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Abstract

The Hestenes-Stiefel (HS) method is one of the most efficient nonlinear con-
jugate gradient methods for nonlinear optimization. In this paper, we propose a
derivative-free HS type method for symmetric nonlinear equations without comput-
ing its Jacobian, which is suitable for large-scale problems. It is an extension of the
three-term HS nonlinear conjugate gradient method for nonlinear optimization pre-
sented by Zhang, Zhou and Li [Optim. Methods Softw., 22 (2007), pp. 697-711]. By
the use of some approximation norm descent line search, we prove the strong global
convergence property of the proposed method. Moreover, R-linear convergence rate
is established for the proposed method under some conditions. Some extensions are
also discussed.
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convergence.

AMS subject classification 2010. 65K05, 90C30.

1 Introduction

It is well-known that the Hestenes-Stiefel (HS) method is one of the most efficient conju-
gate gradient methods for nonlinear optimization. The purpose of this paper is to extend
the HS type methods from nonlinear optimization to nonlinear equations.

In this paper, we consider the following symmetric nonlinear equations

F (x) = 0, (1.1)

where F : Rn → Rn is a continuously differentiable mapping whose Jacobian J(x) =
F ′(x) is symmetric, i.e., J(x) = J(x)T . This problem covers many practical problems
such as the KKT system of unconstrained optimization problem, the saddle problem
and the discretized two-point boundary value problem [5, 11]. There are many efficient
methods for this problem such as Newton method, Gauss-Newton method and quasi-
Newton methods [1, 2, 4, 8, 9, 11, 16, 17, 18].

Recently, Li and Wang [7] extended the MFR conjugate gradient method in [14] for
nonconvex optimization to nonlinear equations, which converges globally with a norm
descent line search. However, there are no local convergence results for this method.
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In this paper, we will extend the three-term HS nonlinear conjugate gradient method
in [15] for nonlinear optimization to nonlinear equations without computing the Jacobian
of the underlying system, which is suitable for large-scale problems. Moreover, we will
investigate its global and local convergence properties under some conditions.

In the next section, we give the motivation and the algorithm in detail. In Section
3, we first show the strong global convergence of the proposed method. Then we prove
its R-linear convergence under suitable conditions. In Section 4, we extend the proposed
method to norm descent case.

2 Motivation and the algorithm

The motivation of the paper is the Gauss-Newton-based BFGS (GN-BFGS) method
proposed by Li and Fukushima [5] for symmetric nonlinear equations. At each iteration,
the GN-BFGS method [5] produces the search direction dk by solving the linear equations

Bkd = −g̃k,

where
g̃k = α−1

k−1

(
F (xk + αk−1Fk)− Fk

)
, (2.1)

Fk = F (xk), αk−1 is the stepsize given by some line search, and the matrix Bk is updated
by the BFGS formula

Bk+1 = Bk −
Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

yT
k sk

,

where
yk = F (xk + δk)− Fk, δk = Fk+1 − Fk, sk = xk+1 − xk = αkdk. (2.2)

It is easy to see that if ‖sk‖ is small, then

Bk+1sk = yk ≈ JT
k+1Jk+1sk.

Let f be the norm square merit function defined by

f(x) =
1
2
‖F (x)‖2. (2.3)

Then the problem (1.1) is equivalent to the following global minimization problem:

min f(x), x ∈ Rn. (2.4)

The three-term HS nonlinear conjugate gradient method in [15] for (2.4) generates
the search direction by

dk =

{
−∇f(xk), if k = 0,
−∇f(xk) + βHS

k dk−1 − θkzk−1, if k ≥ 1,
(2.5)

where ∇f(x) is the gradient of the function f(x) and

βHS
k =

∇f(xk)T zk−1

dT
k−1zk−1

, θk =
∇f(xk)T dk−1

dT
k−1zk−1

, zk−1 = ∇f(xk)−∇f(xk−1). (2.6)

An attractive property of (2.5) is that it satisfies dT
k∇f(xk) = −‖∇f(xk)‖2, which means

that dk provides a sufficient descent direction for f . This property is independent of the
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objective function convexity and line search used, which is very important for global
convergence of this method.

Denote Jk = J(xk). Then the gradient of the function f defined by (2.3) at xk is
given by

∇f(xk) = JT
k Fk,

which is involved in calculation of the Jacobian. This shows that the method (2.5) is
not suitable for such problems where the Jacobian is not available or very difficult to
compute when it is applied to the special function (2.3).

To avoid computing the Jacobian, we use a similar way to (2.1) to deal with this
problem. Let {εk} and ε be a given positive sequence and a positive constant satisfying

∞∑

k=0

εk ≤ ε < ∞. (2.7)

Then by symmetry of the Jacobian J(x), we have

∇f(xk) = JT
k Fk ≈ gk , F (xk + εkFk)− Fk

εk
. (2.8)

Moreover, we note that yk defined by (2.2) is an approximation to zk given by (2.6),
i.e.,

yk ≈ zk = JT
k+1Fk+1 − JT

k Fk.

If we replace ∇f(xk) and zk−1 in (2.5) by gk and yk−1, respectively, then we get a
derivative-free HS type method for (1.1) without computing the Jacobian, that is, at
each iteration, the search direction dk is given by

dk =

{ −gk, if k = 0,

−gk + gT
k yk−1

dT
k−1yk−1

dk−1 − gT
k dk−1

dT
k−1yk−1

yk−1, if k ≥ 1,
(2.9)

where gk and yk are defined by (2.8) and (2.2), respectively.
In order to guarantee the direction dk defined by (2.9) is well defined, we use the

regularization technique [6] to modify the formula (2.9) as follows

dk =

{
−gk, if k = 0,
−gk + βMHS

k dk−1 − θM
k γk−1, if k ≥ 1,

(2.10)

where

βMHS
k =

gT
k γk−1

dT
k−1γk−1

, θM
k =

gT
k dk−1

dT
k−1γk−1

, (2.11)

γk−1 = yk−1 + tksk−1, tk = max
{
0,−yT

k−1sk−1

‖sk−1‖2

}
+ µ, (2.12)

yk−1 is given by (2.2) and µ > 0 is a given small positive constant.
It is clear from (2.12) that dT

k−1γk−1 ≥ µαk−1‖dk−1‖2 > 0, which implies that the
search direction (2.10) is well defined. Moreover, it still satisfies

dT
k gk = −‖gk‖2. (2.13)

Note that the search direction dk is no longer a descent direction of the norm square
merit function f in (2.3). Then we adopt the approximate norm descent line search

647



Weijun Zhou and Xinlong Chen

(2.14) below to globalize this method, which is motivated by that of [5]. The following
is the complete derivative-free HS type method for symmetric nonlinear equations (1.1).
Algorithm 2.1

Step 1. Choose a starting point x0 ∈ Rn, several constants µ > 0, σ ∈ (0, 1) and
r ∈ (0, 1). Let k := 0.

Step 2. Compute dk by (2.10)-(2.12).

Step 3. Compute αk = max{1, r1, r2, · · · } with α = ri satisfying

f(xk + αdk)− f(xk) ≤ σαgT
k dk + εkf(xk), (2.14)

where {εk} is a given positive sequence satisfying (2.7).

Step 4. Set xk+1 = xk + αkdk. Let k := k + 1 and go to Step 2.

Remark 2.1 The line search (2.14) is well defined since if α → 0+, the left-hand side
of (2.14) tends to zero and the right-hand side goes to the positive term εkf(xk), which
implies that the line search (2.14) is satisfied for all sufficiently small α > 0.

3 Global and linear convergence properties

In this section, we first investigate global convergence of Algorithm 2.1. Then we discuss
its local convergence property.

To begin with, let ε be a given constant satisfying (2.7), define the level set

Ω = {x| f(x) ≤ eεf(x0)}. (3.1)

Then we make the following assumptions to ensure global convergence of Algorithm 2.1.
Assumption 3.1

(i) The level set Ω is bounded.
(ii) In some neighborhood N of Ω, the Jacobian is Lipschitz continuous, namely, there

exists a constant L > 0 such that

‖J(x)− J(y)‖ ≤ L‖x− y‖, ∀x, y ∈ N. (3.2)

It is clear that Assumption 3.1 implies that there exist three positive constants L1,
L2 and M such that

‖∇f(x)−∇f(y)‖ ≤ L1‖x− y‖, ∀x, y ∈ N, (3.3)

‖F (x)‖ ≤ M, ‖J(x)‖ ≤ M, ∀x ∈ N. (3.4)

‖F (x)− F (y)‖ ≤ L2‖x− y‖, ∀x, y ∈ N. (3.5)

From (2.8) and (3.4), we have

‖gk‖ =
∥∥∥

∫ 1

0
J(xk + tεkFk)Fk

∥∥∥ ≤ M2. (3.6)

To prove the global convergence of the proposed method, we present some useful
lemmas. By the same argument as Lemma 2.1 in [5], we have the following result.
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Lemma 3.1. Let Assumption 3.1 hold and the sequence {xk} be generated by Algorithm
2.1. Then the sequence {f(xk)} converges and xk ∈ Ω for all k ≥ 0.

Lemma 3.2. Let Assumption 3.1 hold and the sequence {xk} be generated by Algorithm
2.1. Then there exists a positive constant M1 such that

dT
k γk ≥ µ‖dk‖‖sk‖, ‖γk‖ ≤ M1‖sk‖. (3.7)

Proof. The first inequality follows from the definition of (2.12) directly.
From (2.12), (2.2) and (3.5), we have

‖γk‖ ≤ 2‖yk‖+ µ‖sk‖
= 2‖F (xk + δk)− Fk‖+ µ‖sk‖
≤ 2L2‖δk‖+ µ‖sk‖
= 2L2‖Fk+1 − Fk‖+ µ‖sk‖
≤ (2L2

2 + µ)‖sk‖.

Set M1 = (2L2
2 + µ), then we get the second inequality of (3.7). ¤

Lemma 3.3. Let Assumption 3.1 hold and the sequence {xk} be generated by Algorithm
2.1. Then we have ∞∑

k=0

αk‖gk‖2 < ∞. (3.8)

Proof. It follows from (2.14), (2.13) and (2.7) directly. ¤
The inequality (3.8) implies that

lim
k→∞

αk‖gk‖2 = 0. (3.9)

Lemma 3.4. Let Assumption 3.1 hold and the sequence {xk} be generated by Algorithm
2.1. Then there exists a positive constant M2 such that

‖dk‖ ≤ M2‖gk‖. (3.10)

Proof. By the definition of the direction (2.10)-(2.12) and (3.7), we have

‖dk‖ ≤ ‖gk‖+
2‖gk‖‖γk−1‖‖dk−1‖

dT
k−1yk−1

=
(
1 +

2‖γk−1‖‖dk−1‖
dT

k−1yk−1

)
‖gk‖

≤
(
1 +

2M1‖sk−1‖‖dk−1‖
µ‖sk−1‖‖dk−1‖

)
‖gk‖

=
(
1 +

2M1

µ

)
‖gk‖.

Set M2 = 1 + 2M1
µ , then we obtain (3.10). ¤

Moreover, from (2.13), we have

‖gk‖ ≤ ‖dk‖, (3.11)

which together with (3.10) shows that ‖dk‖ is equivalent to ‖gk‖.
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Lemma 3.5. Let Assumption 3.1 hold and {xk} be generated by Algorithm 2.1. If
αk 6= 1, then we have

αk ≥ m1
−gT

k dk

‖dk‖2
−m2

εk‖Fk‖2

‖dk‖ = m1
‖gk‖2

‖dk‖2
− 2m2

εkf(xk)
‖dk‖ , (3.12)

where m1 and m2 are two positive constants.

Proof. If αk < 1, then the line search (2.14) implies that

f(xk + r−1αkdk)− f(xk) > σαkr
−1gT

k dk + εkf(xk) ≥ σαkr
−1gT

k dk.

By the mean-value theorem and (3.3), we can easily get

f(xk + r−1αkdk)− f(xk) ≤ r−1αk∇f(xk)T dk + L1r
−2α2

k‖dk‖2.

Then we have

L1r
−1αk‖dk‖2 ≥ σgT

k dk −∇f(xk)T dk

= −(1− σ)gT
k dk +

(
gk −∇f(xk)

)T
dk

≥ −(1− σ)gT
k dk − ‖gk −∇f(xk)‖‖dk‖.

From (2.8), (3.2) and the symmetry of the Jacobian J(x), we have

‖∇f(xk)− gk‖ =
∥∥∥∥JkFk −

∫ 1

0
J(xk + tεkFk)Fkdt

∥∥∥∥

≤ ‖Fk‖
∥∥∥

∫ 1

0

(
J(xk + tεkFk)− Jk

)
dt

∥∥∥

≤ Lεk‖Fk‖2.

The above two inequalities yield that

αk ≥ r(1− σ)
L1

(−gT
k dk)

‖dk‖2
− rL

L1

εk‖Fk‖2

‖dk‖ . (3.13)

Set m1 = r(1−σ)
L1

and m2 = rL
L1

, from (2.13), we get (3.12). The proof is then finished. ¤
Now we give the following global convergence result for Algorithm 2.1.

Theorem 3.1. Let Assumption 3.1 hold. Then the sequence {xk} be generated by Algo-
rithm 2.1 converges globally in the sense that

lim
k→∞

‖∇f(xk)‖ = 0. (3.14)

Proof. We prove the theorem by contradiction. Suppose it is not true, then there exist
a positive constant τ and an infinite index set T such that

‖∇f(xk)‖ ≥ τ, ∀k ∈ T, (3.15)

which implies that
‖gk‖ ≥ τ1, ∀k ∈ T (3.16)

holds for sufficiently large k ∈ T with some positive constant τ1.
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From (3.12), (3.10), (3.11), (3.16), (2.7) and Lemma 3.1, we deduce that

αk ≥ m1

M2
2

− 2m2
εkf(xk)
‖gk‖ ≥ m1

M2
2

− 2m2

τ1
εkf(xk) ≥ m1

2M2
2

, k ∈ T (3.17)

holds for sufficiently large k, which together with (3.9) yields that

lim
k∈T,k→∞

‖gk‖ = 0.

This contradicts to (3.16). The proof is then completed. ¤
Remark 3.1 Theorem 3.1 shows that Algorithm 2.1 is strongly convergent since general
conjugate gradient methods for nonlinear optimization [12] or nonlinear equations [7]
only have the following weaker global convergence in the sense that

lim inf
k→∞

‖∇f(xk)‖ = 0.

By Theorem 3.1, we have the following result.

Corollary 3.1. Let Assumption 3.1 hold and the sequence {xk} be generated by Al-
gorithm 2.1. Then every limit point is a stationary point of f . Moreover if J(x∗) is
nonsingular at a limit point x∗ of the sequence {xk}, then x∗ is a solution of (1.1).

Now we begin to discuss the local convergence property of Algorithm 2.1, which
requires the following assumptions.
Assumption 3.2

(i) The sequence {xk} converges to x∗ and J(x∗) is nonsingular .
(ii) In some neighborhood N1 of x∗, the Jacobian is Lipschitz continuous, namely,

there exists a constant L3 > 0 such that

‖J(x)− J(y)‖ ≤ L3‖x− y‖, ∀x, y ∈ N1. (3.18)

The condition (i) in Assumption 3.2 together with Theorem 3.1 implies that

F (x∗) = 0, ∇2f(x∗) = J(x∗)T J(x∗) (3.19)

and the Jacobian is uniformly nonsingular in N1, that is, there exists a positive constant
such that

‖J(x)d‖ ≥ m3‖d‖, ∀d ∈ Rn, x ∈ N1. (3.20)

This inequality together with (2.8) implies that

‖gk‖ =
∥∥∥

∫ 1

0
J(xk + tεkFk)dtFk

∥∥∥ ≥ m3‖Fk‖. (3.21)

Theorem 3.2. Let Assumption 3.2 hold. Then the sequence {xk} be generated by Algo-
rithm 2.1 is R-linearly convergent in the sense that

‖Fk‖ ≤ ρk‖F0‖, ‖xk − x∗‖ ≤ m4ρ
k

hold for constants ρ ∈ (0, 1) and m4 > 0.

651



Weijun Zhou and Xinlong Chen

Proof. By (3.12) and (2.14), we have

f(xk+1)− f(xk) ≤ −σm1
‖gk‖4

‖dk‖2
+ 2m2σ

|gT
k dk|
‖dk‖ εkf(xk) + εkf(xk)

≤ −σm1

M2
2

‖gk‖2 + 2m2σ‖gk‖εkf(xk) + εkf(xk)

≤ −σm1m
2
3

M2
2

‖Fk‖2 + 2m2σ‖gk‖εkf(xk) + εkf(xk)

=
(
− 2σm1m

2
3

M2
2

+ 2m2σ‖gk‖εk + εk

)
f(xk),

where we use (3.10) and (3.21) in the second inequality and the third inequality, respec-
tively. This inequality together with (2.7) and (3.6) implies that there exists a constant
ρ ∈ (0, 1) such that

f(xk+1) ≤
(
1− 2σm1m

2
3

M2
2

+ 2m2σ‖gk‖εk + εk

)
f(xk) ≤ ρ2f(xk), (3.22)

which means that
‖Fk+1‖ ≤ ρ‖Fk‖ ≤ ρk+1‖F0‖. (3.23)

From (3.20), we know that

‖Fk+1 − F (x∗)‖ =
∥∥∥

∫ 1

0
J
(
x∗ + t(xk+1 − x∗)

)
dt(xk+1 − x∗)

∥∥∥ ≥ m3‖xk+1 − x∗‖,

which together with (3.23) shows that

‖xk − x∗‖ ≤ m4ρ
k

holds for some positive constant m4. This finishes the proof. ¤

4 Extension to norm descent case

In this section, based on the idea of [3, 7], we extend Algorithm 2.1 to norm descent case
in the sense that f(xk+1) < f(xk) for all k ≥ 0.

Define

gk(α) , F (xk + αFk)− Fk

α
. (4.1)

Then by the symmetry of the Jacobian, we have

lim
α→0+

gk(α) = ∇f(xk) = JT
k Fk,

which implies that if α is small, then gk(α) is a good approximation to ∇f(xk).
Now we replace gk in (2.10) with gk(α) defined by (4.1), then we obtain a new HS

type method as follows

dk(α) =

{ −gk(α), if k = 0,

−gk(α) + gk(α)T γk−1

dT
k−1γk−1

dk−1 − gk(α)T dk−1

dT
k−1γk−1

γk−1, if k ≥ 1,
(4.2)
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where γk−1 is defined by (2.12). It is easy to get that

dk(α)T gk(α) = −‖gk(α)‖2. (4.3)

Moreover, we have

lim
α→0+

dk(α) =

{ −∇f(xk), if k = 0,

−∇f(xk) + ∇f(xk)T γk−1

dT
k−1γk−1

dk−1 − ∇f(xk)T dk−1

dT
k−1γk−1

γk−1, if k ≥ 1,

which implies that
∇f(xk)T dk(0) = −‖∇f(xk)‖2. (4.4)

This shows that when α is sufficiently small, dk(α) will be a descent direction of the
function f(x) in (2.3). We compute α satisfying

f(xk + αdk(α))− f(xk) ≤ σαgk(α)T dk(α), (4.5)

where σ ∈ (0, 1) is a constant. The line search (4.5) is different from those of [3, 7]. The
relations (4.4) and (4.3) show that (4.5) holds for all sufficiently small α > 0.

We give the following procedures which are similar to those of [3] to determine the
search direction dk and the stepsize αk simultaneously.
Procedure 1.

Let gk(α) be given by (4.1) and dk(α) be defined by (4.2). Given r ∈ (0, 1). Let ik
be the smallest nonnegative integer such that (4.5) holds with α = ri, i = 0, 1, · · · . Let
gk = gk(rik) and dk = dk(rik).
Procedure 2.

Let dk and ik be generated by Procedure 1. If ik = 0, we choose αk = 1. Otherwise,
we let jk be the largest integer jk ∈ {0, 1, · · · , ik − 1} such that

f(xk + rik−jkdk)− f(xk) ≤ σrik−jkgT
k dk. (4.6)

Then we take αk = rik−jk .
The following is a derivative-free HS type method with norm descent.

Algorithm 4.1

Step 1. Choose x0 ∈ Rn and two constants σ, r ∈ (0, 1). Let k := 0.

Step 2. Compute dk and αk by Procedures 1 and 2.

Step 3. Set xk+1 = xk + αkdk. Let k := k + 1 and go to Step 2.

Using the same argument as that of Section 3, we can prove the global and linear
convergence of Algorithm 4.1. Here we list this result but omit its proof.

Theorem 4.1. Let Assumption 3.1 hold and the sequence {xk} be generated by Algorithm
4.1. Then we have limk→∞ ‖∇f(xk)‖ = 0. Moreover, if Assumption 3.2 holds, then the
sequence {xk} converges R-linearly.

5 Conclusions

We have proposed a derivative-free HS type method for symmetric nonlinear equations
with strong global and R-linear convergence. We believe that the idea of the paper can
be extended to other methods such as [10, 13].
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