of a medium to another with a recognizable 

velocity of propagation while the signal may be any disturbance feature such as a 

maximum (an optimum) or an abrupt change in some quantity, provided it can be 

recognised and its location at any time can be determined [5]. 

 

The higher order non-dispersive or hyperbolic wave equation with prototype: 
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arises in many fields such as acoustics, elasticity and electromagnetism [5]. The 

lower order form: 
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is a simpler variant of (1.1), possibly the simplest, but not without its importance in 

applications.    

 

Most main wave propagations travel with the lower order waves. Many wave motions 

have been studied which lead to equation of the form (1.2). Some examples are 

flood waves, waves in glaciers, waves in traffic flow, and certain wave phenomena in 

chemical reactions. The study of (1.2) is therefore in order from its immense 

applications. However, it should also be noted that (1.2) is also obtainable from a 

factoring of (1.1) into two waves. 

 

2 Optimal Control Model Problem  

 

We consider the following constrained optimal control problem for a quadratic 

objective functional: 

 

Problem 1 

 

           Minimize  J[z(x, t), u(x, t)] = Minimize ∫ ∫ +
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subject to the lower order wave propagation: 
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with the following boundary and initial  conditions: 
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where u(x, t) is our control function and c0 is a constant, being the speed of 

propagation. 

 

We formulate a Hamiltonian akin to that of Singh and Titli [4] as follows: 
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The optimality conditions are as follows: 
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From the above equations, we have: 
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Equation (2.7) describes the wave propagation displacement as a time derivative of 

the control function akin to Reju’s result [2]. We now assume Fourier solutions of the 

following forms: 

                                           

∑

∑
∞

=

∞

=

=

=

1

1

)sin()(),(

)sin()(),(

i

i

i

i

ixtutxu

ixtztxz

π

π

                                                 (2.8) 



C. O. Reju, S. A. Reju, and N. I. Akinwande 

 

474 

 

Substituting the above in our problem, we now have Problem 1 becoming the 

following: 

 

Problem 2 
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subject to a system of equations: 
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Solving the general equation of (2.10), we have our state and control functions given 

by the following: 
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where 1λ  and 2λ  are given by: 
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Explicitly expressed, (2.11) equations are given by: 
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3. Numerical Simulations of Results and Analysis 

 

Below, we present the surface plots for the state and control functions: 

 
 

Figure 3.1: Optimal Control and State for Small Wave Velocity 

 

 
Figure 3.2: Optimal Control and State with Small Initial Input Velocity 
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Figure 3.3: Optimal Control and State with Smaller Initial Input (Profile Similar to Reju [2]) 

 

 

 

 
Figure 3.4: Optimal Control and State with Increased Number of Iterates (Using 3.3 

Parameters)  

 

 

 
 

Figure 3.5: Optimal Control and State with further Increased Number of Iterates (Using 3.3 

Parameters) 
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Figure 3.6: Optimal Control and State with Increased Space Dimension (Using 3.4 

Parameters) 

 

 
Figure 3.7: Optimal Control and State with Reduced Space Dimension (Using 3.4 

Parameters) 

 

Studying the above simulated solutions for the propagation phenomena, our 

solutions reveal restricted space disturbances until when the space dimension is 

compensated with increased number of mesh elements. The situation also leads to 

good stability phenomena accompanied with better optima both in the state and 

control functions.  

 

A very notable result arising from the above simulated solutions are some 

propagation profiles obtained which are very similar to those obtained by Reju [2] for 

higher order waves. This simply confirms the claim that most main disturbances for 

higher order waves do travel with lower other propagations as stated in our 

introduction. 
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The seeming abrupt phenomena observed in Figures 3.6 and 3.7 are characteristics 

of some physical phenomena where a seeming stable large region suddenly 

experiences an abrupt disturbance within a small sub-region. Moreover, it should be 

noted that the optimum values dominantly occur at the boundaries as known for 

most models and physical situations. Figure 3.2, for example depicts the subduction 

zone phenomenon in plate tectonics or earthquake studies as studied by Reju [1]. 

 

4 Conclusion 

 

Evidently, the results in this paper have shown the great relevance of studying lower 

order wave propagations. The confirmation that most higher order wave 

disturbances travel with lower order waves obtained from our results is quite a merit. 

Moreover, the results suggest the potential of lower order waves as tools for 

modelling some physical propagation problems arising in dynamics. Nonlinear 

cases, though more mathematically demanding, are being presently studied by the 

second author. 
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