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Abstract— The subject of optimization applied to the practical 

real life problems of electrical energy management system (EMS) 

is a complex mixture of modeling, mathematical formulation, 

algorithmic solution processes and in the end the application of 

the optimal result to the process, where the process, which should 

be optimized, must be analyzed and must be understood in great 

depth. In addition complex mathematical equations and 

algorithms can be involved; also, computer know-how and 

software engineering capabilities must be present. In the end, the 

optimal result must be applied to the process. In this paper text 

we will give a combination of standard mathematical 

optimization problem formulations together with a 

straightforward solution procedures based on a quadratic 

programming algorithm to solve economic dispatch problem as 

example of EMS . 

Keywords-component; Optimization, Algorithms, linear 

programming, Quadratic programming, energy management 

system . 

I. 1. INTRODUCTION 

     In the widest sense of the word, optimization is the process 

of choosing rationally among given alternatives. Most real-

world optimization problems (OP) are far too complex or 

stochastic to be analyzed or solved using mathematics. There 

are, however, important problems for which one can give a 

mathematical description, which is both tractable, that is, can 

be "solved" in some sense, and is a good enough 

approximation of the problem one really wants to solve. Some 

typical examples are problems of scheduling (machines, 

aircraft carriers, trains), dimensioning (of pipes, power plants, 

inventory size), routing (salesmen, wire, telephone calls), 

mixing (animal feed, petroleum, products), and construction 

(bridges, airplanes, integrated circuits) [1]-[5].  

     As an area of mathematics, optimization is the theory of 

minimizing or maximizing a function, over some feasible set 

[1] [6]. Depending on the properties of the involved function 

and sets, the field of optimization is divided into several sub 

fields. During the Second World War, researchers tried to 

formulate and analyze various mathematical models for 

transportation of goods, production planning and allocation of 

scarce resources. This was the birth of operations research. 

Since then the theory and application of operations research 

has been rapidly developing. The main quantitative tools of 

operations research are mathematical programming and 

simulation [7] [8]. In mathematical programming one is 

mainly concerned with theory and algorithms for optimization 

in finite-dimensional spaces. A good survey over the different 

topics in mathematical programming is given in [9], and for 

some history see [10]. 

II. MATHEMATICAL OPTIMIZATION 

     A system defined in terms of m equations and n unknown 

variables can be divided into three fundamental types of 

problems:  

1. If m = n the problem is an algebraic problem and usually 

has at least one solution.  

2. If m > n the problem is over constrained and cannot be 

solved in general.  

3. If m < n the problem is under constrained and many 

solutions can exist that satisfy the system requirements.  

The third category of OP is the one discussed in this paper.  

     Variables in the context of optimization represent the 

individual elements that uniquely define the OP being 

considered. The variables can be divided into several 

categories:  

1. Known variables: These variables have usually fixed 

numerical values. They cannot be solved for because they are 

known beforehand. Mathematically these variables can be 

seen as constant numerical values or as parameters.  

2. Unknown variables: These are the interesting variables; the 

goal is to find a set of numeric values for these unknown 

variables such that optimality is achieved. Within the set of 

unknown variables two main subcategories can be found:  

Control variables: These unknown variables represent 

individual elements which can be directly controlled within 

the process to be optimized.  
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State variables: These unknown variables cannot be controlled 

directly within the process to be optimized. Their value is a 

consequence of the control variables choice and how the 

process reacts to these control variables values.  

     Thus an OP consists of different types of variables and 

usually an under constrained equation system. At this point 

nothing has been said about the term 'best' or 'improving' the 

current solution.  

     Obviously the term “goal” or “objective” of a process must 

be defined. One wants to minimize or maximize some 

objective. The objective is defined as a function of variables. 

In order to compare the optimality of the many solutions of the 

under constrained system, the objective function allows to 

give a merit to each solution. 

A. Mathematical formulation and optimality conditions [2] 

     The general OP formulation is summarized as follows with:  

n = number of variables; 

m = number of equality constraints (linear or nonlinear) 

p = number of inequality constraints (linear or nonlinear) 
 

min ( )F x      

 Subject to  

(x) 0, for 1,...,ig i m                                                           (1) 

(x) 0 , for 1,...,ih i p     

      

The problem is to determine the set of values of the vector (x) 

for which all equality constraints g(x) = 0 and all inequality 

constraints h(x) = 0 are satisfied and for which the objective 

function is at a strict local optimum.  

     The OP of Eq. (1) need to be looked at with regard to the 

following points in order to facilitate a solution to yield the 

necessary optimality conditions [10]. The points are:   

 Make a clear distinction between those inequality 

constraints, which are “active” (i.e. binding at their limit 

values) and those, which are “inactive”', i.e., which have a 

negative functional value in the optimum (satisfied).  

 Treat all “active” inequality in the same way as regular 

equality constraints and determine the optimality conditions 

for this “pseudo”-equality constrained problem in the same 

way as for “standard” equality constrained OP.  

 In addition, state that all Lagrange-multipliers (μi) of all 

“active” inequality constraints must be positive.  

 Also, state that all “inactive” inequality constraints must 

have a value less than zero (otherwise they would not be 

“inactive”).  

We can set up the Lagrangian expression considering 

all equality and all “active” inequality constraints as follows:  

'

1 1
min (x) (x) (x)

(x) (x) (x)

m p

i i j ji j

T T

L F g h

F g h

 

 

 
  

  

 
                   (2) 

     Where λi and μi are the Lagrange-multipliers. We assume 

that the first p’ inequality constraints are “active” inequality 

constraints. All the other inequality constraints are “inactive”. 

The optimality conditions for this problem are as follows: 

 

( (x) (x) (x)) 0

(x) 0

(x) 0, 0

T TL
F g h

x x

L
g

L
h

 






 
   

 


 




  



                                (3)   

(x) 0, : "active" inequality constraintjh j   

(x) 0, "inactive" inequality constraintih i :   

 

These points represent the set of necessary optimality 

conditions for the general non-linear OP of Eq. (1).  

B. Quadratic Programming (QP)  

Quadratic Programming is a branch of mathematics that deals 

with finding extreme values of quadratic functions when the 

variables are constrained by linear equalities and inequalities 

[5] [3].   

The classic objective function of a QP problem is as follows:  

1
min x x x

2

T TF Q c                                                        (4)  

subject to linearized equality and inequality constraints:  

 

1 1

2 2

x 0

x 0

A b

A b

 

 
                                                                  (5)                                                                           

  

Where, x is the vector of unknowns, dim (x)=n; c is the vector 

of cost coefficients, dim (c)=n; Q is an (n . n) matrix; A1 is an 

(m . n) matrix; A2 is an (p . n) matrix; b1 is the vector 

specifying the right hand sides of the equality constraints, dim 

(b1)=m; b2 is the vector specifying the right hand sides of the 

inequality constraints, dim (b2)=p 

All these matrices and vectors except x are numerically given. 

In addition, the matrix Q must be positive definite and 

symmetric. (Q is positive definite if and only if y'.Q.y > 0 for 

all nonzero vectors y). With these conditions for Q the QP 

describes a convex problem. Note that depending on the OP, 

the above matrices can be either sparse or compact (i.e. non-

sparse/full).  

C. Linear Programming (LP) 

Linear programming is a branch of mathematics that deals 

with finding extreme values of linear functions when the 

variables are constrained by linear equalities and inequalities 

[5] [2] [7].   

The standard linear programming problem is defined as  
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min TF c x                                                                           (6) 

 

Subject to: 

 

1 1

2 2

A x b

A x b




                                                                                 (7)                 

0x                                                                                        (9)                 

 

where x is the vector of unknowns, dim [x]=n; c is the vector 

of cost coefficients, dim (c)=n; A1 is an (m.n) matrix, m < n.  

A2 is an (p.n) matrix ; b1 is the vector specifying the right hand 

sides of the equality constraints, dim (b1)=m;b2 is the vector 

specifying the right hand sides of the inequality constraints, 

dim (b2)=p. 

III. CLASSIFICATION OF OPTIMIZATION ALGORITHMS TO 

SOLVE GENERAL NL-OP 

In this section the general OP is solved by an integrated 

method. All equations and the objective function consist of 

smooth, twice differentiable function parts. The variables x are 

continuous, real variables. The goal is to find a solution to this 

general non-linear OP. The nonlinear optimization problem 

algorithms will be discussed in two classes:  

A. Class-A: Iterative solution of an approximated LP or QP - 

OP 

     The class-A algorithms are the Methods whereby the 

optimization starts from a solved Newton-Raphson (NR) 

process of a well-determined non-linear system of equations 

[2]. The Jacobian and other sensitivity relations are used in the 

optimization process, which is usually LP or QP based. The 

process as a whole is iterative. After each LP or QP iteration 

the NR is solved again.  

1) Successive QP solution of approximated OP 

     An approximation around a given operating point x
0 

leads 

to the following QP system: A quadratically approximated 

objective function:  

 

1
min

2

T TF x Q x c x                                                     (9) 

  

subject to linearized equality and inequality constraints:  

 

1 1

2 2

0

0

A x b

A x b

  

  
                                                        (10) 

 

where  

x is the vector of unknowns, dim(x) = n . 

0

F
c

x x x

 
  

  
is the vector of linearized objective function 

cost coefficients, dim (c) = n . 

2

02

F
Q

xx

 
    

  is an (n.n) matrix  

1 0

( )g x
A

x x x




 
is an (m.n) matrix  

2 0

( )h x
A

x x x




 
is an (p.n) matrix  

b1= - g(x
0
) is the vector specifying the right hand sides of the 

equality constraints, dim (b1)=m 

b2= - h(x
0
)  is the vector specifying the right hand sides of 

the inequality constraints, dim (b2)=p 

The iteration loop is exemplified in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flow chart of successive QP 

 

2) Successive QP solution of approximated OP with NR 

support 

     The main problem with the iterative procedure of the 

previous subsection is the choice of the initial solution point x
0
 

which affect the convergence. The general goal is to have a 

solution point x
0
 which satisfies the set of equality 

constraints:  g(x
0
) = 0, but not necessarily the inequality 

constraints. The problem dimensions have been given before, 

i.e. dim (g) = m, dim (x) = n. In addition we assume that m < 

n, i.e. there are fewer equality constraints than variables. Thus 

a degree of freedom exists for the solution of the equality 

constraint. The trick is now to split the vector x into two 

subvectors which allow the solution of a set of equations with 

the same number of non-linear equations and unknown 

variables. i.e. the equality constraints can be written as 

follows: x
T 

= [x1
T
,x2

T
]  and  g(x1,x2

0
) = 0, where dim (x1) = m, 

dim (x2) = n-m. 

     So the previously discussed form of an iterative QP 

execution can be extended to an iterative execution of first a 

NR solution process then a QP algorithm, then a variable 

update or x, then starting a new NR algorithm with the new 

computed values for x2
0
, then doing again a QP, etc. This 

iterative procedure is also not much more than a successive 

Update of all variables 

x
k+1

=x
k
+ x̂  

k=k+1 

x̂

 

Starting values x
0
; k=0 

QP solution of approximated 

optimization problem around xk 
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execution of a QP, however the QP starts always around a 

solved set of non-linear equations, see figure 2.                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Flow chart of successive QP with NR support 

 

3) Successive compact QP solution of approximated OP 

with NR support 

      The smaller variable and equality constraint number leads 

to the term “compact” QP. To get this formulation we 

eliminate the variables x from Eq. (10). Conceptually the 

equality constraints in Eq. (10) are split as follows: 

 

11 1 12 2 1 0A x A x b                            (11) 

 

From Eq. (11) Δx1can be computed as follows: 

 
1

1 11 12 2 1( ) ( )x A A x b                                                    (12) 

 

Note that the matrix A11 must be a square (m.m) matrix and it 

must be non-singular. Then, Eq. (12) exists. This solution for 

the vector x can be substituted in the original QP 

formulation of Eq. (9) and Eq. (10), giving the following 

compact QP:  

 

'
2 2 2

1
min '

2

T TF x Q x c x                                           (13) 

 

Subject to linearized inequality constraints:  

22 2 2' ' 0A x b                     (14) 

  

with  
 

1
11 12' 1 11 12

12 11
21 22

( ) ,T T Q Q A A
Q A A U

Q Q U




   
      

    
 

 

U  is unity matrix;  

 
' 1
2 2 1 11 12
T T Tc c c A A  ; 

 
' 1
22 22 21 11 12A A A A A  ;                         (15) 

 
' 1
2 2 21 11 1b b A A b   

 

Note that the QP defined by Eq. (13) and Eq. (14) is a compact 

QP with n-m number of variables x2 and no equality 

constraints. All equality constraints have been eliminated. The 

output of this compact QP is 
2x̂ . Once this vector is obtained 

one can compute the optimal values for 
1x̂  by using Eq. (12). 

This leads to a new iterative algorithm, shown in figure 3. 

 

 

 

                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flow chart of compact QP algorithm. 

 

 

Update of all variables 

x
k+1 

= x
k
+ x̂  

k=k+1 

Solve g(x1,x2
k
)=0. For the vector 

x1 (x2
k
 =constants) 

Starting values x0; k = 0 

Split the vector x 

into two subvectors 

x
T
=[x1

T
,x2

T
] 

QP solution of approximated 

optimization problem around x
(k) 

x̂

 

Update of all variables 

x
k+1 

= x
k
+ x̂  

k = k+1 

Starting values x
(0)

; k=0 

Solve g(x1,x2
k
) = 0. 

For the vector  

x1 (x2
k
 =constants) 

Split the vector x 

into two subvectors 

x
T
=[x1

T
,x2

T
] 

Compute the compact 

QP form by eliminating 

the variables x1 

Compact QP solution of 

approximated optimization 

problem around x
k 

x̂
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B. Class B optimization: Integrated iterative solution of 

(Kuhn-Tucker) KT-optimality conditions 

     The class-B relying on the exact optimality conditions 

whereby the equality constraints are attached. There is no prior 

knowledge of the solution of any (sub-) set of equality constraints 

as done in class-A. The process is iterative and each intermediate 

solution approaches the optimality conditions. 

     In this section the optimization formulation is solved by an 

integrated method as compared to the optimization 

formulation of the class-A where a set of equations and their 

solution by a NR is separated from the optimization part [2] 

[7]. In this work one approach is discussed. It is the so-called 

non-linear Interior Point (IP) approach [35] which is based on 

an efficient solution of the non-linear (Kuhn-Tucker) KT 

optimality conditions using a combination of NR, step-length 

control and barrier function parameter decrease during all 

iterations. Other algorithms are found in the literature in this 

class-B optimization. All class-B algorithms have in common 

that an iterative solution of possibly transformed non-linear 

KT optimality conditions will be achieved.  

1) Solution of the KT by Interior Point algorithm (KT 

optimality conditions) 

For the solution of KT optimality conditions [6] [4] [8], the 

problem is defined as follows:  

                            ( ) ( ) ( )T TL F x g x h x                      (16) 

     Note that only variables x are used in the class-B approach. 

This is slightly different from the class-A approach where a 

distinction between the control and state variables is 

advantageous. The optimality conditions can be derived by 

formulating the Lagrange function: L 

The first order necessary optimality conditions are as follows:  

 

   i i

( ) ( ) ( )
0

( ) 0

diag . diag . ( ) 0

( ) 0, 0

T T
L F x g x h x

x x x x

L
g x

L
h x

L
h x

 



 





      
      

      


 




 




  



                   (17) 

 

The third constraint set together with the last set indicates that 

an inequality constraint is only active (i.e. being limited) when 

i > 0, i.e. hi(x) = 0. For the case where the inequality i is not 

active at its limit, hi(x) < 0, i = 0.  

 

2) Interior Point (IP) optimization 

     The idea of the NR for equality constraints is extended 

to include also the inequality constraints in the formulation. In 

order to understand the key points of the IP algorithm for a NL-

OP [6] [4] [8], we must state the following: The original OP is 

reformulated as follows [3]: 

 

1
min ( ) ln( ) ( 0)

p

ii
F x z 


   

Subject to 

( ) 0

( ) 0

0

g x

h x z

z



 



             (18) 

 

With the following points taken into consideration: 

 The positive barrier parameter ζ  has to become almost 

zero.  

 We have to force the variables z to remain positive 

during all iterations of the algorithm. This fact gives the 

algorithm the name “Interior”. The term barrier has its 

justification in that the “barrier function” 

(
1
ln( )

p

ii
z

 ) cannot cross the border at zero.  

We can formulate now the KT conditions of this new OP 

assuming implicitly that z > 0: 

 

1
( ) ln( ) ( ) ( ( ) )

p T T
IP ii

L F x z g x h x z  


               (19) 

 

From this special IP-oriented Lagrangian we derive the KT-

conditions: 

i

( ) ( ) ( )
0

( ) 0

1
.diag . 0

z

( ) 0, 0, 0

T T

IP

IP

IP

IP

L F x g x h x

x x x x

L
g x

L
e

z

L
h x z z

 



 




      
      

      


 



 
   

  


    



                 (20) 

Eq. (20) represents IP-KT first order conditions which must be 

valid at the optimum for any given barrier parameter ζ  > 0. 

The vector e in Eq. (20) indicates a vector with 1's only, dim 

(e)= dim(µ) = dim (z) = p. The principal idea behind the IP 

solution algorithm of Eq. (20) is as follows:  

 Formulate a NR solution step for the equality 

constraints only. Note, that the number of equality 

constraints and the number of unknown variables are 

identical (n + m + 2 p).  

 Choose a starting point for the unknown variables in 

such a way that all variables, which are limited, get a 

positive value (i.e. z
0 

> 0, μ
0 

> 0). The choice for the 

starting values is quite sensitive for a convergence 

success of the algorithm.  

 After computing the optimal solution Δxopt, Δλopt
 
, Δzopt, 

Δμopt, of the linear system of one update step with the 
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NR solution procedure, use a step- length control [11]  in 

such a way that all variables z and  remain positive 

during all iterations of this iterative algorithm. This is 

done as follows:  

 

 Obviously the barrier parameter  must be very near to 

zero at the optimum. If this is not the case the OP is not 

the same as originally formulated. 

IV. DESCRIPTIONS OF SOME ENERGY MANAGEMENT 

SYSTEM  OPTIMIZATION FUNCTIONS 

Economic Dispatch (ED): This function optimizes the total 

cost of active power generation, assuming that every generator 

has a convex cost curve related to its own active power, every 

generator has upper and lower active power generating limits 

and it is also assumed that the sum of all active powers of 

generator must be equal to a given total system load plus total 

system losses.  

Optimal Power Flow (OPF): is an optimization function, 

which minimizes the total generation cost, the total resistive 

network or the resistive branch losses for a certain area of the 

network. At the same time the OPF considers all power flow 

equations and also operational constraints on the network 

elements like transmission line current limits and voltage 

magnitude limits on generator nodes. The OPF has similar 

goals like the ED, however, it considers the network much 

more comprehensively than ED.  

Unit Commitment: is the optimization function, which 

determines at what discrete time intervals in the near future 

(usually hourly intervals) which generators must be ready to 

deliver power and which one can be shut down. For each time 

interval the goal is identical with the economic dispatch goal, 

i.e. the minimization of the total cost of active power 

generation of all thermal generators. Due to constraints of 

maximum generator power changes from one time interval to 

the next this optimization problem is very complex and is a 

mixture between a discrete and continuous variable 

optimization.  

V. ECONOMIC DISPATCH PROBLEM SOLUTION BY 

QUADRATIC PROGRAMMING 

Generation allocation is defined as the process of 
allocating generation levels to the thermal generating units in 
service within the power system, so that the system load is 
supplied entirely and most economically [12] and [13]. The 
objective of the generation allocation or ED problem is to 
calculate, for a single period of time, the output power of 
every generating unit so that all demands are satisfied at 
minimum cost, while satisfying different technical constraints 
of the network and the generators. The standard ED problem 
can be described mathematically as an objective with two 
constraints as: 

1
min ( )

N

T i ii
F F P


                                                         (21) 

Subject to the following constraints: 

 

1

min max

N

i lossi

i i i

P D P

P P P


 

 


                                                               (22) 

where, N is the total number of units in service; Pi is the real 
power output of i-th generator (MW); FT is the total operating 
cost ($ /h); Fi (P i) is the operating cost of unit i ($ /h); D is the 
total demand (MW); L is the transmission losses (MW); Pi

min
, 

Pi
max

 are the operating power limits of unit i (MW). 

The fuel cost function of a generator that usually used in 
power system operation and control problem is represented 
with a second-order polynomial. 

Fi(Pi)  = ci + bi Pi + bi Pi 
2
                                                  (23) 

where, ci, bi and ai are the cost coefficients (non-negative 
constants) of the i th generating unit. 

We propose the following MATLAB code: 
x= quadprog (H, f, A, b, Aeq, beq, lb, ub) 

% solves the the quadratic programming problem: 

min 0.5*x'*H*x + f'*x  

% while satisfying the constraints 

A*x ≤ b  

Aeq*x = beq 

lb <= x <= ub 

 

To map the ED to QP, the objective function variables are 

given by the power generation output vector as follow: 

1 2[ , ,..., ]T

Nx P P P                                                                (24) 

1

11 1 01

0

0
1 2

2

0
1 2

T

N

NN NN N

a

B P B

H

a

B P B

 
  
 
  
 
 
   



  



         
 (25) 

1

11 1 01 0

,...,
1 2 1 2

T

N

NN NN N

bb
f

B P B B P B

 
  

    

                          (26) 

To satisfy the equality constraint Aeq*x = beq, we set: 

 

11 1

1 2

1

00 00 00

01 0

1 2

...

[1, 1,...,1] [ , ,..., ]

, [ , ,..., ]

N

N

N NN

N

N

B B

Aeq P P P

B B

B B B
B B

P P P

 
 

  
 
  



  





            (27)  

  2 lossbeq D P 
             

                                                      (28) 
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Where Ploss is power transmission losses calculated by 

following loss formula commonly known as the B-coefficients 

formula: 

 

1

11 1

2

1 2

1

1

2

01 0 00

...

[ , ,..., ] ...

... ,

N

loss N

N NN

N

N

N

P
B B

P
P P P P

B B
P

P

P
B B B

P

 
   
    
   
    

  

 
 
  
 
 
  

  







                  (26) 

Where, Bij, B0i and B00 are the loss formula coefficient.  

The operating power limits are imposed in the formulation of 

quadratic programming as follows: 

min min min

1 2[ , ,..., ]Nlb P P P
            

                                           (27) 

max max max

1 2[ , ,..., ]Nub P P P
                                                     

(29) 

To map the ED to QP in MATLAB, we propose the following 

program: 
for i=1:10 

          Pl=P'*B*P+B01*P+B00; 

          Aeq =ones(1,n)+(P'*B+B01+B00/P);  

          beq=Pd+2*Pl; 

          ll=diag(1-2*B*P-B01'); 

          A1=inv(ll)*a; 

          f=inv(ll)*b; 

          H=2*diag(A1); 

P=quadprog(H,f,[],[],Aeq,beq,l,u); 

pln=P'*B*P+B01*P+B00; 

acu=(Pd+pln)-sum(P); 

end  

VI. CASE STUDY AND RESULTS 

The IEEE 30 bus system has 6 generating units with the 

characteristics shown in Table I. The line loses are calculated 

by the B-coefficients method and given in Table II. The 

network topology and the test data for the IEEE 30 bus system 

are given in [14]. 

 

TABLE I 
THE 6 THERMAL GENERATORS CHARACTERISTICS OF CASE STUDY 1 

Unit N° Pimin Pimax ai bi ci 

1 100 500 0.007 7 240 

2 50 200 0.0095 10 200 

3 80 300 0.009 8 220 

4 50 150 0.009 11 200 

5 50 200 0.008 10.5 220 

6 50 120 0.0075 12 190 

 
 

TABLE II 

B- COEFFICIENTS OF IEEE 30-BUS 6-UNIT SYSTEM 

-4

    2.231   1.162    -0.122    -0.017     0.113      0.39

    1.162   1.89      -0.077    -0.048     0.069      0.28

   -0.122  -0.077     2.004    -0.74      -0.724    -0.599
10

   -0.017  -0.048    
B 

-0.74      -1.479     0.538     0.342

    0.113    0.069    -0.724     0.538     1.185      0.053

    0.39      0.28      -0.599     0.342      0.053     2.34

 
 
 
 
 
 
 
 
  

 

 -5

0 10 0.38     1.79    -5.32     1.52     2.33     1.26B   

00 0.00154B   

 

We have compared the developed algorithm to other 

economic dispatch algorithm, Table III show the comparison 

between QP algorithm and λ iteration algorithm [11] for 8 

Times intervals. 

TABLE III 

THE TOTAL COST POWER GENERATION OF 8 TIME PERIOD FOR THE THERMAL 

UNITS WITH LOSSES AND GENERATION LIMIT AND WITHOUT RAMP-RATE LIMIT 

Hour 
(h) 

Load 
(MW) 

Total  Cost with QP 
($/h) 

Total Cost with λ 
iteration ($/h) 

saving 
($/h) 

1 955 11797.8396 11839.803 41.963 

4 930 11464.9621 11505.290 40.327 

7 989 12253.9174 12298.848 44.930 

10 1150 14478.1677 14538.501 60.333 

13 1190 15049.3433 15117.104 67.760 

16 1250 15946.8412 16025.133 78.291 

19 1159 14605.7259 14667.566 61.840 

22 984 12186.569 12231.043 44.473 

The results of the economic dispatch for the 6-units test 

system are listed in Table III, and it show the performance of 

the proposed QP method with a valuable ($/h) saving 

comparing to λ iteration method. The execution time of the 

adapted QP algorithm for economic dispatch is faster than the 

lambda method where the computational time is about 0.2 

second on a Pentium IV, 3 GHz. 

VII. CONCLUSION 

     Optimization methods are judged by their performance 

with respect to speed, versatility and robustness. There is no 

single optimization method which meets all requirements 

satisfactorily and which can be classified as the best non-linear 

optimization problem solution algorithm. Class-A and class-B 

methods have their relative merits and perform well for one or 

the other particular application. In any one problem, however, 

a method could show poor performance. In both class-A and 

class-B algorithms the size of the linear inequality constraint 

set is identical and thus a distinction between both methods 

does not exist with respect to this point. Class-B methods are 

also attractive. They solve all objective function problems 

with no particular differences during the solution process 

which is a strong benefit for the class-B methods. This comes 
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mainly from the fact that the class-B algorithms solve the 

optimality conditions of the original OP directly, where as the 

class-A algorithms solve only optimality conditions of the 

approximated OP. The disadvantages of the class-B algorithms 

lie in the fact that the number of variables to be handled 

iteratively is quite large (much larger than in the class-A 

algorithms where the number of variables is significantly 

reduced). Generally it is not clear which one of the classes is 

better. In the end the decision may be made based on the best 

combination of algorithmic robustness, computer code 

efficiency and computer code maintainability [2][8].  

This paper presents a QP formulation for ED taking into 

consideration the generation limits, transmission losses. The 

demand is assumed to be periodic. We applied the QP 

approach to the periodic implementation of the optimal 

solutions of ED problem problems. The convergence and 

robustness of the QP algorithms are demonstrated through the 

application of QP to a 6-unit IEEE test system. 

The results showed that the differences in Total cost results 

between the QP approach and λ iteration method are 

satisfactory, which checks the validity of this study.  
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