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Abstract

For stochastic differential equations driven by fractional Brownian motion
and standard Brownian motion, we prove that W1HI transportation inequalities
hold for the law of its solution on the space of IRd-valued continuous function
on [0, T ] w.r.t the L1-metric, under some assumptions on the coefficients, via
Malliavin calculus.
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1 Introduction

Let BH = {BH
t , t ∈ IR+} be an d-dimensional fractional Brownian motion (fBm)

with Hurst index H ∈ (0, 1), i.e. a zero mean Gaussian process with covariance
function IE(Bi

s, B
j
t ) = RH(s, t)δij , where

RH(s, t) =
1

2

(
t2H + s2H − |t− s|2H). (1)

This process is a ordinary Brownian motion when H =
1

2
. From (1) we deduce that

IE(
∣∣∣BH

t , B
H
s

∣∣∣2) = d|t− s|H and, as a consequence, the trajectories of BH are almost

surely locally α-Hölder continuous for all α ∈ (0, H). We refer the reader to [1, 10]
and references therein for further information about fBm and stochastic integration
with respect to this process.
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Toufik Guendouzi - Transportation inequalities...

In this article we fix a time interval [0, T ] and 1
2 < H < 1. Let (Ω,F , IP)

be a complete probability space and we consider the following mixed stochastic
differential equation

Xt = X0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
σW (s,Xs)dWs +

∫ t

0
σH(s,Xs)dB

H
s , (2)

where X0 ∈ IRd is the initial value of the process X, W is an n-dimensional stan-
dard Brownian motion and BH is an m-dimensional fractional Brownian motion
with H ∈ (1

2 , 1). The coefficients b : [0, t]× IRd → IRd, σW : [0, t]× IRd → IRd×n are

assumed Lipschitz continuous in x and σH : [0, t]×IRd → IRd×m has bounded partial
derivatives which are Hölder continuous of order λ > 1

H − 1, and the processes W
and BH are independent.

For each t ∈ [0, T ] we denote by Ft the σ-filed generated by the random variables

{X0, B
H
s ,Ws, s ∈ [0, t]} and the IP-null sets. The integral

∫ t

0
σW (s,Xs)dWs in the

SDE (2) should be interpreted as an Itô stochastic integral and

∫ t

0
σH(s,Xs)dB

H
s as

a pathwise Riemann-Stieltjes integral, which can be expressed as a Lebesgue integral
using a fractional integration by parts formula (see [17]).

For several years, the transportation cost-information inequalities and thier ap-
plications to diffusion processus have been studies (see [2], [5]). In a recent paper,
Liming Wu [16] established the transportation inequalities for stochastic differential
equations of pure jumps. In that paper, it was shown that for stochastic differential
equations of pure jumps the W1HI transportation inequalities hold for its invariant
probability measure and for its process-level law on right continuous paths space
under the dissipative condition. However, the results in that paper was applied to
concentration inequalities. The main purpose of this work is to apply the recent
results on the mixed stochastic differential equations involving fractional Brownian
motion and standard Brownian motion in order to obtain transportation inequali-
ties.

Let (E, d) denote the metric space equipped with σ-field such that the distance
d is B ⊗ B-measurable. For any p ≥ 1 and two probability measures µ and ν on E,
recall the Lp-Wasserstein distance between µ and ν

W d
p (µ, ν) = inf

(∫ ∫
d(x, y)pdπ(x, y)

) 1
p .

This quantity is finite as soon as µ and ν have finite moments of order p. The
Kullback information of ν with respect to µ is given by

HI(ν/µ) =


∫

log
dν

dµ
dν if ν � µ,

+∞ otherwise.

We say that the probability measure µ satisfies the Lp-transportation inequality on
(E, d) ( µ ∈ Tp(C) for short) if there existe a constant C ≥ 0 such that for any
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probability measure ν,

W d
p (µ, ν) ≤

(
2CHI(ν/µ)

) 1
2 . (3)

Let φ be a increasing function and left-continuous on IR+ which vanishes at 0.
The probability measure µ satisfies a W1HI inequality with deviation function φ if

φ
(
W1,d(µ, ν)

)
≤ HI(ν/µ), ∀ν ∈ Pd(E), (4)

where Pd(E) is the set of all probability measures ν such that

∫
d(x0, x)ν(dx) <∞.

The inequality (3) is a particular case with φ(t) = t2/p/(2C), t ≥ 0.

By means of Malliavin calculus, Wu in [16] proved that the distribution PT (x, dy)
of Xt(x) satisfies the W1HI transportation inequality and IPx,[0,T ] satisfies on the

space D([0, T ], IRd) of right continuous left limits IRd-valued functions on [0, T ], for
some deviation function φT

φ
(
W1,dL1 (Q, IPx)

)
≤ HI(Q/IPx), Q ∈M1(D([0, T ], IRd)).

The structure of the paper is as follows: in the next section we recall some classical
definitions and results on fractional calculus and we list our assumptions on the
coefficients of Eq. (2). In section 3 we state the main results of our paper. Section
4 is devoted to relating the Malliavin calculus to our case and to prove Theorem 3.2
and Theorem 3.3 enounced in section 3.

2 Preliminaries

Let d, l ∈ IN∗. Given the matrix A = (ai,j)d×l and a vector y = (yi)d×1 we denote
|A|2 =

∑
i,j

|ai,j |2 and |y|2 =
∑
i

|yi|2.

Let α ∈ (0, 1
2). For any measurable function f : [0, t] → IRd we introduce the

following notation

||f(t)||α := |f(t)|+
∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds. (5)

Denote by Wα,∞
0 the space of measurable functions f : [0, t]→ IRd such that

||f(t)||α,∞ := sup
t∈[0,T ]

||f(t)||α <∞. (6)

A equivalent norm can be defined by

||f ||α,% = sup
t∈[0,T ]

e−%t
(
|f(t)|+

∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds

)
; % ≥ 0. (7)

For 0 < λ ≤ 1, denote by Cλ(0, T, IRd) the space of λ-Hölder continuous functions
f : [0, T ]→ IRd, equipped with the norm

||f ||λ := ||f ||∞ + sup
0≤s<t≤T

|f(t)− f(s)|
(t− s)λ

<∞, (8)
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where ||f(t)||∞ := sup
t∈[0,T ]

|f(t)|. Note that for any ε, (0 < ε < α), we have the

inclusions

Cα+ε([0, T ]; IRd) ⊂Wα,∞
0 ([0, T ]; IRd) ⊂ Cα−ε([0, T ]; IRd).

We denote by W 1−α,∞
T ([0, T ]; IRd) the space of continuous functions g : [0, T ]→ IRd

such that

||g||1−α,∞,T := sup
0<s<t<T

( |g(t)− g(s)|
(t− s)1−α +

∫ t

s

|g(y)− g(s)|
(y − s)2−α dy

)
<∞.

Clearly, for all ε > 0 we have

C1−α+ε([0, T ]; IRd) ⊂W 1−α,∞
T ([0, T ]; IRd) ⊂ C1−α([0, T ]; IRd).

Denoting

Λα(g; [0, T ]) =
1

Γ(1− α)
sup

0<s<t<T
|(D1−α

t− gt−)(s)|,

where Γ(α) =

∫ ∞
0

rα−1e−rdr is the Euler function and

(D1−α
t− gt−)(s) =

eiπ(1−α)

Γ(α)

(
g(s)− g(t)

(t− s)1−α + (1− α)

∫ t

s

g(s)− g(y)

(y − s)2−α dy

)
1(0,t)(s).

We also define the space Wα
1 (0, T, IRd) of measurable functions f on [0, T ] such that

||f ||α,1;[0,T ] =

∫ T

0

[ |f(t)|
tα

+

∫ t

0

|f(t)− f(y)|
(t− y)α+1

dy

]
dt <∞.

We have Wα
∞(0, T, IRd) ⊂Wα

1 (0, T, IRd) and ||f ||α,1;[0,T ] ≤
(
T + T 1−α

1−α

)
||f ||α,∞;[0,T ].

In [17] Zähle introduced the generalized Stieltjes integral∫ T

0
f(t)dg(t) = (−1)α

∫ T

0
(Dα

0+f)(t)(D1−α
T− gT−)(t)dt, (9)

defined in terms of the fractional derivative operators

(Dα
0+f)(t) =

1

Γ(1− α)

(
f(t)

tα
+ α

∫ t

0

f(t)− f(y)

(t− y)α+1
dy

)
1(0,T )(t),

and

(Dα
T−gT−)(t) =

(−1)α

Γ(1− α)

(
g(t)− g(T )

(T − t)α
+ α

∫ T

t

g(t)− g(y)

(t− y)α+1
dy

)
1(0,T )(t).

We refer the reader to [10] for further details on fractional operators.
the following propositions are the estimates of the generalized Stieltjes integral.

618



Toufik Guendouzi - Transportation inequalities...

Proposition 2.1 ([10]) Fix 0 < α < 1
2 . Given two functions g ∈ W 1−α,∞

T (0, T )

and f ∈Wα,1
0 (0, T ) we set

Gts(f) =

∫ t

s
frdgr.

Then for all r < t ≤ T we have∣∣∣∣∫ t

s
frdgr

∣∣∣∣ ≤ sup
s≤r<τ≤t

|(D1−α
τ− gτ−)(r)|

∫ t

s
|(Dα

s+f)(τ)|dτ

≤ Λα(g; [s, t])||f ||α,1;[0,T ].
(10)

Proposition 2.2 Let 0 < α < 1
2 .

1. Gs,t : Wα,∞(s, t; IRd)→ C1−α([s, t]; IRd) is a linear continuous map and

||Gs,.(f)||1−α;[s,t] ≤ c
(1)
α,tΛα(g; [s, t])||f ||α,∞;[0,T ], (11)

where c
(1)
α,t is a positive constant depending only on α, t and c

(1)
α,t ≤ 4 + 3t.

2. Gs,t : Wα,∞(s, t; IRd) → Gs,t : Wα,∞(s, t; IRd) is a linear continuous map and
for ∀λ > 1

||Gs,.(f)||α,λ;[s,t] ≤
Λα(g; [s, t])

λ1−2α
c

(2)
α,t||f ||α,λ;[s,t], (12)

c
(2)
α,t is a positive constant depending only on α, t and c

(2)
α,t = 4

1−2α

(
2
α + tα

)
.

Proof .

1. Let s ≤ r < τ ≤ t. From (10) we have

|Gr,τ (f)| ≤ Λα(g; [s, t])

∫ τ

r

(
|f(θ)|

(θ − r)α
+ α

∫ θ

r

|f(θ)− f(u)|
(θ − u)α+1

du

)
dθ (13)

and therefore

|Gr,τ (f)| ≤ Λα(g; [s, t])(2 + tα)(τ − r)1−α||f ||α,∞;[s,t]. (14)

The inequality (11) follows with c
(1)
α,t = t1−α

1−α + t+ 2 + tα ≤ 4 + 3t.

2. We have∫ τ

s

|Gs,τ (f)−Gs,r(f)|
(τ − r)1+α

dr

≤ Λα(g; [s, t])

∫ τ

s
(τ − r)−α−1 ×

(∫ τ

r

|f(θ)|
(θ − r)α

+ α

∫ θ

r

|f(θ)− f(u)|
(θ − u)α+1

dudθ

)
dr

≤ Λα(g; [s, t])

∫ τ

s
|f(θ)|

∫ θ

s
(τ − r)−α−1(θ − r)−αdrdθ+

+ Λα(g; [s, t])

∫ τ

s

∫ θ

s

|f(θ)− f(u)

(θ − u)α+1

(∫ u

s
(τ − r)−α−1dr

)
dudθ.
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From∫ θ

s
(τ − r)−α−1(θ − r)−αdr

= (τ − θ)−2α
∫ θ−s

τ−θ

0
(1 + u)−α−1u−αdu

≤ (τ − θ)−2α

(∫ 1

0
(1 + u)−α−1u−αdu+

∫ ∞
1

(1 + u)−α−1u−αdu

)
≤

(
1

1−α + 1
α

)
(τ − θ)−2α,

and for s < r < u < θ < τ∫ u

s
(s− r)−α−1dr ≤ 1

α
(τ − u)−α ≤ tα

α
(τ − s)−2α,

we have |Gs,τ (f)|+
∫ τ

s

|Gs,τ (f)−Gs,r(f)|
(τ − r)1+α

dr

≤ Λα(g; [s, t])
(

1
(1−α)α + tα

)
+

∫ τ

s
((τ − θ)−2α + (θ − s)−α)

(
|f(θ)|+

∫ θ

s

|f(θ)− f(u)

(θ − u)α+1
du

)
dθ.

Finally, the inequality (12) follows sine∫ τ

s
e−λ(τ−θ)[(τ − θ)−2α + (θ − s)−α]dθ

= 1
λ1−2α

∫ λ(τ−s)

0
e−uu−2αdu+

1

λ1−α e
−λ(τ−s)

∫ λ(τ−s)

0
euu−αdu

≤ 1
λ1−2α

4
1−2α .

2

In our article we are interested in the solution of the equation on IRd

Xi
t = Xi

0 +

∫ t

0
bi(s,Xs)ds+

n∑
k=1

∫ t

0
σi,kW (s,Xs)dW

k
s +

m∑
j=1

∫ t

0
σi,jH (s,Xs)dB

H,j
s , (15)

we consider the following assumptions on the coefficients, which are supposed to
hold for IP-almost all ω ∈ Ω: There exist some constants β, δ, 0 < β, δ ≤ 1, and for
every K ≥ 0 the following properties hold

(H1) Set α0 = min

{
1

2
, β,

δ

1 + δ

}
, there exists cK > 0, ϑ ∈ (1 − α0, 1] such that

for all t ∈ [0, T ] and all x, y ∈ IRd

|b(t, x)− b(s, y)| ≤ cK(|t− s|ϑ + |x− y|), ∀|x|, |y| ≤ K;

(H2) There exists the function b0 ∈ cN (0, T ; IRd) with N ≥ 2 and c > 0 such that

sup
s∈[0,T ]

sup
x∈IRd

|b(s, x)| ≤ c|x|+ b0, ∀(t, x) ∈ [0, T ]× IRd;

(H3) There exists c̄ ∈ IR such that for any x, y ∈ IRd

〈x− y, b(t, x)− b(s, y)〉IRd ≤ c̄(|t− s|
ϑ + |x− y|2);
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(H4) There exists 1−H < α < α0 = min

{
1

2
, β,

δ

1 + δ

}
such that σH ∈ Cα(0, T ; IRd×m);

(H5) There exists c̃0 > 0 such that for all t ∈ [0, T ]

|σH(t, x)− σH(s, y)| ≤ c̃0(|t− s|β + |x− y|), ∀x, y ∈ IRd;

(H6) There exists ĉ0 > 0, č0 > 0 and 0 < η < min

{
1

2
, β,

δ

2

}
such that

σW ∈ Cη(0, T ; IRd×n) and for all t ∈ [0, T ], sup
s∈[0,T ]

sup
x∈IRd

|σW (s, x)| ≤ č0(1 + |x|η),

|σW (t, x)− σW (s, y)| ≤ ĉ0(|t− s|η + |x− y|), ∀x, y ∈ IRd.

3 Mains results

Let us start by recalling the following result, which is a characterization for the W1HI
transportation inequality. This result has been proved in [6].

Let µ be a fixed probability measure on the metric space (E, d).

Lemma 3.1 ([6]) Let φ : IR+ → IR+ be a non-decreasing left-continuous convex
function with φ(0) = 0. The following properties are equivalent:

1. the W1HI inequality below holds:

φ(W1,d(ν, µ)) ≤ HI(ν/µ), (16)

where ν is a measure on the metric space E;

2. for every F : (E, d)→ IR bounded and Lipschitzian with ||F ||Lip ≤ 1,∫
exp(ζ(F − µ(F )))dµ ≤ exp(φ̂(ζ)), ζ > 0, (17)

where φ̂(ζ) = sup
r≥0

(rζ − φ(r)) is the semi-Legendre transformation;

3. for every F : (E, d)→ IR with ||F ||Lip ≤ 1,

IP

(
1

n

n∑
k=1

F (ξk)− µ(F ) > r

)
≤ exp(−nφ(r)), r > 0, n ≥ 1, (18)

where (ξk)k≥1 is a sequence of i.i.d.r.v. valued in E of common law µ.

In such case φ is called a W1HI-deviation function of µ.

Theorem 3.2 Let IPx be the law of solution of the stochastic differential equation
(15), and assume that the coefficients b, σH and σW satisfy the assumptions (H1)-
(H2)-(H3), (H4)-(H5) and (H6). Then there exists a positive constant K̃ depending
only on cK , c, c̄, c̃0, ĉ0, č0 and T such that the probability measure IPx satisfies the L1-
transportation inequality on the metric space C([0, T ]; IRd) equipped with the metric

dL1(γ1, γ2) =

∫ T

0
|γ1(t)− γ2(t)|dt,
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with C := CT,H =
2

K̃2
HT 2H ||σH ||2∞;[0,T ]cK̃,T + 4T 2||σW ||2∞;[0,T ] and

c
K̃,T

:= 1− exp(−K̃T ).

Now we present our mains results.

Theorem 3.3 Let Pt(x, dy) be the distribution of Xt(x) solution of the SDE (15).
Assume that (H1)-(H2)-(H3), (H4)-(H5) and (H6) are satisfies, and there exists a
positive constant K̃ depending only on cK , c, c̄, c̃0, ĉ0, č0 and T .

Suppose that there exists σ̃ ∈ Cη([0, t]) and ζ > 0 such that for all t ∈ [0, T ] and
all x ∈ IRd, |σ̃t(x)| ≤ ||σW (t, x)||0,T,η and

C(ζ) = IE
[
exp

(
ζT 2η||σW (., x(.))||20,T,η

)
− ζT 2η||σW (., x(.))||20,T,η − 1

]
<∞. (19)

The following properties hold true

1. (Xt) admits a unique invariant probability measure µ, and for all ν on IRd

W1,d(νPt, µ) ≤ exp(−K̃ηT 2ηt)W1,d(ν, µ), ∀t > 0, (20)

where (Pt) is the transition kernel semigroup of the Markov process (Xt), and
d is the Euclidean metric .

2. For each T > 0, the distribution PT (x, dy) of the solution Xt(x) satisfies the
following W1HI transportation inequality

φT (W1,d(ν, PT (x, dy))) ≤ HI(ν/PT (x, dy)), (21)

where ν is a IRd-valued probability measure and

φT (u) := sup
ζ≥0

{
uζT 2η −

∫ T

0
C(e−2K̃T 2ηtT 2ηζ)dt−

||σH(., x(.))||20,T,ηT 2−2ηζ2

4K̃
(1− e−2K̃ηT 2ηt)

}
≥ 1

K̃
sup
ζ≥0

(
uK̃ζT 2η − (C(ζT 2η) + ϑζ2T 2−2η||σH(., x(.))||20,T,η/2)

)
, u ≥ 0.

In particular, for all IRd-valued probability measure ν, set

C∗ϑ(K̃u) = sup
ζ≥0

(
uK̃ζT 2η − (C(ζT 2η) + ϑζ2T 2−2η||σH(., x(.))||20,T,η/2)

)
we have

1

K̃
C∗ϑ(K̃W1,d(ν, µ)) ≤ φ∞(W1,d(ν, µ)) ≤ HI(ν/µ). (22)

3. For each T > 0, IPx satisfies on the space C([0, T ]; IRd) of IRd-valued continu-
ous functions on [0, T ] equipped with the L1-metric

φPT (W1,dL1 (Q, IPx)) ≤ HI(Q|IPx), (23)
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for all probability measure Q on C([0, T ]; IRd), and

φPT (u) := sup
ζ≥0

{
uζT 2η −

∫ T

0
C

(
(1− e−2K̃T 2ηt)T 2ηζ/K̃

)
dt

−
||σH(., x(.))||20,T,ηT 2−2ηζ2

4

∫ T

0
[(1− e−2K̃ηT 2ηt)/K̃]2dt

}
≥ sup

ζ≥0

{
uζT 2η − T

(
C(ζT 2η/K̃) + ζ2T 2−2η||σH(., x(.))||20,T,η/4K̃2

)}
(24)

Remark 3.4 The exponential integrability condition (19) on the coefficient σW in
the SDE (15) is indispensable for the W1HI transportation inequalities in this theo-
rem.

We can explain parts 3. of Theorem 3.3 by following result which is an application
to concentration empirical measure.

Corollary 3.5 Let ψ be a (non empty) family of real Lipschitzian functions V on
IRd with ||V ||Lip ≤ κ and

YT := sup
V ∈ψ

(
1

T

∫ T

0
V (Xs(x))− µ(V )

)
.

Then, for all T, u > 0 we have

IP(YT − IEYT > u) ≤ exp[−φPT (Tu)] ≤ exp[−TZ(uK̃)], (25)

where Z(uK̃) := sup
ζ≥0

{
uK̃ζ −

(
C(ζ) + ζ2T 2−2η||σH(., x(.))||20,T,η/4

)}
.

Proof . First, we show that YT is measurable. We assume that V (0) = 0 for all
V ∈ ψ. Then we have by the Arzela-Ascoli theorem that {VB̃(0,R);V ∈ ψ} is

compact in Cb(B̃(0, R)), for any closed ball B̃(0, R) centred at 0 of radius R > 0
which, implies the measurability of YT on the event sup

s≤t
|Xs(x)| ≤ R. It remains to

let R→ +∞.
Now, we consider F and F∞ defined on C([0, T ]; IRd) by

F (γ) := sup
V ∈ψ

∣∣∣∣∣ 1T
∫ T

0
(V (γ(t))dt− µ(V ))

∣∣∣∣∣
F∞(γ) := sup

t∈[0,T ]
|γ(t)− γ(0)|.

The function F is κ/
√
T -Lipschitzian with respect to the L1-metric. Hence

||F ||Lip = sup
γ1 6=γ2

dL1(F (γ1), F (γ2))

dL1(γ1, γ2)
≤ sup

γ1 6=γ2
sup
V ∈ψ

1
T

∫ T

0
|V (γ1(t))− V (γ2(t))|dt

dL1(γ1, γ2)
≤ κ√

T
.

Thus, we can apply theorem 3.3 (part 3) and lemma 3.1 to conclude that
YT = F (X(t, x)) satisfies (25).

2
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4 Malliavin calculus

The main purpose of this section is to introduce the Malliavin calculus relating to
our case. Let Ω1 = C0([0, T ]; IRd) be the Banach space of continuous functions, null
at time 0, equipped with the supremum norm. Fix H ∈ (1

2 , 1). Let IP be the unique
probability measure on Ω1 such that the canonical process {BH

t ; t ∈ [0, T ]} is an
d-dimensional fractional Brownian motion with Hurst parameter H.

We denote by E the set of step functions on [0, T ] with values in IRd. Let H be
the Hilbert space defined as the closure of E with respect to the scalar product

〈(1[0,t1], . . . ,1[0,td]), (1[0,s1], . . . ,1[0,sd])〉H =
d∑
i=1

RH(ti, si),

where

RH(t, s) =

∫ t∧s

0
HH(t, r)KH(s, r)dr,

KH is the square integrable kernel defined by

KH(t, s) = cHs
1
2
−H

∫ t

s
(u− s)H−

3
2uH−

1
2du ∀t > s,

cH =
√

H(2H−1)

β(2−2H,H− 1
2

)
and β denotes the Beta function.

The mapping (1[0,t1], . . . ,1[0,td]) 7→
d∑
i=1

Bi
ti can be extended to an isometry be-

tween H and the Gaussian space H1(B) spanned by B. We denote this isometry by
ϕ 7→ B(ϕ).

Let K∗H : E → L2([0, T ]; IRd) be the operator defined by

K∗H((1[0,t1], . . . ,1[0,td])) = (KH(t1, .), . . . ,KH(td, .)).

For any ϕ1, ϕ2 ∈ E , 〈ϕ1, ϕ2〉H = 〈K∗Hϕ1,K
∗
Hϕ2〉L2([0,T ];IRd) = IE(B(ϕ1)B(ϕ2)) and

then K∗H provides an isometry between the Hilbert space H and a closed subspace
of L2([0, T ]; IRd).

Let KH : L2([0, T ]; IRd)→ HH := KH (L2([0, T ]; IRd)) be the operator defined by

(KHh)(t) :=

∫ t

0
KH(t, s)h(s)ds.

The space HH is the fractional version of the Cameron-Martin space. In the case
of a classical Brownian motion, KH(t, s) = 1[0,t](s), K∗H is the identity map on

L2([0, T ]; IRd), and HH is the space of absolutely continuous functions, vanishing at
zero, with a square integrable derivative.

We denote by RH = KH ◦ K∗H : H → HH the operator

RHϕ =

∫ .

0
KH(., s)(K∗Hϕ)(s)ds.

We remark that for any ϕ ∈ H, RHϕ is Hölder continuous of order H. Indeed,

(RHϕ)i(t) =

∫ T

0
(K∗H1[0,t])

i(s)(K∗Hϕ)i(s)ds = IE[Bi
tB

i(ϕ)],
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and consequently∣∣∣(RHϕ)i(t)−RHϕ)i(s)
∣∣∣ ≤ (IE(|Bi

t −Bi
s|2)

)1/2
||ϕ||H|t− s|H .

By Fubini’s theorem and if f ∈ Cλ(0, T ) with λ+H > 1, v ∈ L2(0, T ) then it holds
that ∫ T

0
f(r)d(KHv)r =

∫ T

0
f(r)

(∫ r

0
cH(r − t)H−

3
2 rH−

1
2 v(t)dt

)
dr. (26)

The integral in the left hand side of (26) is a Riemann-Stieltjes integral for Hölder
functions. At last if ϕ,ψ ∈ L2([0, T ]; IRd), then the scalar product on H has the
integral form

〈ϕ,ψ〉 = H(2H − 1)

∫ T

0

∫ T

0
|s− t|2H−2〈ϕ(s), ψ(t)〉IRddsdt,

and consequently for ϕ ∈ L2([0, T ]; IRd)it holds that

||ϕ||2H ≤ 2HT 2H−1||ϕ||L2([0,T ];IRd). (27)

Let C∞b (IRd) be the set of infinitely continuously differentiable function f : IRd → IR
such that f and all of its partial derivatives have polynomial growth. If F is a smooth
cylindrical random variable of the form F = f (B(ϕ1), . . . , B(ϕd)) for all ϕi ∈ H,
then we define the Malliavin derivative operator∇F as theH-valued random variable
defined by

〈∇F, h〉H =
d∑
i=1

∂if (B(ϕ1), . . . , B(ϕd)) 〈ϕi, h〉H

=
d

dε
f (B(ϕ1) + ε〈ϕ1, h〉H, . . . , B(ϕd) + ε〈ϕd, h〉H, ) |ε=0,

(28)

and one can easily see that B(ϕ1)(ω + εRHh) = B(ϕ1)(ω) + ε〈ϕ1, h〉H.

We recall here that Dk,p is the closure of the space of smooth and cylindrical
random variables with respect to the norm

||F ||k,p =
[
IE|F |p +

k∑
j=1

IE||∇jF ||pH⊗

] 1
p ,

andDk,ploc is the set of random variables F such that there exist a sequence {(Ωn, Fn), n ≥
1} such that Ωn ↑ Ω1 a.s., Fn ∈ Dk,p and F = Fn a.s. on Ωn.

Proof of Theorem 3.2. Assume that HI(Q|IPx) < ∞ for all probability mea-
sure Q on C([0, T ]; IRd) such that Q� IPx.

Following [5], we first consider

Q̃ =
dQ

dIPx
(X)IP.
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Here Q̃ is a probability measure on the space Ω1 and

HI(Q̃|IP) =

∫
Ω1

ln

(
dQ̃

dIP

)
dQ̃ =

∫
Ω1

ln

(
dQ

dIPx
(X)

)
dQ

dIPx
(X)dIP

=

∫
C([0,T ];IRd)

ln

(
dQ

dIPx
(X)

)
dQ

dIPx
(X)dIPx = HI(Q|IPx).

Using [2], there exists a predictable process N = (N1(t), . . . , Nm(t)), t ∈ [0, T ] such
that

HI(Q|IPx) = HI(Q̃|IP) =
1

2
IEQ̃

∫ T

0
|N(t)|2dt.

By Girsanov’s theorem, the process (B̃t)0≤t≤T defined by

B̃t = Wt −
∫ t

0
N(s)ds

is a Brownian motion under Q̃, and by the transfer principle, it is associated with
the Q̃-fractional Brownian motion (B̃H

t )0≤t≤T defined by

B̃H
t =

∫ t

0
KH(t, s)dB̃s =

∫ t

0
KH(t, s)dWs − (KHN)(t)

= BH
t − (KHN)(t).

Thus, under Q̃, X satisfies the following SDE on IRd

dXt = x+b(t,Xt)dt+σW (t,Xt)dWt+σH(t)dB̃H
t +σH(t)d(KHN)(t), x ∈ IRd. (29)

Now, let Y the Q̃-solution of of the following SDE on IRd

dYt = x+ b(t, Yt)dt+ σW (t, Yt)dWt + σH(t)dB̃H
t . (30)

Then, the law of the process (Yt)0≤t≤T is exactly IPx and (X,Y ) is a coupling of
(Q, IPx) under Q̃. Thus its follows that

[
W1,dL1 (Q, IPx)

]2
≤ IEQ̃

(
|dL1(X,Y )|2

)
= IEQ̃

([ ∫ T

0
|Xt − Yt|dt

]2)
.

Let us now estimate the distance betweenX and Y on C([0, T ]; IRm) and C([0, T ]; IRn)
with respect to dL1 . Using [12] the equations (29) and (30) can be considered as
pathwise integral equations driven by α-Hölder functions with α < H. We notice
here that the Hölder regularity is straightforward for the driving function B̃ since it
is a fractional Brownian motion under Q̃ (so has almost-surely α-Hölder trajectories

for any α < H). Moreover, since

∫ T

0
|N(s)|2ds < ∞ a.s., then KHN ∈ CH([0, T ])

a.s. (see [8], [12]).
We have

Xt−Ys =

∫ T

0

(
b(t,Xt)−b(s, Ys)

)
dt+

∫ T

0

(
σW (t,Xt)−σW (s, Ys)

)
dWt+

∫ T

0
σH(t)d(KHN)(t).
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Using the change of variables formula for α-Hölder continuous function (see [17],
Theorem 4.3.1) and the stability assumptions (H1), (H3) and (H6) we obtain

|Xt − Ys|2 = 2
d∑
i=1

m∑
j=1

∫ T

0
(Xi

t − Y i
s )σi,jH (t)d(KHN j)(t)

+ 2

∫ T

0
〈Xt − Ys, b(t,Xt)− b(s, Ys)〉IRddt

+ 2
d∑
i=1

n∑
k=1

∫ T

0
(Xi

t − Y i
s )
(
σi,kW (t,Xt)− σi,kW (s, Ys)

)
dW k

t

≤ 2
d∑
i=1

m∑
j=1

∫ T

0
(Xi

t − Y i
s )σi,jH (t)d(KHN j)(t)

+ 2
d∑
i=1

n∑
k=1

∫ T

0
(Xi

t − Y i
s )
(
σi,kW (t,Xt)− σi,kW (s, Ys)

)
dW k

t

+ 2c̄

∫ T

0
|t− s|ϑdt+ 2c̄

∫ T

0
|Xt − Ys|2dt.

(31)

From (26) and the definition of the operatorK∗H as (K∗Hϕ)(t) =

∫ T

s
ϕ(r)

∂KH

∂r
(r, s)dr,

since X−Y ∈ Cα([0, T ]; IRd) and N is a square-integrable process in IRm, we obtain∫ T

0
(Xi

t − Y i
s )σi,jH (t)d(KHN j)(t)

=

∫ T

0
(Xi

t − Y i
s )σi,jH (t)

( ∫ t

0
cH(t− θ)H−

3
2 tH−

1
2N j(θ)dθ

)
dt

=

∫ T

0

( ∫ T

θ
(Xi

t − Y i
s )σi,jH (t)cH(t− θ)H−

3
2 tH−

1
2dt
)
N j(θ)dθ

=

∫ T

0
K∗H

(
(Xi − Y i)σi,jH 1[0,T ]

)
(θ)N j(θ)dθ.

On the other hand, if σ∗ is the transpose matrix of σ, we obtain from the inequality
(27)

2
d∑
i=1

m∑
j=1

∫ T

0
(Xi

t − Y i
s )σi,jH (t)d(KHN j)(t)

= 2

∫ T

0
〈K∗H(σ∗H(X − Y )1[0,T ])(θ), N(θ)〉IRmdθ

≤ 2||K∗H(σ∗H(X − Y )1[0,T ])||L2(0,T )||N ||L2(0,T )

≤ 2||σ∗H(X − Y )1[0,T ]||H||N ||L2(0,T )

≤ 2(2H)1/2TH ||σ∗H(X − Y )1[0,T ]||L2(0,T )||N ||L2(0,T )

≤ 2(2H)1/2TH ||σH ||∞;[0,T ]||X − Y ||L2(0,T )||N ||L2(0,T )

We report this estimation in (31) and using the fact that 2εab ≤ 4ε2a2 + b2 with
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ε = (HT 2H ||σH ||2∞;[0,T ]/(2K̃))1/2 to get

|Xt − Ys|2 ≤ 2(2H)1/2TH ||σH ||∞;[0,T ]||X − Y ||L2(0,T )||N ||L2(0,T )

+ 2c̄

∫ T

0
|t− s|ϑdt+ 2c̄

∫ T

0
|Xt − Ys|2dt

+ 2T ||σW ||∞;[0,T ]||X − Y ||L2(0,T )

≤ HT 2H ||σH ||2∞;[0,T ](2/K̃)

∫ T

0
|N(t)|2dt+ 4K̃

∫ T

0
|Xt − Ys|2dt

+ 2K̃T 2 + 4T 2||σW ||2∞;[0,T ],

when c̄ = K̃.

By the Gronwall Lemma, it follows that for any t > 0

|Xt−Ys|2 ≤ HT 2H ||σH ||2∞;[0,T ](2/K̃)

∫ T

0
exp[4K̃(T−t)]|N(t)|2dt+2K̃T 2+4T 2||σW ||2∞;[0,T ].

So for the metric dL1 , we may write that

[
W1,dL1

(Q, IPx)
]2
≤ IEQ̃

∫ T

0
|Xt − Ys|2dt

≤ HT 2H ||σH ||2∞;[0,T ](2/K̃)

× IEQ̃

∫ T

0
|N(t)|2

( ∫ T

t
exp[4K̃(r − t)]dr

)
dt+ 2K̃T 2 + 4T 2||σW ||2∞;[0,T ].

Since ∫ T

t
exp[4K̃(r − t)]dr ≤ 1− e−K̃T

K̃
,

we write c
K̃,T

= 1− eK̃T , with K̃ > 0, and consequently

[
W1,dL1

(Q, IPx)
]2
≤ 4

K̃2
HT 2H ||σH ||2∞;[0,T ]cK̃,T

(1

2
IEQ̃

∫ T

0
|N(t)|2dt

)
+ +4T 2||σW ||2∞;[0,T ]

≤ 2CT,HHI(Q|IPx),

with CT,H = 2

K̃2
HT 2H ||σH ||2∞;[0,T ]cK̃,T + 4T 2||σW ||2∞;[0,T ].

2

Proof of Theorem 3.3. To prove Theorem 3.3 we will require the following two
lemmas.

Lemma 4.1 (See [10]) Let the assumptions (H1)-(H2)-(H3), (H4)-(H5) and (H6)
be satisfied. For two different initial points x, y ∈ IRd, the solutions Xt(x), Xt(y) of
the SDE (15) satisfy

IE|Xt(x)−Xt(y)|2 ≤ exp(−4K̃ηT 2ηt)|x− y|2, t > 0. (32)
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If furthermore

||σ||Lip := sup
x6=y

√
||σW (x, .)− σW (y, .)||2[0,T ];η + ||σH(x)− σH(y)||2[0,T ];η

|x− y|
<∞,

then there exist some positive constant K̂ such that for L := 4K̃ηT 2η+||σ||2Lip(4K̂2+
1)

IE sup
0≤θ≤τ

|Xt+θ(x)−Xt+θ(y)|2 ≤ 2 exp(−4K̃ηT 2ηt+ 4Lτ)|x− y|2, t, τ > 0. (33)

Lemma 4.2 Let the assumptions (H1)-(H2)-(H3), (H4)-(H5), (H6) be satisfied
and ∇sXt be defined as above. Then we have

IE
[
||∇sXt||2[0,T ];η/Fs

]
≤ ||σH(Xs)||2[0,T ];η exp

[
− 4K̃ηT 2η|t− s|

]
, ∀t, s ≥ 0. (34)

If moreover ||σ||Lip <∞, then with the same L as in Lemma (4.1), we have

IE
[

sup
θ
||∇sXθ||2[0,T ];η/Fs

]
≤ 2 exp

[
2L|t− s|

]
||σH(Xs)||2[0,T ];η, θ > 0. (35)

Proof . We explain here why the first inequality (34) holds. Let ωjH(t), ωkW (t) be
respectively the j-th and the k-th coordinate of ωH(t) and ωW (t) , which are a one-
dimensional fractional Brownian motion and standard Brownian motion. We apply
the chain rule for the Malliavin derivative operator ∇ (see [1]), we obtain for any
1 ≤ k1 ≤ m, 1 ≤ k̄1 ≤ m and t, s ≥ 0,

∇s,k1Xi
t =

d∑
l=1

∫ t

0
∂lbi(u,Xu)∇s,k1X l

udu+ σik1H (s,Xs) +
m∑
j=1

d∑
l=1

∫ t

0
∂lσ

ij
H(u,X(u))∇s,k1X l

uω
j
H(du)

+ σik1W (s,Xs) +
n∑
k=1

d∑
l=1

∫ t

0
∂lσ

ik
W (u,X(u))∇s,k1X l

uω
k
W (du).

Now we fix s and for t > 0, we set Y := ∇sXt which is an m × d matrix. We also
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denote by Zt := Y ∗t Yt a d× d matrix. Then by Itô’s formula we have

d||Yt||2H = d||∇sXt||2H

= 2
m∑

k1=1

d∑
i=1

∇s,k1Xi
td∇s,k1Xi

t +
m∑

k2,k3=1

d∑
i2,i3=1

d〈∇s,k2Xi2 ,∇s,k3Xi3〉t

= 2
m∑

k1=1

d∑
i,l=1

∇s,k1Xi
t∂lbi(t,Xt)∇s,k1X l

tdt+ 2
m∑

k1,j=1

d∑
i,l=1

∇s,k1Xi
t∂lσ

ij
H(t,Xt)∇s,k1X l

tω
j
H(dt)

+ 2
n∑

k̄1,k=1

d∑
i,l=1

∇s,k̄1X
i
t∂lσ

ik
W (t,Xt)∇s,k̄1X

l
tω

k
W (dt)

+
m∑
j=1

( m∑
k1=1

d∑
i,l=1

∇s,k1Xi
t∂lσ

ij
H(t,Xt)∇s,k1X l

t

)2
dt

+
n∑
k=1

( n∑
k̄1=1

d∑
i,l=1

∇s,k̄1X
i
t∂lσ

ik
H (t,Xt)∇s,k̄1X

l
t

)2
dt

= 2
d∑

i,l=1

zil(t)∂lbi(t,Xt)dt+
m∑
j=1

( d∑
i,l=1

zil(t)∂lσ
ij
H(t,Xt)

)2
dt

+ 2
m∑
j=1

d∑
i,l=1

zil(t)∂lσ
ij
H(t,Xt)ω

j
H(dt) +

n∑
k=1

( d∑
i,l=1

zil(t)∂lσ
ik
W (t,Xt)

)2
dt

+ 2
n∑
k=1

d∑
i,l=1

zil(t)∂lσ
ik
W (t,Xt)ω

k
W (dt).

Since Zt is a non-negative definite d×d matrix, there exists a symmetric d×d matrix
Ẑt such that Zt = Ẑ2

t . Then,

d||∇sXt||2H = 2
d∑
i=1

〈Ẑit ,∇sbẐit〉dt+
m∑
j=1

d∑
i=1

〈Ẑit ,∇sσ
j
HẐ

i
t〉2dt+

n∑
k=1

d∑
i=1

〈Ẑit ,∇sσkW Ẑit〉2dt

+ 2
m∑
j=1

d∑
i,l=1

zil(t)∂lσ
ij
H(t,Xt)ω

j
H(dt) + 2

n∑
k=1

d∑
i,l=1

zil(t)∂lσ
ik
W (t,Xt)ω

k
W (dt)

≤ −2K̃
d∑
i=1

〈Ẑit , Ẑit〉dt+Mt

= −2K̃||Ẑt||2Hdt+Mt

= −2K̃||Yt||2Hdt+Mt

≤ −4K̃ηT 2η||∇sXt||2[0,T ];ηdt+Mt,

where M is a local martingale. By applying the Gronwall’s inequality and a local-
ization procedure, we get

IE
[
||∇sXt||2[0,T ];η/Fs

]
≤ ||σH(Xs)||2[0,T ];η exp

[
− 4K̃ηT 2η|t− s|

]
.

The proof of the inequality (35) is similar to that of (33) (for further details, we
refer the reader to [10]).

2
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Proof .(Theorem 3.3)
Part 1.

Let (X0, Y0) be a couple of IRd-valued random variables of law ν1, ν2 respectively,
independent of of BH and W such that IE|X0 − Y0| = W1,d(ν1, νd). Let Xt (resp.
Yt) be the solution of (15) with initial condition X0 (resp. Y0). (Xt, Yt) constitutes
a coupling of ν1Pt and ν2Pt. Lemma (4.1) yields the estimate

IE
(
|Xt − Yt|/(X0, Y0)|

)
≤
[
IE
(
|Xt − Yt|/(X0, Y0)

)]1/2
≤ exp(−2K̃ηT 2ηt)|X0 − Y0|,

whence

W1,d(ν1Pt, ν2Pt) ≤ ||Xt − Yt||1 ≤ exp(−K̃ηT 2ηt)W1,d(ν1, ν2). (36)

According to [16], for each t > 0, ν → νPt is a contraction mapping on the complete
metric space (E,W1,d), where E = {ν; IEν |x| < ∞}. Then, by the fixed point
theorem for contraction mapping, PT admits a unique invariant probability measure
µt on E1 = {µ; IEν |x|2 <∞}. So for each s > 0

W1(µtPs, µt) = W1(µtPsPt, µtPt) ≤ exp(−K̃ηT 2ηt)W1(µtPs, µt)

which yields µtPs = µt and so µt = µs.
Now, for t > 0 fixed and any probability measure µ̃ of Pt, there exist some x0 ∈ IRd

such that 1
n

n∑
k1=1

Pnt(x0, dy)→ µ̃ weakly. But 1
n

n∑
k1=1

Pnt(x0, dy)→ µ in W1,d-metric

by (36), so µ̃ = µ. Thus µt is a unique invariant measure of Pt.
Finally, taking ν1 = ν, ν1 = ν in (36) we obtain (20).

Part 2.

First, suppose that we are given a well defined measurable function F on Ω such
that the difference operator Dt,uF (ω) := F (ω+ht,u)−F (ω), ht,x ∈ Cη plays the role
of the Malliavin calculus on the space Ω, the role of the Malliavin derivative operator
on H. Thus, with the above assumptions, the solution X(t, ω) = (Xt(x, ω))t≥0 of
the SDE (15) is a measurable mapping in to C([0, T ]; IRd). Hence on IRd, we admit
that X(t,u)(x, ω) := X(x, ω + ht,u) satisfies

X
(t,u)
s (x, ω) = Xs(x, ω), if s < t;

X
(t,u)
s (x, ω) = Xt(x, ω) + σ̃t(Xt(x, ω)) +

∫ s

t
b(X(t,u)

a (x, ω), a)da+

∫ s

t
σH(X(t,u)

a (x, ω), a)ωHda

+

∫ s

t
σW (X(t,u)

a (x, ω), a)ωWda, if s > t,

(37)

i.e. after time t, (X
(t,u)
s (x, ω))s≥t is the solution of the same SDE but with initial

value X
(t,u)
t (x, ω) = Xs(x, ω) + σ̃t(Xt(x, ω)). Now for all real Lipschitzian function

f on IRd with ||f ||Lip ≤ 1, we have

Dt,uf(XT (x)) = 0, if t > T,
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and

|Dt,uf(XT (x))| = |f(X
(t,u)
T (x))− f(XT (x))| ≤ |X(t,u)

T (x)−XT (x)|, if t < T.

Using Lemma 4.1, one easily deduces that

IE
[
|Dt,uf(XT (x))|/Ft

]
≤ IE

[
|X(t,u)

T (x)−XT (x)|/Ft
]

≤ exp
(
− 2K̃ηT 2η(T − t)

)
|X(t,u)

t (x)−Xt(x)|
= exp

(
− 2K̃ηT 2η(T − t)

)
|σ̃t(Xt)|

≤ exp
(
− 2K̃ηT 2η(T − t)

)
||σW (t,Xt)||20,T,η.

On the other hand,

|∇sf(XT (x))|2 =
d∑

k=1

(∇s,kf(XT (x)))2 ≤
d∑

k=1

d∑
i=1

(∇s,kXi
T (x))2 = ||∇sXT (x)||2[0,T ],η.

Therefore by Lemma 4.2, we have for s < T

IE
[
|∇sf(XT (x))|/Fs

]
≤ IE[||∇sXT ||[0,T ],η/Fs] ≤ e−2K̃ηT 2η(T−s)||σH(Xs(x))||[0,T ],η,

hence, from lemma 3.2 ([16]) we have the concentration inequality for t < T

IE exp[ζT 2η(f(XT (x))− PT f(x))]

≤ exp
{∫ T

0
IE
[
eζT

2ηe2K̃ηT
2η(T−t)||σW ||20,T,η − ζT 2ηe−2K̃ηT 2η(T−t)||σW ||20,T,η − 1

]
dt

+
||σH ||20,T,ηT 2−2ηζ2

4K̃
(1− e−2K̃ηT 2η+1

)
}

= exp
{∫ T

0
C(e−2K̃T 2ηtT 2ηζ)dt+

||σH(., x(.))||20,T,ηT 2−2ηζ2

4K̃
(1− e−2K̃ηT 2η+1

)
}

Thus, the transportation inequality (21) follows by Lemma 3.1 and Fenchel’s
theorem under the condition on φ. Finally, the convexity of C (with C(0) = 0)

implies C(e−2K̃T 2ηtT 2ηζ) ≤ C(T 2ηζ)e−2K̃T 2ηt. Then

φT (u) = sup
ζ≥0

{
uζT 2η −

∫ T

0
C(e−2K̃T 2ηtT 2ηζ)dt−

||σH(., x(.))||20,T,ηT 2−2ηζ2

4K̃
(1− e−2K̃ηT 2η+1

)

}

≥ sup
ζ≥0

{
uζ − C(T 2ηζ)/K̃ −

||σH(., x(.))||20,T,ηT 2−2ηζ2

4K̃

}
=

1

K̃
sup
ζ≥0

{
uK̃ζT 2η − (C(ζT 2η) + ϑζ2T 2−2η||σH(., x(.))||20,T,η/2)

}
.

Now, letting T tend to ∞, we obtain (22) for the invariant measure µ (see [5]).

Part 3.
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Let F be bounded dL1-Lipschitzian function on C([0, T ]; IRd) with ||F ||Lip ≤ 1.
Then we have

|Dt,uF (X[0,T ](x))| ≤ dL1

(
Xt,u

[0,T ](x), X[0,T ](x)
)

=

∫ T

t
|Xt,u

s (x)−Xs(x)|ds.

By (37) and Lemma (4.1) we get for t < s,

IE
(
|Dt,uF (X[0,T ])|/Ft

)
≤
∫ T

t
e−2K̃ηT 2η(s−t)|σ̃t(Xt)|dt ≤

||σW (t,Xt)||20,T,η
k̃

(1−e−2K̃ηT 2η(T−t)).

On the other hand, |∇tF (X[0,T ](x))| ≤
∫ T

t
||∇tXr(x)||0,T,ηdr, hence

IE
(
|∇tF (X[0,T ](x))|/Ft

)
≤

∫ T

t
IE[||∇tXr(x)||0,T,η/Fr]dr ≤ ||σH(Xr)||20,T,η

∫ T

t
e−2K̃ηT 2η(T−r)dr

=
||σH(Xr)||20,T,η

K̃
(1− e−2K̃ηT 2η(T−r)) ≤

||σH(Xr)||20,T,η
K̃

by (34).

Using Lemma 3.2 of [16] we obtain for all ζ ≥ 0

IEeζ(F (X[0,T ](x))−IEF (X[0,T ](x))) ≤

exp

(∫ T

0
C((1− e−2K̃T 2ηt)T 2ηζ/K̃)dt+ ||σH ||20,T,η

∫ T

0
[(1− e−2K̃ηT 2ηt)/K̃]2dt

)
.

By Lemma 3.1 again, the function

IR+ 3 u→ sup

{
uζT 2η−

∫ T

0
C(e−2K̃T 2ηtT 2ηζ)dt−

||σH ||20,T,ηζ2T 2−2η

4

∫ T

0

[
(1− e−2k̃ηT 2ηt)

K̃

]2

dt

}
= φPT (u)

is a W1HI-deviation function for IPx,[0,T ] w.r.t the dL1-metric, which is exactly (23).

Finally, for the lower bound in (24) we use the fact that (1 − e−2K̃T 2ηt)/K̃ ≤
1/K̃ and C(ζ) is increasing in ζ, which implies that C

[
((1− e−2K̃T 2ηt)/K̃)ζT 2η

]
≤

C
[
(ζT 2η)/K̃

]
and then

∫ T

0
C[((1−e−2K̃T 2ηt)/K̃)ζT 2η] ≤ TC[(ζT 2η)/K̃]. Therefore

φPT (u) ≥ sup
ζ≥0

(
uζT 2η − T

(
C(ζT 2η/K̃) + ζ2T 2−2η||σH(., x(.))||20,T,η/4K̃2

))
.

2
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