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Abstract

In this paper, we study the regularity of a minimizer for the optimal
shape problem for the first eigenvalue of the p-Laplace operator. Using the
associated variational problem, we study the regularity of the optimal first
eigenfunction corresponding to the optimal shape problem for p-Laplacian
operator with volume and inclusion constraints. And we prove the equiva-
lence between the associated variational and penalized problems provided
the penalization parameter λ is large enough. We study also the minimizers
of such family of penalized problem showing they are Hölder continuous.
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1 Introduction

Let D be a bounded open set of RN . For all open subset Ω of D, we denote by
λ1(Ω) the first eigenvalue of the p-Laplacian operator in Ω, with homogeneous
boundary conditions, and by uΩ a normalized eigenfunction, that is

−∆puΩ = λ1(Ω)|uΩ|p−2uΩ in Ω
uΩ = 0 on ∂Ω∫

Ω
|uΩ|p = 1

(1)

The goal of this paper is to study the regularity of the optimal shapes of the
the following shape optimization problem where c ∈ ]0, |D|[ and |D| denotes the
Lebesgue measure of |D|.

{
Ω∗ open set , Ω∗ ⊂ D, |Ω∗| = c
λ1(Ω∗) = min{λ1(Ω), Ω ∈ Oc}

(2)

where Oc is the class of admissible sets defined by

Oc = {Ω, open set, Ω ⊂ D and |Ω| = c}
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and {
λ1(Ω) = J(uΩ) =

∫
Ω
|∇uΩ|p

= min{
∫

Ω
|∇v|p, v ∈ W 1,p

0 (Ω), and
∫

Ω
|v|p = 1} (3)

so that uΩ is the unique solution to the problem (1) which reaches the minimum
(3), see [17],[27].

One can prove using the Schwarz symmetrization method that any ball B ⊂
D with the prescribed measure |B| = c is solution to the problem (2), see [29] .
The shape optimization problem (2) does not always have a solution in Oc. The
existence result when Oc consists in all quasi open subsets of D is well known from
the general result of Buttazzo and Dalmaso see [11]. For p > 2, we introduce
the class Ap(D) of p-quasi open sets in D and the γp convergence and show there
exists a minimizer among the quasi open sets, see [29].But generally, we cannot
say more about regularity of the optimal quasi open set.

The idea is to introduce a penalty term depending on c and to consider
a variational problem. The advantage is to involve only the state function and
not the optimal shape, see Alt and Caffarelli [2] and Alt , Caffarelli and Friedman
[3].

This approach was used by C. Bandle and A. Wagner [4] for a varia-
tional problem under a constraint on the mass which is motivated by the torsional
rigidity and torsional creep.They treat instead a problem without constraint but
with a penalty term. And they established the existence of a Lipschitz continuous
minimizer and prove qualitative properties of the optimal shape.

In [8], T.Briancon et al proved: if u ∈ H1
0 (D) is a solution of

λm =

∫
Ω

|∇u|2dx = min{
∫

Ω

|∇v|2, v ∈ H1
0 (D),

∫
D

|v|2 = 1 and |Ωv| ≤ m,m ∈ (0, |D|)}

then u is Lipschitz continuous on D. And the shape optimization problem

λ1(Ω∗) = min{λ1(Ω), Ω quasi open set, Ω ⊂ D and |Ω| ≤ m}

has a solution Ω∗ with |Ω∗| = m and which is at least an open subset of D whose
corresponding eigenfunction is locally Lipschitz continuous.

In [9], Briancon and Lamboley considering the shape optimization prob-
lem λ1(Ω∗) = min{λ1(Ω), Ω open set, Ω ⊂ D and |Ω| = m} proved regularity
properties of the boundary of the optimal shape Ω∗ in any case and any dimension.

In this paper, we are going to use a variational approach to solve the
problem (2). And we replace the shape optimization problem by the following
variational problem

{
Find u ∈ V, such that ∀ v ∈ V

J(u) ≤ J(v)
(4)
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where the class of admissible functions is given by

V := {v ∈ W 1,p
0 (D),

∫
D

|v|p = 1 and |Ωv| = c}

with Ωv = {x ∈ D, v(x) > 0}.
The objective of this paper is to prove that problem (4) admits at least

one continuous minimizer u and consequently that Ωu solves the problem (2).
Moreover when p > N, the Hölder continuity of any minimizer is a consequence
of the Sobolev embedding theorem W 1,p

0 (D) ↪→ C0,α(D) with α = 1 − N
p
. The

main difficulty is the regularity of a minimizer fails using Sobolev embedding
when 1 < p ≤ N.

The structure of this paper is organized as follows: In section 2 we give
some auxiliary results. In section 3 we give the main result and its application
to shape optimization problem. In section 4, we show the constrained problem
is equivalent to a penalized problem and we prove that such functions minimize
the initial problem (4), provided the penalization parameter λ is large enough.
In the last section, we study the Hölder continuity of the minimizers of a family
of penalized functionals Jλ, λ > 0.

2 Auxiliary results

Since we are interested in the case 1 < p ≤ N, we shall use some known
properties for functions in W 1,p

0 (Ω). From Sobolev embedding theorem and the
Gagliardo-Nirenberg inequality see for example [18, 27, 28], an application of
Hölder inequality yields

||u||Ls(Ω) ≤ C|Ω|
1
s
−N−p

Np ||∇u||Lp(Ω),

which is true for any u ∈ W 1,p
0 (Ω) and for any open set Ω ⊂ D and where

1 < s < Np
N−p , if p < N and the constant C depending only on N, s and p.

If s = p, we get the following Poincaré-type inequality:

||u||Lp(Ω) ≤ C0|Ω|
1
N ||∇u||Lp(Ω),

where C0 = C0(N).

3 Main results

The difficulty we have to overcome in order to prove the existence result of the
problem (4) is the fact that V is not closed with respect to the weak topology of
W 1,p

0 (D).
We denote V0 the class of admissible functions is given by

V0 := {v ∈ W 1,p
0 (D),

∫
D

|v|p = 1 and |Ωv| ≤ c}
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with Ωv = {x ∈ D, v(x) > 0}.
And

λc = λ1(Ω∗) = J(uΩ∗) = J(u) =

∫
Ω

|∇u|pdx = min{
∫

Ω

|∇v|p, v ∈ V0}

However, we consider the following relaxed version{
Find u ∈ V0, such that ∀ v ∈ V0

J(u) ≤ J(v)
(5)

The set V is included in V0, and it is shown in [12]. Moreover we have the
following lemmas:

Lemma 3.1 The class V0 is weakly closed in W 1,p
0 (D).

That is if a sequence of functions vn ∈ V0 converges in weak topology of W 1,p
0 (D)

to v ∈ W 1,p
0 (D), then we obtain v ∈ V0. We have also

Lemma 3.2 The set V is dense in V0; that is:

∀ v ∈ V0,∀ n ∈ N, there exists vn ∈ V such that : vn converges to v in W 1,p
0 (D).

Proof of Lemma 3.2 see [21].
We have the following result:

Proposition 3.1 The problem (5) admits at least one solution.

Proof of Proposition (3.1)
Thanks to inequality (5) we obtain for any v ∈ V0,
J(v) =

∫
Ω
|∇v|pdx, > 1

C0|Ω|
1
N
, then J(v) > 0 this implies that inf{J(v), v ∈

V0} > −∞. There exists a minimizing sequence (un) which converges to α =
inf{J(v), v ∈ V0}. We see that the sequence (un) is bounded in W 1,p

0 (D).
There exists u ∈ W 1,p

0 (D) and a subsequence still denoted (un) such that un
converges weakly on u in W 1,p

0 (D). Using the Rellich -Kondrachov theorem , (un)
converges on u in Lp(D) and a.e in D. We have J(u) ≤ lim

n−→+∞
infJ(un) and

also |Ωu| ≤ lim
n−→+∞

inf |Ωn| ≤ c

Moreover, the following result also holds

Lemma 3.3 If u is a solution of (5) such that |Ωu| < c, then u = uD.

Proof of lemma (3.3)
Let x0 ∈ D, there exists a small ball B(x0, r0) ⊂ D of radius r0 verifying

|B(x0, r0)| < c − |Ωu| such that r0 < ( c−|Ωu|
WN

)1/N , where WN = |B(O, 1)|. For

all t ∈ R and for all φ ∈ C∞0 (B(x0, r)), we have (u+tφ)∫
D |(u+tφ)|pdx belongs to V0.

We obtain ∫
D

|∇u|pdx ≤
∫
D
|∇(u+ tφ)|pdx∫
D
|(u+ tφ)|pdx

.

By differentiating with respect to t at t = 0 implies∫
D

|∇u|p−2∇u∇φdx = λc

∫
D

|u|p−2uφ = λc

∫
D

|u|p−1φ, in this case, u = uD since

x0 is an arbitrary point in D.
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From a mathematical point of view, the problem (5) is easier to study. For-
tunately we have the following relation.

Lemma 3.4 We assume the following condition holds{
there does not exist u ∈ W 1,p

0 (D) with |Ωu| < c such that
−∆pu = λc|u|p−1 in D

(6)

Then the problems (4) and (5) are equivalent.

Proof of lemma (3.4)
From the density of V in V0, u solution of (4) implies u solution of the problem
(5). Conversely, let be u a solution of the problem (5) and |Ωu| = c

′
. If u

were not a solution of the problem (4), we should have c
′
< c. And for all

φ ∈ W 1,p
0 (D),with |Ωφ| ≤ c − c

′
, for all t ∈ R, (u+tφ)∫

D |(u+tφ)|pdx belongs to V0.

Therefore we get ∫
D

|∇u|pdx ≤
∫
D
|∇(u+ tφ)|pdx∫
D
|(u+ tφ)|pdx

.

By differentiating with respect to t at t = 0 implies∫
D

|∇u|p−2∇u∇φdx = λc

∫
D

|u|p−2uφ = λc

∫
D

|u|p−1φ, so that we can conclude

that the condition (6) does not hold.

The following result indicates the relationship between problem (4) and the
problem (5).

Proposition 3.2 Assume that (6) holds. Then the following holds true:

(a) Any solution of (5) is also a solution of (4).

(b) The problem (4) admits at least one solution.

(c) Any solution to (4) is also a solution to (5)

Proof of proposition (3.2)
(a) Let u be a solution of (5). By Lemma (3.4) we see that |Ωu| = c i.e u ∈ V.
But since V ⊂ V0, we have also J(u) ≤ J(v) for any v ∈ V. Thus u is a
solution of (4).
(b) This is an easy consequence of (a) and the proposition (3.1).
(c) Let u be a solution of (4) and by the proposition (3.1), the problem (5) has
at least one solution z. From (a) we have that z is also a solution of (4), and
therefore J(u) = J(z) ≤ J(v) for any v ∈ V0. That is u is indeed a solution to
(5) because u ∈ V ⊂ V0.

For the rest of the paper we shall assume the following condition.{
Assume (6) holds and that |u|p−1 ∈ Lq(D) where q ≥ p

p−1

and q > N
(7)
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Remark 3.1 • In the case p = 2, N ≥ 2, and D fixed domain subset of RN ,
non necessarily bounded, we have λcu

p−1 = λcu = f. Assuming f belongs to
L∞(D) ∩ L2(D), T.Briancon et al [8] proved the state function u is locally
Lipschitz continuous.

• In the case p = N = 2 andD = R2 we have λcu
p−1 = λcu = f. In [12],

M.Crouzeix proved the Lipschitz regularity of any solution to (4) for f be-
longing to L∞(R2) with compact support K satisfying |K| < c. In this case
the problem arises in electromagnetic shaping of molten metals without sur-
face tension.

• In the case p = 2, N ≥ 2, and D sufficiently smooth domain ( non nec-
essarily bounded) and λcu

p−1 = λcu = f. In [21], M.Hayouni proved the
Lipschitz continuity of a solution to (4) which doesn’t change its sign for f
belonging to Lq(D) with q > N.

• The validity of assumption (7) comes from [8] ,[12] and [21]. In our case
we assume that |u|p−1 ∈ Lq(D) with q > N to expect the state function
u to be locally Hölder-continuous. In the other way, we have u ∈ W 1,p

0 (D)

then u ∈ Lp(D) implies that up−1 ∈ L
p

p−1 (D). If |u|p−1 ∈ Lq(D), q
large enough i.e q > N this implies that q ≥ p

p−1
if not we have q <

p
p−1
≤ p ≤ N. This assumption play an important role in the estimation

of
∫
|∇u|pdx, see proposition ( 5.1).

Our main result is the following. This result is a direct consequence of theorem
(5.1) and proposition (4.2) (see section 4.)

Theorem 3.1 If condition (7) is satisfied then any solution of (4) (equivalently(5))
is locally Hölder-continuous.

We have the following shape optimization result if condition (6) holds.

Proposition 3.3 If the condition (7) is satisfied then the shape optimization
problem (2) has at least one solution.

Proof of proposition(3.3)
According to proposition (3.2) and theorem (3.1), problem (5) admits at least one
continuous solution u, which is also a solution to (4). We deduce that Ωu is an
open set satisfying |Ωu| = c that is Ωu ∈ Oc. We also know u ∈ W 1,p

0 (Ωu) and
λ1(Ωu) = J(u). Indeed, by the optimality of u we have J(u) ≤ J(v) for any
v ∈ W 1,p

0 (Ωu). On the other hand for any Ω ∈ Oc, we have u ∈ V0. Since u
solves problem (5) we obtain for all Ω ∈ Oc, λ1(Ωu) = J(u) ≤ λ1(Ω). Finally
Ωu is a solution of the shape optimization problem (2).

Remark 3.2 If the condition (6) does not hold then the shape optimization prob-
lem (2) has an infinite number of solution, see [6, 21].
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Remark 3.3 The existence of optimal quasi-open set doesn’t imply gener-
ally the existence of an optimal set. It is possible to construct some examples
where the optimal quasi-open set is not an open set see [6],[21]. Therefore
the shape optimization problem (2) has no solution. This is why we need
some assumption to |u|p−1 to be more regular than |u|p−1 belonging only to
the dual space of W 1,p

0 (D).

Remark 3.4 All we need to prove that Ωu is a solution of the problem (2)
i.e Ωu is an open set. We refer to [7],[8] ,[12] and [21] where the study of
the regularity of the boundary is made assuming local Lipschitz continuity
of the state function.

4 Equivalence with penalized problem

The interest of penalization is that the admissible set of functions is the whole
space W 1,p

0 (D), moreover the value of J(v) doesn’t change for v belongs to
V0 i.e J(v) = Jλ(v) for any v ∈ V0.

According to [2, 3, 8], [16] and [31], we introduce a new problem, by
replacing the volume constraint on the volume of the support of the admissible
functions and the normalization condition by two penalization terms.

We have the following penalized variational problem{
Find u ∈ W 1,p

0 (D), such that ∀ v ∈ W 1,p
0 (D)

Jλ(u) ≤ Jλ(v),
(8)

where for λ > 0, the functional Jλ is defined as:

Jλ(v) := J(v) + λc(1−
∫
D

|v|p)+ + λ(|Ωu| − c)+

In this section we give an existence result for the problem (8) and indicate its
relationship with the problems (4) and (5). We have the following results.

Proposition 4.1 Problem (8) admits at least one solution.

Proof of Proposition 4.1
The proof is similar to the proof of Proposition 3.1.

Proposition 4.2 Let u be a solution to problem (8). Then there exist λ∗ depend-
ing only in N, p, |D|, c such that for λ > λ∗, we have |Ωu| = c. If λ > λ∗ then
we obtain

(a) Any solution to (8) is a solution to (5) and (4)

(b) Any solution to problem (5) (equivalently (4)) is a solution to (8).
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Proof of proposition(4.2)
Let u0 be a solution of problem (5) (equivalently (4)) and solution u be a solution
of (8).Assume that u satisfies |Ωu| ≤ c and

∫
D
|u|p = 1. Then u solves problem

(5) (equivalently (4)) and u0 also solves (8).We obtain in this case

(i) u ∈ V0 (equivalently (u ∈ V,)) if we assume the condition (6)

(ii) Jλ(u) = J(u) because (|Ωu| − c)+ = 0 and (1−
∫
D
|u|p)+ = 0.

(iii) Jλ(u0) = J(u0) because (|Ωu0| − c)+ = 0 and (1−
∫
D
|u0|p)+ = 0.

We know that if u is solution of the problem (8), we have

Jλ(u) = J(u) ≤ J(u0) ≤ J(v) ∀ v ∈ V0 (equivalently(v ∈ V, ))

This implies that u is a solution of problem (5) (equivalently (4)). On the other
hand, as u ∈ V0 (equivalently (u ∈ V,)) and u0 also solves problem (5) (equivalently (4)),
we obtain

Jλ(u0) = J(u0) ≤ J(u) = Jλ(u) ≤ Jλ(v) ∀ v ∈ W 1,p
0 (D).

Finally, we have u0 also solution of problem (8).
We show if u solution of problem (8), then we have |Ωu| = c, for λ

large enough.
It is sufficient to prove that |Ωu| ≤ c for any solution to problem (8).
Let u be a solution of problem (8) and assume that |Ωu| > c. Then there exists
t0 such that for 0 < t ≤ t0, we get |Ωut | = |Ωu| − |{0 < u < t}| > c where
ut = (u− t)+. Since u solution of the problem (8), Jλ(u) ≤ Jλ(u

t), we have∫
{0 <u< t}

|∇u|pdx + λ|{0 < u < t}| ≤ ptλc

∫
D

up−1

This implies that

λ ≤
ptλc

∫
D

up−1dx

|{0 < u < t}|
=
ptλc||up−1||L1(D)

|{0 < u < t}|
(9)

and ∫
{0 <u< t}

|∇u|pdx ≤ ptλc||up−1||L1(D) (10)

Let us take Ft := {u > t} for 0 < t ≤ t0. For a.e t ∈ (0, t0) it holds that
χFt ∈ BV (D) and D∩ ∂Ft = {u = t}, for details see [19]. By the isoperimetric
inequality, there exists a constant β depending only on N such that

|Ft|
N−1
N ≤ β

∫
D

|∇χFt | = βPD(Ft) for a.e t > 0 (11)
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where PD(Ft) is the De Giorgi perimeter of Ft in D. We know that PD(Ft) =
HN−1({u = t}) < ∞ for a.e t ∈ (0, t0) where HN−1 is the (N−1)−dimensional
Hausdorff measure. But |Ωut | = |Ft| for any t ∈ (0, t0). From the definition of
t0 we get c < |Ft| for any t ∈ (0, t0).
Integrating inequality (11) on (0, t0) we have

c
N−1
N t0 ≤ β

∫ t0

0

HN−1({u = t})dt

According to the Coarea formula see [15, 19], we have

c
N−1
N t0 ≤ β

∫
{0 <u< t0}

|∇u|

If we apply the Hölder inequality, we get

c
N−1
N t0 ≤ β

(∫
{0 <u< t0}

|∇u|p
) 1

p

|{0 < u < t0}|
1

p
′ .

Inequality (10) implies

c
N−1
N t0 ≤ β

(
pt0λc||up−1||L1(D)

) 1
p

|{0 < u < t0}|
1

p
′

c
N−1
N t

1

p
′

0 ≤ β

(
pλc||up−1||L1(D)

) 1
p

|{0 < u < t0}|
1

p
′

This implies that

t0
|{0 < u < t0}|

≤
(
β

(
pλc||up−1||L1(D)

) 1
p

c
N−1
N

)p′
Let’s take

λ∗ :=

(
β

(
pλc||up−1||L1(D)

) 1
p

c
N−1
N

)p′
pλc||up−1||L1(D)

From (9) we deduce that λ ≤ λ∗, and conclude that for λ > λ∗ it is impossible
to have |Ωu| > c.

5 Hölder continuity result

By the following proposition, we derive an L∞− estimate for solution of (8).
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Proposition 5.1 Assume that condition (7) is true. Then any solution to (8) is
bounded, i.e

||u||L∞(D) ≤ C

where C is a constant depending only on p, q,N, c and λ. We need the following
Lemma which can be found in [28], we derive an L∞− estimate for solution of
(8).

To prove this proposition, we need the following lemma which can be found in
[28], lemma 5.2 page 71.

Lemma 5.1 If the function u belongs to W 1,p(D), 1 < p ≤ N, such that
essmax∂Du < ∞. For k ≥ k0 ≥ essmax∂Du, set Ak := {u > k}. If u satisfies
the inequalities ∫

Ak

|∇u|pdx ≤ γkη|Ak|(1−
p
N

+ε) (12)

where the constants γ, ε > 0 and 0 ≤ η ≤ ε+p. Then there exists a constant
C depending only in γ, η, p,N, ε, k0 and ||u||L1(Ak0

) such that essential maxDu is
bounded by C.

Remark 5.1 In the proof of Lemma 5.3 presented in [28], one can see that
||u||L1(Ak0

) ≤ K for some constant K then u is bounded by a constant C which
depends only in γ, η, p,N, ε, k0 and K.

Proof of Proposition 5.1
We prove that u satisfies an inequality like (12). Since u ∈ W 1,p(D), we have
essmax∂Du = 0. So k0 = 0 and for k > 0 set Ak = {u > k} and we consider
the function

uk =

{
k if u > k
u if u ≤ k,

Since |Ωu| = |Ωuk | for any k ≥ k0 and by minimality of u we have∫
Ak

|∇u|pdx ≤ pλc

∫
Ak

|u|p−1(u− k)

By the Hölder inequality we obtain∫
Ak

|∇u|pdx ≤ pλc||up−1||Lq(Ak)||(u− k)+||
L

q
q−1 (Ak)

According by inequality (5) for s = q
q−1

implies that∫
Ak

|∇u|pdx ≤ pλc||up−1||Lq(Ak)|Ak|
q−1
q
−N−p

Np ||∇u||Lp(Ak)

and finally we obtain∫
Ak

|∇u|pdx ≤ (pλc||up−1||Lq(Ak))
p

p−1 |Ak|
p

p−1
( q−1

q
−N−p

Np
)

We found here inequality (12) with η = 0, ε = p(pq−N)
q(p−1)N

and γ = (pλc||up−1||Lq(Ak))
p

p−1 .
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Theorem 5.1 Let u be a solution to (8) and assume that (7). Then u is locally
Hölder continuous in D.

Proof of Theorem 5.1
Let Br be a ball with radius r such that B̄r ⊂ D and µ ∈ W 1,∞(D) such
that 0 ≤ µ ≤ 1 in D and µ = 0 on Bc

r = D̄\Br. For k ∈ R we set v :=
u− (u− k)+µp and Ak,r := Br ∩ {u > k}.

In Ack,r we get v = u. Let ’s take Ωv = Ωu ∩ Ack,r ∪ (Ωv ∩ Ak,r), we see that

(|Ωv| − c)+ ≤ (|Ωv| − c)+ + |Ak,r|

Combining this inequality with the relation Jλ(u) ≤ Jλ(v), we obtain∫
Ak,r

|∇u|pdx ≤
∫
Ak,r

|∇v|pdx

+ pλc

∫
Ak,r

|u|p−1(u− k)µpdx+ λp|Ak,r|
(13)

Writing |∇v| ≤ (1− µ)p|∇u|+ µp p(u−k)
µ
|∇µ| in Ak,r ∩ {µ 6= 0} and using the

convexity of the function x ∈ (0,∞) −→ xp, we obtain∫
Ak,r

|∇v|p ≤
∫
Ak,r

|∇u|pdx−
∫
Ak,r

µp|∇u|pdx

+ pp
∫
Ak,r

(u− k)p|∇µ|pdx
(14)

On the other hand, thanks to Young’s inequality, we have

(u− k)µp ≤ 1

p
((u− k)µp)p +

1

p′
where p

′
=

1

p− 1
.

Since the condition (7) holds we obtain by the Hölder inequality

pλc

∫
Ak,r

|u|p−1(u− k)µpdx ≤ + (p− 1)|Ak,r|
q−1
q

)
λc||up−1||Lq

((∫
Ak,r

((u− k)µp)
q

q−1

) q−1
q

(15)

According to inequality (5) we take s = q
q−1

, we obtain

(

∫
Ak,r

((u− k)µp)
q

q−1 )
q−1
q ≤ C|Ak,r|1+ 1

N
− 1

p
− 1

q

∫
Ak,r

|∇((u− k)µp)|p (16)

But on Ak,r, we have |∇((u − k)µp)| ≤ µp−1(p(u − k))|∇µ| + µ|∇u|. Using the
convexity of the function x ∈ (0,∞) −→ xp, we obtain

|∇((u− k)µp)|p ≤ 2p−1µp(p−1)(pp(u− k)p|∇µ|p + µp|∇u|p) (17)
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Passing to integral we get∫
Ak,r

|∇((u− k)µp)|p ≤ 2p−1(pp
∫
Ak,r

µp(p−1)(u− k)p|∇µ|p

+

∫
Ak,r

µp|∇u|p)
(18)

Inequality (18), together with (15) and (16) imply that



pλc

∫
Ak,r

|u|p−1(u− k)µpdx ≤ λc||up−1||Lq

(
2p−1Cp|Ak,r|1+ 1

N
− 1

p
− 1

q(
pp
∫
Ak,r

µp|∇u|p+

pp
∫
Ak,r

µp(p−1)(u− k)p|∇µ|p
)

+(p− 1)|Ak,r|1−
1
q

) (19)

For r ≤ r0 where

r0 = (2pCpw
1+ 1

N
− 1

p
− 1

q

N λc||up−1||Lq(D)), with wN = |B(0, 1)|

we have

λc||up−1||Lq(D)(2
p−1C|Ak,r|1+ 1

N
− 1

p
− 1

q ) ≤ 1

2
and

pλc

∫
Ak,r

|u|p−1(u− k)µpdx ≤ 1

2

∫
Ak,r

µp|∇u|p +
pp

2

∫
Ak,r

µp(p−1)(u− k)p|∇µ|p

+
(

(p− 1)λc||up−1||Lq(D)|Ak,r|
1
q

)
|Ak,r|1−

1
q

(20)
Inequality (20) combining with inequality (13) and (14), imply that for r ≤ r0,∫
Ak,r

µp|∇u|p ≤ 3pp
∫
Ak,r

|∇µp|(u− k)p + ((p− 1)λc||up−1||Lq(D) + pλ|Ak,r|
1
q )|Ak,r|1−

1
q

We use the fact that 0 ≤ µ ≤ 1. For r ≤ r0, we get |Ak,r|
1
q ≤ |Br0|

1
q ≤ C

where

C = wN(2pCpw
1+ 1

N
− 1

p
− 1

q

N λc||up−1||Lq(D))
−N
q−N

We obtain ∫
Ak,r

µp|∇u|p ≤ γ

(∫
Ak,r

|∇µp|(u− k)p + |Ak,r|1−
1
q

)
(21)

where γ = max{3pp, (p− 1)λc||up−1||Lq(D) + pC1λ}. We see that u belongs to the

generalized De Giorgi class Bp(D, ||u||L∞(D), γ,+∞,
1

q
). Considering the theorem

6.1 of chapter 2 in [28], we conclude u is locally Hölder continuous in D.
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[7] Briancon, T.,Regularity of optimal shapes for the Dirichlet ’s energy with
volume constraint, ESAIM: COCV 10, 99-122(2004)

[8] Briancon, T., Hayouni, M., Pierre, M.,Lipschitz continuity of state func-
tions in some optimal shaping, Calc. Var. PDE. 23(2005), 1, pp. 13-32.

[9] Briancon, T and Lamboley J.,Regularity of the optimal shape for the first
eigenvalue of the Laplacian with volume and inclusion constraints,Annales
de l’IHP, Analyse non liné aire, 2008
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