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Abstract. In this paper, we use the resolvent operator to suggest and analyze two new

numerical methods for solving general mixed quasi variational inequalities coupled with

new directions and new step sizes. Under certain conditions, the global convergence of

the both methods is proved. Our results can be viewed as significant extensions of the

previously known results for general mixed quasi variational inequalities.
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1 Introduction

Variational inequality has become a rich of inspiration in pure and applied mathematics.

In recent years, classical variational inequality problems have been extended and generalized

to study a large variety of problems arising in structural analysis, economics, optimization,

operations research and engineering sciences, see [1-39] and the references therein. The pro-

jection and contraction method and its invariant forms represent an important tool for finding

the approximation solution of various types of variational inequalities and complementarity

problems. In recent years variational inequalities have been extended in various directions
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using novel and innovative techniques. A useful and important generation of variational

inequalities is the general mixed variational inequality containing a nonlinear term φ. Due to

the presence of the nonlinear term the projection method and its variant forms can not be

applied to suggest iterative algorithms for solving mixed variational inequalities. To overcome

these drawbacks, some iterative methods have been suggested for solving the general mixed

quasi variational inequalities. For example, if the bifunction is proper, convex and lower semi-

continuous function with respect to the first argument, then Noor [28, 29] has shown that the

general mixed quasi variational inequalities are equivalent to the fixed-point problems and the

implicit resolvent equations using the resolvent operator technique. This equivalent formula-

tion has been used to suggest and analyze some iterative methods. It has been proved that

the convergence of these methods requires that the operator is both strongly monotone and

Lipschitz continuous. Secondly, it is very difficult to evaluate the resolvent of the operator

except for very simple cases. To overcome this disadvantage, Noor and Noor [33] employed

some alternative equivalent formulations to suggest and analyze modified resolvent iterative

method for general mixed quasi variational inequalities, where the skew-symmetry of the non-

linear bifunction plays a crucial part in the convergence analysis of these methods. Inspired

and motivated by on going research in this direction, we suggest and consider two iterative

methods for solving the general mixed quasi variational inequalities involving the nonlinear

term, which is the main motivation of this paper. We prove the global convergence of these

new methods under some mild and suitable conditions. Since the general mixed quasi vari-

ational inequalities includes the general variational inequalities, quasi variational inequalities

and complementarity problems as special cases, results obtained in this paper continue to hold

for these problems. It is expected that these results may inspire and motivate others to find

novel and innovative applications in various branches of pure and applied sciences.

2 Preliminaries

Let H be a real Hilbert space, whose inner product and norm are denoted by ⟨·, ·⟩ and

∥ · ∥ respectively. Let K be a closed convex set in H and T, g : H → H be two operators. Let

φ(., .) : H ×H −→ R∪ {+∞} be a continuous bifunction. We consider the problem of finding
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u∗ ∈ H such that

⟨T (u∗), g(v)− g(u∗)⟩+ φ(g(v), g(u∗))− φ(g(u∗), g(u∗)) ≥ 0, ∀v ∈ H. (2.1)

is called the general mixed quasi variational inequality, see Noor and Noor [33]. We note that,

if the bifunction φ(., .) is a proper, convex and lower semicontinuous function with respect to

the first argument, then problem (2.1) is equivalent to finding u ∈ H such that

0 ∈ T (u) + ∂φ(g(u), g(u)), (2.2)

which is known as finding the zero of the sum of monotone operators. See also [26, 27] for

applications and numerical methods of problem (2.2).

For φ(v, u∗) = φ(v),∀u∗ ∈ H, problem (2.1) reduces to finding u∗ ∈ H such that

⟨T (u∗), g(v)− g(u∗)⟩+ φ(g(v))− φ(g(u∗)) ≥ 0, ∀v ∈ H, (2.3)

which is known as the general mixed variational inequality, see Noor [28].

If φ(., .) = φ(.) is an indicator function of a closed convex set K in H, then the problem

(2.1) is equivalent to finding u∗ ∈ H such that g(u∗) ∈ K and

⟨T (u∗), g(u)− g(u∗)⟩ ≥ 0, ∀g(u) ∈ K. (2.4)

Problem (2.4) is called the general variational inequality, which was first introduced and studied

by Noor [22] in 1988. For the applications, formulation and numerical methods of general

variational inequalities (2.4), we refer the reader to the survey [4, 6, 17, 31].

If g ≡ I, then the problem (2.4) is equivalent to finding u∗ ∈ K such that

⟨T (u∗), v − u∗⟩ ≥ 0, ∀v ∈ K, (2.5)

is called as the classical variational inequality problem , which is was introduced by Stampac-

chia [38] in 1964. For the recent applications, numerical techniques and physical formulation,

see [1-39].

We also need the following well known results and concepts.

Definition 2.1 ∀u, v ∈ H, the operator T : H −→ H is said to be g-pseudomonotone, if

⟨T (u), g(v)− g(u)⟩ ≥ 0 implies ⟨T (v), g(v)− g(u)⟩ ≥ 0.
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Definition 2.2 The bifunction φ(., .) is said to be skew-symmetric, if,

φ(u, u)− φ(u, v)− φ(v, u) + φ(v, v) ≥ 0, ∀u, v ∈ H. (2.6)

Clearly, if the bifunction φ(., .) is linear in both arguments, then,

φ(u, u)− φ(u, v)− φ(v, u) + φ(v, v) = φ(u− v, u− v) ≥ 0, ∀u, v ∈ H,

which shows that the bifunction φ(., .) is nonnegative.

Definition 2.3 [11] For any maximal operator T, the resolvent operator associated with T,

for any ρ > 0, is defined as

JT (u) = (I + ρT )−1(u), ∀u ∈ H. (2.7)

Remark 2.1 It is well known that the subdifferential ∂φ(., .) of a convex, proper and lower-

semicontinuous function φ(., .) : H ×H −→ R ∪ {+∞} is a maximal monotone with respect

to the first argument, we can define its resolvent by

Jφ(u) = (I + ρ∂φ(., u))−1 ≡ (I + ρ∂φ(u))−1, (2.8)

where ∂φ(u) ≡ ∂φ(., u).

The resolvent operator Jφ(u)defined by (2.8) has the following characterization,

Lemma 2.1 [29] For a given z ∈ H, u ∈ H satisfies the inequality

⟨u− z, v − u⟩+ ρφ(v, u)− ρφ(u, u) ≥ 0, ∀v ∈ H, (2.9)

if and only if

u = Jφ(u)[z],

where Jφ(u) is resolvent operator defined by (2.8).

It follows from Lemma 2.1 that

⟨Jφ(u)[w]− w, v − Jφ(u)[w]⟩+ ρφ(v, Jφ(u)[w])− ρφ(Jφ(u)[w], Jφ(u)[w]) ≥ 0, ∀u, v, w ∈ H

(2.10)

The following result can be proved by using Lemma 2.1.

Lemma 2.2 [24] u∗ ∈ H is solution of problem (2.1) if and only if u∗ ∈ H satisfies the relation:

g(u∗) = Jφ(u∗)[g(u
∗)− ρT (u∗)], (2.11)

where ρ > 0.
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From Lemma 2.2, it is clear that u is solution of (2.1) if and only if u is a zero point of the

function

r(u, ρ) := g(u)− Jφ(u)[g(u)− ρT (u)].

Lemma 2.3 [4] For all u ∈ H and ρ′ ≥ ρ > 0, it holds that

∥r(u, ρ′)∥ ≥ ∥r(u, ρ)∥ (2.12)

and
∥r(u, ρ′)∥

ρ′
≤ ∥r(u, ρ)∥

ρ
. (2.13)

Lemma 2.4 For all v, w ∈ H, we have

∥Jφ(u)(w)− Jφ(u)(v)∥2 ≤ ⟨w − v, Jφ(u)(w)− Jφ(u)(v)⟩. (2.14)

Proof. By using (2.10), we get

⟨w−Jφ(u)(w), Jφ(u)(w)−Jφ(u)(v)⟩+ρφ(Jφ(u)(v), Jφ(u)(w))−ρφ(Jφ(u)(w), Jφ(u)(w)) ≥ 0 (2.15)

and

⟨v−Jφ(u)(v), Jφ(u)(v)−Jφ(u)(w)⟩+ρφ(Jφ(u)(w), Jφ(u)(v))−ρφ(Jφ(u)(v), Jφ(u)(v)) ≥ 0. (2.16)

Adding (2.15) and (2.16), and using the skew-symmetry of the bifunction φ(., .), we obtain

⟨v − w, Jφ(u)(v)− Jφ(u)(w)⟩ ≥ ∥Jφ(u)(v)− Jφ(u)(w)∥2.

�

Throughout this paper, we make following assumptions.

Assumptions:

• H is a finite dimension space.

• g is homeomorphism on H i.e., g is bijective, continuous and g−1 is continuous.

• T is continuous and g-pseudomonotone operator on H.

• The bifunction φ(., .) is skew-symmetric.

• The solution set of problem (2.1) denoted by S∗, is nonempty.
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3 Main results

In this section, we suggest and analyze the new resolvent methods for solving general

mixed quasi variational inequalities (2.1). For given uk ∈ H and ρk > 0, each iteration of the

first method consists of three steps, the first step offers g(ũk), the second step makes g(ūk)

and the third step produces the new iterate g(uk+1).

Algorithm 3.1

Step 1. Given u0 ∈ H, ϵ > 0, ρ0 = 1, ν > 1, µ ∈ (0,
√
2), τ ∈ (0, 1), η1 ∈ (0, τ), η2 ∈ (τ, ν)

and let k = 0.

Step 2. If ∥r(uk, 1)∥ ≤ ϵ, then stop. Otherwise, go to Step 3.

Step 3. 1) For a given uk ∈ H , calculate the two predictors

g(ũk) = Jφ(uk)[g(u
k)− ρkT (u

k)], (3.1a)

g(ūk) = Jφ(uk)[g(ũ
k)− ρkT (ũ

k)]. (3.1b)

2) If ∥r(ũk, 1)∥ ≤ ϵ, then stop . Otherwise, continue.

3) If ρk satisfies both

r1 :=
∥ρk[⟨g(ũk)− g(ūk), T (uk)− T (ũk)⟩ − ⟨g(uk)− g(ūk), T (ũk)− T (ūk)⟩]∥

∥g(ũk)− g(ūk)∥2
≤ µ2

(3.2)

and

r2 :=
∥ρk(T (ũk)− T (ūk))∥

∥g(ũk)− g(ūk)∥
≤ ν, (3.3)

then go to Step 4; otherwise, continue.

4) Perform an Armijo-like line search via reducing ρk

ρk := ρk ∗
0.8

max(r1, 1)
(3.4)

and go to Step 3.
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Step 4. Take the new iteration uk+1, by setting

g(uk+1) = g(uk)− αkd(ũ
k, ūk), (3.5)

where

αk =
⟨g(uk)− g(ūk), d(ũk, ūk)⟩

∥d(ũk, ūk)∥2
(3.6)

and

d(ũk, ūk) := (g(ũk)− g(ūk))− ρk(T (ũ
k)− T (ūk)). (3.7)

Step 5. Adaptive rule of choosing a suitable ρk+1 as the start prediction step size for the

next iteration

1) Prepare a proper ρk+1,

ρk+1 :=


ρk ∗ τ/r2 if r2 ≤ η1,

ρk ∗ τ/r2 if r2 ≥ η2,

ρk otherwise.

(3.8)

2) Return to Step 2, with k replaced by k + 1.

If φ(v, u) = φ(v),∀u ∈ H, and φ is an indicator function of a closed convex set K in H,

then Jφ ≡ PK [24], the projection of H onto K and consequently Algorithm 3.1 collapses

to the following Algorithm for solving the general variational inequalities, which is due to

Bnouhachem and Noor [10].

Algorithm 3.2

Step 1. Given u0 ∈ H, ϵ > 0, ρ0 = 1, ν > 1, µ ∈ (0,
√
2), τ ∈ (0, 1), η1 ∈ (0, τ), η2 ∈ (τ, ν)

and let k = 0.

Step 2. If ∥r(uk, 1)∥ ≤ ϵ, then stop. Otherwise, go to Step 3.

Step 3. 1) For a given uk ∈ H , calculate the two predictors

g(ũk) = PK [g(uk)− ρkT (u
k)],

g(ūk) = PK [g(ũk)− ρkT (ũ
k)].

2) If ∥r(ũk, 1)∥ ≤ ϵ, then stop . Otherwise, continue.
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3) If ρk satisfies both

r1 :=
∥ρk[⟨g(ũk)− g(ūk), T (uk)− T (ũk)⟩ − ⟨g(uk)− g(ūk), T (ũk)− T (ūk)⟩]∥

∥g(ũk)− g(ūk)∥2
≤ µ2

and

r2 :=
∥ρk(T (ũk)− T (ūk))∥

∥g(ũk)− g(ūk)∥
≤ ν,

then go to Step 4; otherwise, continue.

4) Perform an Armijo-like line search via reducing ρk

ρk := ρk ∗
0.8

max(r1, 1)

and go to Step 3.

Step 4. Take the new iteration uk+1, by setting

g(uk+1) = g(uk)− αkd(ũ
k, ūk),

where

αk =
⟨g(uk)− g(ūk), d(ũk, ūk)⟩

∥d(ũk, ūk)∥2

and

d(ũk, ūk) := (g(ũk)− g(ūk))− ρk(T (ũ
k)− T (ūk)).

Step 5. Adaptive rule of choosing a suitable ρk+1 as the start prediction step size for the

next iteration

1) Prepare a proper ρk+1,

ρk+1 :=


ρk ∗ τ/r2 if r2 ≤ η1,

ρk ∗ τ/r2 if r2 ≥ η2,

ρk otherwise.

2) Return to Step 2, with k replaced by k + 1.

Lemma 3.1 Let u∗ be a solution of problem (2.1). For given uk ∈ H, let ũk, ūk be the

predictors produced by (3.1a) and (3.1b), then we have

⟨g(uk)− g(ūk), d(ũk, ūk)⟩ ≥ (2− µ2)∥g(ũk)− g(ūk)∥2. (3.9)
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Proof. Note that g(ũk) = Jφ(uk)[g(u
k) − ρkT (u

k)], g(ūk) = Jφ(uk)[g(ũ
k) − ρkT (ũ

k)], we can

apply (2.14) with v = g(uk)− ρkT (u
k), w = g(ũk)− ρkT (ũ

k) to obtain

⟨g(uk)− ρkT (u
k)− (g(ũk)− ρkT (ũ

k)), g(ũk)− g(ūk)⟩ ≥ ∥g(ũk)− g(ūk)∥2.

By some manipulations, we have

⟨g(uk)− g(ũk), g(ũk)− g(ūk)⟩ ≥ ∥g(ũk)− g(ūk)∥2 + ρk⟨g(ũk)− g(ūk), T (uk)− T (ũk)⟩.

Then, we obtain

⟨g(uk)− g(ũk), d(ũk, ūk)⟩ = ⟨g(uk)− g(ũk), g(ũk)− g(ūk)⟩ − ρk⟨g(uk)− g(ũk), T (ũk)− T (ūk)⟩

≥ ∥g(ũk)− g(ūk)∥2 + ρk⟨g(ũk)− g(ūk), T (uk)− T (ũk)⟩

−ρk⟨g(uk)− g(ũk), T (ũk)− T (ūk)⟩. (3.10)

Using (3.10), (3.2) and the definition of d(ũk, ūk), we get

⟨g(uk)− g(ūk), d(ũk, ūk)⟩ = ⟨g(uk)− g(ũk), d(ũk, ūk)⟩+ ⟨g(ũk)− g(ūk), d(ũk, ūk)⟩

≥ ∥g(ũk)− g(ūk)∥2 + ρk⟨g(ũk)− g(ūk), T (uk)− T (ũk)⟩

−ρk⟨g(uk)− g(ũk), T (ũk)− T (ūk)⟩+ ∥g(ũk)− g(ūk)∥2

−ρk⟨g(ũk)− g(ūk), T (ũk)− T (ūk)⟩

≥ (2− µ2)∥g(ũk)− g(ūk)∥2.

Hence, (3.9) holds and the proof is completed. �

Now, we mainly focus on investigating the convergence of Algorithm 3.1. The following

theorem plays a crucial role in the convergence of Algorithm 3.1.

Theorem 3.1 Let u∗ be a solution of problem (2.1) and let g(uk+1) be the sequence obtained

from algorithm 3.1. Then uk is bounded and

∥g(uk+1)− g(u∗)∥2 ≤ ∥g(uk)− g(u∗)∥2 − (2− µ2)2

(1 + ν)2
∥g(ũk)− g(ūk)∥2. (3.11)

Proof. For any u∗ ∈ S∗ solution of problem (2.1), we have

⟨ρkT (u∗), g(ūk)− g(u∗)⟩+ ρkφ(g(ū
k), g(u∗))− ρkφ(g(u

∗), g(u∗)) ≥ 0.

Using the g-pseudomonotonicity of T, we obtain

⟨ρkT (ūk), g(ūk)− g(u∗)⟩+ ρkφ(g(ū
k), g(u∗))− ρkφ(g(u

∗), g(u∗)) ≥ 0. (3.12)
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Substituting w = g(ũk)− ρkT (ũ
k) and v = g(u∗) into (2.10), we get

⟨g(ũk)− ρkT (ũ
k)− g(ūk), g(ūk)− g(u∗)⟩+ ρkφ(g(u

∗), g(ūk))− ρkφ(g(ū
k), g(ūk)) ≥ 0. (3.13)

Adding (3.12) and (3.13), and using the definition of d(ũk, ūk), we have

⟨d(ũk, ūk), g(ūk)− g(u∗)⟩ ≥ 0. (3.14)

Since u∗ ∈ H be a solution of problem (2.1), then

∥g(uk+1)− g(u∗)∥2 = ∥g(uk)− g(u∗)− αkd(ũ
k, ūk)∥2

= ∥g(uk)− g(u∗)∥2 − 2αk⟨g(uk)− g(u∗), d(ũk, ūk)⟩

+α2
k∥d(ũk, ūk)∥2. (3.15)

Adding (3.14) (multiplied by 2αk) to (3.15) and using (3.6), we get

∥g(uk+1)− g(u∗)∥2 ≤ ∥g(uk)− g(u∗)∥2 − 2αk⟨g(uk)− g(ūk), d(ũk, ūk)⟩+ α2
k∥d(ũk, ūk)∥2

= ∥g(uk)− g(u∗)∥2 − αk⟨g(uk)− g(ūk), d(ũk, ūk)⟩

≤ ∥g(uk)− g(u∗)∥2 − αk(2− µ2)∥g(ũk)− g(ūk)∥2 (3.16)

where the last inequality follows from (3.9).

Recalling the definition of d(ũk, ūk) (see (3.7)) and applying Criterion (3.3), it is easy to

see that

∥d(ũk, ūk)∥2 ≤ (∥g(ũk)− g(ūk)∥+ ∥ρk(T (ũk)− T (ūk))∥)2 ≤ (1 + ν)2∥g(ũk)− g(ūk)∥2. (3.17)

Moreover, by using (3.9) together with (3.17), we get

αk =
⟨g(uk)− g(ūk), d(ũk, ūk)⟩

∥d(ũk, ūk)∥2
≥ 2− µ2

(1 + ν)2
> 0, µ ∈ (0,

√
2). (3.18)

Substituting (3.18) in (3.16), we get the assertion of this theorem. Since γ ∈ [1, 2) and

µ ∈ (0,
√
2) we have

∥g(uk+1)− g(u∗)∥ ≤ ∥g(uk)− g(u∗)∥ ≤ . . . ≤ ∥g(u0)− g(u∗)∥.

Since g is homeomorphism and from the above inequality, it is easy to verify that the sequence

{uk} is bounded. �
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We now present the convergence result of Algorithm 3.1.

Theorem 3.2 If inf∞k=0 ρk := ρ > 0, then any cluster point of the sequence {ũk} generated

by Algorithm 3.1 is a solution of problem (2.1).

Proof. It follows from (3.11) that

lim
k→∞

∥g(ũk)− g(ūk)∥ = 0.

Since the sequence {uk} is bounded, {ũk} is also bounded, it has at least a cluster point.

Let u∞ be a cluster point of {ũk} and the subsequence {ũkj} converges to u∞. Using the

continuity of r(u, ρ) and inequality (2.12), it follows that

∥r(u∞, ρ)∥ = lim
kj→∞

∥r(ũkj , ρ)∥ ≤ lim
kj→∞

∥r(ũkj , ρkj )∥ = lim
kj→∞

∥g(ũkj )− g(ūkj )∥ = 0.

This means that u∞ is a solution of problem (2.1). �

Let g(wk) = g(uk)− αkρkT (ũ
k). For a positive constant τ, we consider

g(uk+1) = g(uk)− τ(g(uk)− g(wk)).

Here the positive constant τ can be viewed as a step along the direction −(g(uk)− g(wk)). We

use the fixed-point formulation to suggest the following iterative method.

Algorithm 3.3

Step 1. Given u0 ∈ H, ϵ > 0, ρ0 = 1, ν > 1, µ ∈ (0,
√
2), τ ∈ (0, 1), η1 ∈ (0, τ), η2 ∈ (τ, ν)

and let k = 0.

Step 2. If ∥r(uk, 1)∥ ≤ ϵ, then stop. Otherwise, go to Step 3.

Step 3. 1) For a given uk ∈ H , calculate the two predictors

g(ũk) = Jφ(uk)[g(u
k)− ρkT (u

k)],

g(ūk) = Jφ(uk)[g(ũ
k)− ρkT (ũ

k)].

2) If ∥r(ũk, 1)∥ ≤ ϵ, then stop . Otherwise, continue.
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3) If ρk satisfies both

r1 :=
∥ρk[⟨g(ũk)− g(ūk), T (uk)− T (ũk)⟩ − ⟨g(uk)− g(ūk), T (ũk)− T (ūk)⟩]∥

∥g(ũk)− g(ūk)∥2
≤ µ2

and

r2 :=
∥ρk(T (ũk)− T (ūk))∥

∥g(ũk)− g(ūk)∥
≤ ν,

then go to Step 4; otherwise, continue.

4) Perform an Armijo-like line search via reducing ρk

ρk := ρk ∗
0.8

max(r1, 1)

and go to Step 3.

Step 4. Compute

g(wk) = g(uk)− αkd(ũ
k, ūk)),

where

αk =
⟨g(uk)− g(ūk), d(ũk, ūk)⟩

∥d(ũk, ūk)∥2

and

d(ũk, ūk) := (g(ũk)− g(ūk))− ρk(T (ũ
k)− T (ūk)).

Step 5. For τ > 0, the new iterate uk+1(τ) is defined by

g(uk+1(τ)) = g(uk)− τ(g(uk)− g(wk)). (3.19)

Step 6. Adaptive rule of choosing a suitable ρk+1 as the start prediction step size for the

next iteration

1) Prepare a proper ρk+1,

ρk+1 :=


ρk ∗ τ/r2 if r2 ≤ η1,

ρk ∗ τ/r2 if r2 ≥ η2,

ρk otherwise.

2) Return to Step 2, with k replaced by k + 1.
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If φ(v, u) = φ(v),∀u ∈ H, and φ is an indicator function of a closed convex set K in H,

then Jφ ≡ PK [24], the projection of H onto K and Consequently Algorithm 3.3 reduces to

Algorithm 3.4 for solving the general variational inequalities (2.4).

Algorithm 3.4

Step 1. Given u0 ∈ H, ϵ > 0, ρ0 = 1, ν > 1, µ ∈ (0,
√
2), τ ∈ (0, 1), η1 ∈ (0, τ), η2 ∈ (τ, ν)

and let k = 0.

Step 2. If ∥r(uk, 1)∥ ≤ ϵ, then stop. Otherwise, go to Step 3.

Step 3. 1) For a given uk ∈ H , calculate the two predictors

g(ũk) = PK [g(uk)− ρkT (u
k)],

g(ūk) = PK [g(ũk)− ρkT (ũ
k)].

2) If ∥r(ũk, 1)∥ ≤ ϵ, then stop . Otherwise, continue.

3) If ρk satisfies both

r1 :=
∥ρk[⟨g(ũk)− g(ūk), T (uk)− T (ũk)⟩ − ⟨g(uk)− g(ūk), T (ũk)− T (ūk)⟩]∥

∥g(ũk)− g(ūk)∥2
≤ µ2

and

r2 :=
∥ρk(T (ũk)− T (ūk))∥

∥g(ũk)− g(ūk)∥
≤ ν,

then go to Step 4; otherwise, continue.

4) Perform an Armijo-like line search via reducing ρk

ρk := ρk ∗
0.8

max(r1, 1)

and go to Step 3.

Step 4. Compute

g(wk) = g(uk)− αkd(ũ
k, ūk)),

where

αk =
⟨g(uk)− g(ūk), d(ũk, ūk)⟩

∥d(ũk, ūk)∥2

and

d(ũk, ūk) := (g(ũk)− g(ūk))− ρk(T (ũ
k)− T (ūk)).
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Step 5. For τ > 0, the new iterate uk+1(τ) is defined by

g(uk+1(τ)) = g(uk)− τ(g(uk)− g(wk)).

Step 6. Adaptive rule of choosing a suitable ρk+1 as the start prediction step size for the

next iteration

1) Prepare a proper ρk+1,

ρk+1 :=


ρk ∗ τ/r2 if r2 ≤ η1,

ρk ∗ τ/r2 if r2 ≥ η2,

ρk otherwise.

2) Return to Step 2, with k replaced by k + 1.

How to choose a suitable step length τ > 0 to force convergence will be discussed later.

We now consider the criteria of τ, which ensures that g(uk+1(τ)) is closer to g(u∗) than g(uk).

For this purpose, we define

Γ(τ) := ∥g(uk)− g(u∗)∥2 − ∥g(uk+1(τ))− g(u∗)∥2. (3.20)

Lemma 3.2 Let u∗ ∈ S∗ and g(wk) = g(uk)− αkd(ũ
k, ūk)). Then we have

Γ(τ) = τ{∥g(uk)− g(wk)∥2 +Υ(αk)} − τ2∥g(uk)− g(wk)∥2, (3.21)

where

Υ(αk) := ∥g(uk)− g(u∗)∥2 − ∥g(wk)− g(u∗)∥2. (3.22)

Proof. It follows from (3.19) that

Γ(τ) = ∥g(uk)− g(u∗)∥2 − ∥g(uk)− τ(g(uk)− g(wk))− g(u∗)∥2

= 2τ⟨g(uk)− g(u∗), g(uk)− g(wk)⟩ − τ2∥g(uk)− g(wk)∥2

= 2τ{∥g(uk)− g(wk)∥2 − ⟨g(u∗)− g(wk), g(uk)− g(wk)⟩}

−τ2∥g(uk)− g(wk)∥2 (3.23)

Using the following identity

⟨g(u∗)− g(wk), g(uk)− g(wk)⟩ =
1

2

(
∥g(wk)− g(u∗)∥2 − ∥g(uk)− g(u∗)∥2

)
+

1

2
∥g(uk)− g(wk)∥2,
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and the notation of Υ(αk), we obtain (3.21), the required result. ⊓⊔

Using (3.16)(by setting g(wk) = g(uk+1)) and (3.21), we get

Γ(τ) ≥ Λ(τ), (3.24)

where

Λ(τ) = τ{∥g(uk)− g(wk)∥2 + αk⟨g(uk)− g(ūk), d(ũk, ūk)⟩} − τ2∥g(uk)− g(wk)∥2.

The above inequality tells us how to choose a suitable τk. Since Λ(τk) is a quadratic function

of τk and it reaches its maximum at

τ∗k =
∥g(uk)− g(wk)∥2 + αk⟨g(uk)− g(ūk), d(ũk, ūk)⟩

2∥g(uk)− g(wk)∥2

and

Λ(τ∗k ) =
τ∗k{∥g(uk)− g(wk)∥2 + αk⟨g(uk)− g(ūk), d(ũk, ūk)⟩}

2
.

Then, from Lemma 3.1 and (3.18), we get

τ∗k ≥
∥g(uk)− g(wk)∥2 + (2−µ2)2

(1+ν)2
∥g(ũk)− g(ūk)∥2

2∥g(uk)− g(wk)∥2

≥ 1

2
,

and

Λ(τ∗k ) ≥
τ∗k (2− µ2)2

2(1 + ν)2
∥g(ũk)− g(ūk)∥2

≥ (2− µ2)2

4(1 + ν)2
∥g(ũk)− g(ūk)∥2. (3.25)

Then, from (3.20), (3.24) and (3.25), we have

∥g(uk+1)− g(u∗)∥2 = ∥g(uk)− g(u∗)∥2 − Γ(τ∗k )

≤ ∥g(uk)− g(u∗)∥2 − (2− µ2)2

4(1 + ν)2
∥g(ũk)− g(ūk)∥2.

The convergence of Algorithm 3.2 can be proved by similar arguments as Algorithm 3.1. Hence

the proof is omitted.
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Remark 3.1 If τ∗k = 1 Algorithm 3.4 reduces to Algorithm 3.2. Since τ∗k is to maximize the

profit function Λ(τ), we have

Λ(τ∗k ) ≥ Λ(1). (3.26)

Inequalities (3.24) and (3.26) show theoretically that Algorithm 3.4 is expected to make more

progress than Algorithm 3.2 at each iteration, and so it explains theoretically that Algorithm

3.4 outperforms Algorithm 3.2.

4 Conclusions

In this paper, we suggest and analyze two new methods for solving general mixed quasi

variational inequalities, which can be viewed as a refinement and improvement of some existing

resolvent methods and projection descent methods. It is easy to verify that Algorithm 3.1 and

Algorithm 3.3 include some existing methods (e.g. [4, 5, 6]) as special cases. Therefore, the

new algorithms are expected to be widely applicable.
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