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A feasible directions method on combining feasibility with descent for nonlinear

constrained optimization1
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Abstract. In this paper, a modified gradient projection method is proposed to solve the

nonlinear constrained optimization problems, where the search direction is obtained by comb-

ing feasibility with descent. In addition, it is pointed out that, for linear constrained op-

timization problems, this method may be simplified and viewed as the modified version to

Rosen’s method. The theoretical analysis shows that global convergence can be obtained

under some suitable conditions.
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1. Introduction

Since Rosen has presented gradient projection method [1,2] from 1960, it becomes a

basic technique for solving constrained nonlinear programming problems, as well, is studied

and improved further by a lot of authors. For optimization with linear constraints, there

existed some relevant references [3-11], which either had to modify Rosen’s method to obtain

global convergence, or relied mainly on the convergence of Rosen’s method. While it was a long-

standing problem as to whether Rosen’s method is convergent or not. Later, Du and Zhang

[12] proved global convergence of Rosen’s method in 1989, obviously, the proof was complex.

In addition, some above-mentioned methods required to solve two projection matrixes. On the

other hand, for optimization with nonlinear constraints, gradient project direction didn’t satisfy

the requirement of feasibility at active constraints set. There were a lot of modified methods

[13-16], but they either required some stronger assumptions, or were necessary to compute a

more complex modified feasible directions of descent than the gradient project direction, thus

computing cost was rather high.

In this paper, firstly, optimization with nonlinear constraints is studied and a new method is

presented. A feasible direction is obtained by taking advantage of the descent gradient project

direction, then, the search direction is obtained by making a convex combination with the

descent direction and the feasible direction, thereby, in a single iteration, it is only necessary

to solve one projection matrix. In the end, global convergence is proved under some general

conditions. In addition, we point out that the method can be simplified for linear constrained

optimizations. In comparison with Rosen’s method, this method requires to solve only one pro-

jection matrix, in other words, if the gradient project direction is zero, then the corresponding
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point must be a KKT point, moreover, analysis of convergence is simpler than that of

Rosen’s method.

2. Description of Algorithm

In this paper, we consider the following nonlinear programming (NLP):

min fo(x)

s.t. fj(x) ≤ 0, j = 1, 2, . . . ,m,
(1)

where fj : R
n → R, (j = 0, 1 ∼ m) are smooth functions. For the sake of simplicity, we denote

I = {1, 2, . . . ,m}, X = {x ∈ Rn|fj(x) ≤ 0, j ∈ I}, I(x) = {j ∈ I|fj(x) = 0},

Three basic assumptions are given as follows:

A1: The feasible set is nonempty, i.e., X ̸= ϕ;

A2: The functions fj(x)(j = 0, 1 ∼ m)are continuously differentiable;

A3: For all x ∈ X, the vectors {gj(x), j ∈ I(x)}are linearly independent.

For xk ∈ X and some set Jk ⊆ I, we define

gj(x
k) = ∇fj(x

k), j = 0, 1 ∼ m,Ak = A(xk) = (gj(x
k), j ∈ Jk,

Qk = Q(xk) = (AT
kAk)

−1AT
k , Pk = P (xk) = En −AkQk, (2)

uk = u(xk) = −Qkgo(x
k), dko = do(x

k) = −Pkgo(x
k) +QT

k v
k, (3)

vk = v(xk) = (vkj , j ∈ Jk), v
k
j =

{
−fj(x

k), uk
j > 0

uk
j , πk

j ≤ 0
, (4)

dk1 = −||dko ||QT
k e, e = (1, . . . , 1)T ∈ R|Jk|, (5)

qk = (1− τk)d
k
o + τkd

k
1 , τk =

 1, go(x
k)T dk1 ≤ θgo(x

k)T dko
(1−θ)go(x

k)T dk
o

go(xk)T (dk
o−dk

1 )
, go(x

k)T dk1 > θgo(x
k)T dko

. (6)

Now, the algorithm for the solution of (1) can be stated as follows:

Algorithm A

Step 0: (Initialization):Given a starting point x1 ∈ X. Choose parameters εo, α, θ ∈ (0, 1).

Set k = 1;

Step 1: Let i = 0, εk,i = εo;

Step 2: If det(AT
k,iAk,i) ≥ εk,i, let Lk = Lk,i, ik = i and go to step 4. Otherwise, go to step

3, where

Lk,i = {j ∈ I | −εk,i ≤ fj(x
k) ≤ 0}, Ak,i = (gj(x

k), j ∈ Lk,i); (7)

Step 3: Let i = i+ 1, εk,i =
1
2εk,i−1, and go to step 2;

Step 4: Compute dko according to (3). If dko = 0, STOP. Otherwise, compute qk according

to (6);
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Step 5: Compute λk, the first number λ in the sequence {1, 1
2 ,

1
4 ,

1
8 , . . .} satisfying

fo(x
k + λqk) ≤ fo(x

k) + αλgo(x
k)T qk, (8)

fj(x
k + λqk) ≤ 0, j ∈ I; (9)

Step 6: Set xk+1 = xk + λkq
k and k = k + 1. Go back to step 1.

3. Global Convergence of Algorithm

In this section, we first show that the algorithm A given in section 2 is correctly stated,

that is to say, it is possible to execute all the steps defined above. Then, we prove the global con-

vergence of Algorithm A. Firstly, we make another assumption and let it hold in the remainder

of this paper.

A4: {xk} are bounded, which is a point range generated by the algorithm A.

Lemma 1 For any iteration, there is no infinite cycle between step 2 and step 3.

Proof The proof of this Lemma is similar to the proof of Lemma 1.1 in [17].

Theorem 1 (1). xk is a KKT point of the problem (1) ⇐⇒ dko = 0;

(2). If xk is not a KKT point of the problem (1), then

go(x
k)T dko < 0, go(x

k)T qk < 0, gj(x
k)T qk < 0, j ∈ I(xk), (10)

i.e., qk is a feasible direction of descent;

Proof (1). If xk is a KKT point of (1), then, from the definition of Lk, there exists a

vector α = (αj , j ∈ Lk), such that

go(x
k) +Akα = 0, αj ≥ 0, αjfj(x

k) = 0, j ∈ Lk. (11)

Obviously, (AT
kAk)

−1 is meaning according to step 2, so, it follows that

α = −(AT
kAk)

−1AT
k go(x

k) = uk.

Thus, from (4) and (11), we get

vk = 0, go(x
k) +Aku

k = 0,

which shows that dko = 0.

On the contrary, If dko = 0, then, we obtain that

0 = AT
k d

k
o = −AT

k Pkgo(x
k) +AkQ

T
k v

k = vk, Pkgo(x
k) = 0,

thereby, from (3), (4), it is clear that

uk
j ≥ 0, uk

j fj(x
k) = 0, j ∈ Lk, go(x

k) +Aku
k = 0. (12)

From the definition of Lk, it is true that xk is a KKT point of (1).
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(2). If xk is not a KKT point of the problem (1), then dko ̸= 0, then, by (3), we obtain that

go(x
k)T dko = −go(x

k)TPkgo(x
k)− (uk)T vk

= −||Pkgo(x
k)||2 −

∑
j∈Lk,πk

j ≤0

(πk
j )

2 +
∑

j∈Lk,πk
j >0

πk
j fj(x

k) < 0,

and

AT
k d

k
o = vk, gj(x

k)T dko = vkj ≤ 0, j ∈ I(xk) ⊆ Lk.

In addition, from (5), we have

AT
k d

k
1 = −||dko ||e, gj(xk)T dk1 = −||dko || < 0, j ∈ I(xk) ⊆ Lk.

While, from (6), it is obvious that τk ∈ (0, 1], and

gj(x
k)T qk = gj(x

k)T [(1− τk)d
k
o + τkd

k
1 ] ≤ τkgj(x

k)T dk1 < 0, j ∈ I(xk).

Furthermore, when go(x
k)T dk1 ≤ θgo(x

k)T dko , i.e., τ = 1, it can be seen that

go(x
k)T qk = go(x

k)T dk1 ≤ θgo(x
k)T dko < 0,

when go(x
k)T dk1 > θgo(x

k)T dko , it follows that

go(x
k)T qk = go(x

k)T [(1− τk)d
k
o + τkd

k
1 ] ≤ θgo(x

k)T dko < 0.

In the sequel, we’ll prove that Algorithm A is globally convergent. Since there are only

finitely many choices for sets Lk ⊆ I, I(xk) ⊆ I and xk are bounded , we might as well assume

that there exists a subsequence K, such that

xk → x∗, Lk ≡ L, Ik = I(xk) ≡ I∗, k ∈ K,

where L and I∗ are constant sets.

Lemma 2 If xk → x∗, k ∈ K, then there exists ε̃, such that for k ∈ K, k large enough, it

holds that ε
k,ik

≥ ε̃.

Proof The proof of this Lemma is similar to the proof of Lemma 2.8 in [17].

Denote A∗ = (gj(x
∗), j ∈ L), from Lemma 2, we have that (AT

∗ A∗)
−1 is meaning. Further-

more, replacing A∗ for A(x∗) at x∗, we denote d∗o, u
∗, Q∗, P∗, q

∗ are corresponding vectors of

(2) ∼ (6). Obviously, by the assumption A2, it is easy to prove that

dko → d∗o, u
k → u∗, qk → q∗, k ∈ K. (13)

Lemma 3 If x∗ is not a KKT point of (1), then d∗o ̸= 0.

Proof The proof is similar to that of Theorem 1.

Theorem 2 The algorithm A either stops at the KKT point xk of the problem (1) in

finite iteration, or generates an infinite sequence{xk} whose any accumulation point x∗ is a

KKT point of the problem (1).

Proof The first statement is obvious, the only stopping point being in step 4. Thus,

suppose that {xk} is generated by the algorithm A, and {xk}k∈K → x∗. Suppose that the
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desired conclusion is not true, then, according to Lemma 3, it holds that d∗o ̸= 0. Thereby, by

imitating the proof of theorem 1, it follows that

go(x
∗)T d∗o < 0, go(x

∗)T q∗ < 0, gj(x
∗)T q∗ < 0, j ∈ I∗.

In addition, because of

go(x
k)T qk → go(x

∗)T q∗, gj(x
k)T qk → gj(x

∗)T q∗, j ∈ Ik, k ∈ K,

for k ∈ K, k large enough, we have that

go(x
k)T qk ≤ 1

2
go(x

∗)T q∗ < 0, gj(x
k)T qk ≤ 1

2
gj(x

∗)T q∗ < 0, j ∈ I∗. (14)

We first show that, in this case, the step λk is bounded away from zero on K, i.e.,

λk ≥ λ∗ = inf{λk, k ∈ K} > 0, k ∈ K. (15)

Analyze(8). Denote ak as follows:

ak
△
= fo(x

k + λqk)− fo(x
k)− αλgo(x

k)T qk

= (1− α)λgo(x
k)T qk + o(λ) ≤ 1

2 (1− α)λgo(x
∗)T q∗ + o(λ).

For k ∈ K, k large enough and λ > 0 sufficiently small, it is clear to see that ak ≤ 0.

Analyze(9). If j ∈ I \ Ik, then fj(x
k) < 0, so, it is obvious that fj(x

k + λqk) ≤ 0 (for λ > 0

small enough); If j ∈ Lk, then fj(x
k) = 0. By (14), we have

bk
△
= fj(x

k + λqk) = λgj(x
k)T qk + o(λ) ≤ 1

2
λgj(x

∗)T q∗ + o(λ).

For k ∈ K, k large enough and λ > 0 small enough, it follows that bk ≤ 0.

Thus, by above-mentioned analysis, it holds that λk ≥ λ∗ = inf{λk, k ∈ K} > 0, k ∈ K.

In addition, from (8), (10), it is evident that {fo(xk)} is monotonous decreasing. Hence,

considering {xk}K → x∗ and assumption A2, there holds

fo(x
k) → fo(x

∗), k → ∞. (16)

So, from (8), (16), we get

0 = lim
k∈K

(fo(x
k+1)− fo(x

k)) ≤ lim
k∈K

(αλkgo(x
k)T qk) ≤ 1

2
αλ∗go(x

∗)T q∗ < 0.

It is a contradiction, which shows that x∗ is a KKT point of the problem (1).

4. Linear Constraints

In this section, we consider the following linear constrained optimization:

min f(x)

s.t. aTj x ≤ bj , j ∈ I = {1, 2, . . . ,m},
(17)

To solve (17), Algorithm A may be simplified as follows:
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Algorithm B

Step 0: Given a feasible point xo, α ∈ (0, 1), k = 0;

Step 1: Compute

g(xk) = ∇f(xk), Jk = {j ∈ I | aTj xk = bj}, Ak = (aj , j ∈ Jk),

Qk = (AT
kAk)

−1AT
k , Pk = En −AkQk, u

k = −Qkg(x
k),

dk = −Pkg(x
k) +QT

k v
k, vk = (vkj , j ∈ Jk), v

k
j =

{
bj − aTj x

k, uk
j > 0,

uT
j , uk

j ≤ 0.

If dk = 0, STOP (in this case, xk is a KKT point of (17)), otherwise, CONTINUE.

Step 2: Compute

λk =

 1, if aTj d
k ≤ 0, j ∈ I,

min{ bj−aT
j xk

aT
j dk : aTj d

k > 0}, otherwise.

Choose λk = ( 12 )
i∗λk so that i∗ is the smallest non-negative integer i satisfying the inequality

f(xk + (
1

2
)iλkd

k) ≤ f(xk) + α(
1

2
)iλkg(x

k)T dk;

Step 3: Let xk+1 = xk + λkd
k, k = k + 1. Go back to step 1.

In comparison with Rosen’s method, the search direction dk is more complex slightly than

that of Rosen’s method, but it requires to compute only one projection matrix, in addition,

analysis of this method is fairly simpler than that of Rosen’s method.

Analysis of the algorithm B is similar to that of Algorithm A.

Lemma 4 1). xk is a KKT point of (1)⇐⇒ dk = 0;

2). If dk ̸= 0, then

g(xk)T dk < 0, aTj d
k ≤ 0, j ∈ Jk,

i.e., dk is a feasible direction of descent.

Theorem 3 The algorithm B either stops at the KKT point xk of the problem (17) in

finite iteration, or generates an infinite sequence{xk} whose any accumulation point x∗ is a

KKT point of the problem (17).

5. Numerical experiments

In this section, we carry out some limited numerical experiments based on the algorithm.

The code of the proposed algorithm is written by using Matlab programming language, and

run on Windows XP.

In the implementations, the parameters are chosen as ε0 = 1e− 06, θ = 0.3, α = 0.35. The

stopping criterion is ∥dko∥ ≤ 10−6. This algorithm has been tested on some problems from [19].

The results are summarized in the following table. For each test problem, No. is the number

of the test problem in [19], NIT the number of iterations, NF the number of evaluations of the

objective functions, NG the number of evaluations of scalar constraint functions, FV the final

value of the objective function. In this paper, we obtain the conclusion that the algorithm stops
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when dko = 0. In fact, if dk0 = 0, we can prove that uk ≥ 0 (see Theorem 1). The numerical

results show that this fact is true (see the value of uk
min in the following table which means the

minimal component of the multipliers uk for the final iteration).

Problem 1 See HS03 in Ref.[19]

min x2 + 0.00001 ∗ (x2 − x1)
2

s.t. x2 ≥ 0.

The optimal solution and value in [19]:

x∗ = (0, 0)T , f0(x
∗) = 0.

Problem 2 See HS10 in Ref.[19]

min x1 − x2

s.t. − 3 ∗ x2
1 + 2 ∗ x1 ∗ x2 + x2

2 − 1 ≥ −1.

The optimal solution and value in [19]:

x∗ = (1, 0)T , f0(x
∗) = −1.

Problem 3 See HS22 in Ref.[19]

min (x1 − 2)2 + (x2 − 1)2

s.t. x1 + x2 − 2 ≤ 0,

x2
1 − x2 ≤ 0.

The optimal solution and value in [19]:

x∗ = (1, 1)T , f0(x
∗) = 1.

Problem 4 See HS29 in Ref.[19]

min − x1 ∗ x2 ∗ x3

s.t. x2
1 + 2 ∗ x2

2 + 4 ∗ x2
3 ≤ 48

The optimal solution and value in [19]:

x∗ = (4, 2.82843, 2)T , f0(x
∗) = −16 ∗

√
2.

Problem 4 See HS43 in Ref.[19]

min x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

s.t. x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 ≤ 0,

x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0,

2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5 ≤ 0.

The optimal solution and value in [19]:

x∗ = (0, 1, 2,−1)T , f0(x
∗) = −44.
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Table: The detailed information of the results

No. NIT NF NG FV ∥dk0∥ / uk
min

03 10 18 19 0.040353623273424
∥dko∥ = 8.064125836437674e− 006

uk
min = 1.000000806412674

10 38 76 76 -0.999999447862117
∥dko∥ = 9.504722714043553e− 006

uk
min = 0.499997039731185

22 39 76 115 1.000001836160267
∥dko∥ = 1.143437043146816e− 006

uk
min = 0.666667232355497

29 37 90 101 -22.627416993190010
∥dko∥ = 6.451489138418337e− 007

uk
min = 0.707120788665736

43 71 200 734 -43.999992576356789
∥dko∥ = 7.085351411397026e− 006

uk
min = 0.000005260336491
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