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Abstract: By using some smoothing and perturbed techniques, in this paper,
we develop a smoothing spectral projected gradient algorithm (SSPG) to solve
the system of constrained semismooth equations. The global convergence of the
proposed algorithm is established based on an inexact nonmonotone line search.
As an application, we consider a smoothing reformulation of KKT systems of
the semi-infinite programming (SIP) problem and present the numerical tests to
show the efficiency of the SSPG algorithm.
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1. Introduction

In this paper, we consider the systems of bound constrained nonlinear equations:

F (x) = 0, s.t. x ∈ Ω = {l ≤ x ≤ u}. (1)

where l = (l1, l2, · · · , ln)T , u = (u1, u2, · · · , un)
T with −∞ < li < ui < +∞ for

i = 1, 2, · · · , n, F : Rn → Rn is defined on an open set U containing the feasible
set Ω and is locally Lipschitz continuous.

Systems of nonlinear equations arise in various applications, for instance, some
variational inequality and mixed complementarity problems can be converted
into the form (1), see for examples [11, 23]. Moreover, the equations with convex
constraints come from the problems such as the power flow equations [6,25],
chemical equilibrium systems [14,15] and economic equilibrium problems [5].
These comments suggest that the numerical solution of the nonlinear systems of
equations with constraints deserve research and experimentation.

The common methods for (1) are optimization-based ones in which the global
minimum is zero and the minimizer is the solution of (1). The typical optimiza-
tion problem in these methods is of the form:

min f(x) = 1
2∥F (x)∥2

s.t. x ∈ Ω.

Based on this reformulation, various numerical methods have been developed
in recent years. Among others, the well known methods include Newton type
methods, trust region type methods and projection type methods [2, 3, 12, 14,
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15, 18, 19, 20]. Under some conditions, the methods mentioned above enjoy
global and even fast local convergence properties.

In 1988, Barzilai and Borwein [1] introduced a spectral gradient method for
unconstrained optimization. Since it requires little computational work, it has
received successful applications in unconstrained and constrained optimizations
[4, 5, 10] as well as nonlinear equations [6, 8, 9] with smooth mapping F (x).
Preliminary numerical tests show that the spectral method works quite well
even for large scale problems.

We note that although the spectral methods are very success in smooth prob-
lems, there is few literatures available for the nonsmooth problems. Under the
monotonity assumption of F (x), Zhang and Zhou [22] introduced some interest-
ing modifications of the spectral methods in order to efficiently handle uncon-
strained nonsmooth equations. Later, the method was extended to monotone
nonsmooth equation with bound constraints [21].

In this paper, we consider extending the spectral projected gradient method
to deal with the semismooth equations (1). By combine the smoothing and per-
turbed technique, we design a smoothing perturbed spectral projected gradient
method to solve problem (1). Based on the nonmonotone line search in [24],
we establish the global convergence of the proposed method. As an application,
we consider a smoothing reformulation of KKT systems of the semi-infinite pro-
gramming (SIP) problem and present the numerical tests to show the efficiency
of the proposed algorithm.

The paper is organized as follows. In Section 2, we give some mathematical
preliminaries and describe the smoothing perturbed spectral projected gradient
algorithm. In Section 3, we analyze the convergence of the proposed method. In
Section 4, we consider the smoothing reformulation of the KKT system of semi-
infinite programming, and give the numerical examples to test the efficiency of
the algorithm. Some comments are made in the last section.

2. Preliminaries and Algorithm

In this section, we first recall some concepts and properties related to semis-
mooth functions and smoothing functions which will be used later, the detailed
description can be seen in [14]. The definition of semismoothness is as follows:

Definition 2.1 Let H : Rn → Rn be a locally Lipschitz function. We say that
H is semismooth at x if

(i) H is directionally differentiable at x and
(ii) for any h → 0 and V ∈ ∂H(x+ h)

H(x+ h)−H(x)− V h = o(∥h∥).

where ∂H(·) denotes the generalized Jacobian in the sense of Clarke [7].

To describe our algorithm, we introduce the definition of smoothing function
as follows:

Definition 2.2 Let F be a Lipschitz continuous function in Rn, D ⊂ Rn be a
compact set.
(i) We call G(t, x) : R × Rn → Rn a smoothing approximation function of
F if it satisfies: (a) G(0, x) = F (x); (b) for any t > 0, G(t, x) being smooth
(continuously differentiable) with respect to the second variable x ∈ D; (c)

lim
t↓0,z→x

G(t, z) = F (x).
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(ii) G(t, x) is called a regular smoothing function of F if for any t > 0, G(t, x)
is smooth and for any compact set D ⊆ Rn and t > 0, there exists a constant
C > 0 such that for any x ∈ D and t ∈ (0, t]

∥G(t;x)− F (x)∥ ≤ Ct.

As suggested in [18], in this paper, we will view t as a variable. Based on the
smoothing idea, we consider the corresponding equivalent smoothing systems of
problem (1) as follows:

Φ(t, x) =

(
t

G(t, x)

)
= 0, (2)

l ≤ x ≤ u.

here G(t, x) is a smoothing approximation of F(x).
Denote w = (t, x) and a merit function of (2) as

Ψ(w) =
1

2
∥Φ(t, x)∥2.

The equivalent optimization is defined as:

minΨ(w), s.t. x ∈ Ω. (3)

According to the definition of Φ(t, x), it is easy to show that Ψ(w) is contin-
uously differentiable for t > 0 and

∇Ψ(w) = ∇Φ(w)Φ(w),

where

∇Φ(w) =

(
1 0

∂tG(t;x) ∂xG(t;x)

)
,

Define W = R× Ω and

dG(1) = PW (w − γ∇Ψ(w))− w =

(
−γ∇tΨ(w)

PX(x− γ∇xΨ(w))− x

)
, (4)

where γ > 0 is a constant, PW is an orthogonal projection operator onto W.
Then a stationary point of (3) is characterized by

∥dG(1)∥ = 0.

In what follows, we define our perturbed projected gradient direction: Let
α ∈ (0, 1) be a constant and β0 = αmin{1, ∥d0G(1)∥2}. for k = 1, 2, · · · , we
define a sequence {βk} by

βk =

{
βk−1, if αmin{1, ∥d0G(1)∥2} > βk−1,

αmin{1, ∥d0G(1)∥2}, otherwise.

For λ > 0, and t > 0, w = (t, 0), at current iteration point wk = (tk;xk)
satisfying tk > 0, we define the perturbed projected gradient direction by

dkG(λ) = PW (wk − λ∇Ψ(wk) + βkw)− wk. (5)

To state the algorithm better, we first introduce the spectral gradient method
[1] for unconstrained minimization problem:

min f(x), x ∈ Rn. (6)

where f : Rn → R is continuously differentiable and its gradient ∇f(x) is
available. Spectral gradient method is defined by

xk+1 = xk − λk∇f(xk), (7)
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where the scalar λk is given by

λk =
⟨sk−1, sk−1⟩
⟨sk−1, uk−1⟩

, (8)

where sk−1 = xk − xk−1, uk−1 = ∇f(xk)−∇f(xk−1).

In what follows, we describe the smoothing spectral projected gradient (SSPG)
algorithm as follows:

Algorithm 2.1

Step 0. Given some constants 0 < ηmin < ηmax < 1, σ, ρ ∈ (0, 1), δ > 0,
α > 0, t̄ > 0 with αt̄ < 1, 0 < ε < 1, let t0 = t̄, w0 = (t0, x0), α0 = 1, choose a
positive sequence {εk} satisfying

∞∑
k=1

εk < +∞. (9)

Set C0 = Ψ(w0), Q0 = 1, k = 0.

Step 1. Compute dkG(1), If ∥d0G(1)∥ = 0, stop.

Step 2. If αk > 1/ε or αk < ε, set αk = δ.
Step 3. Set λk = 1/αk.

Step 4. (Nonmonotone Line search)

Step 4.1. Let γk = {1, tk
|tk+∂tG(wk)G(wk)| ,

η∥Φ(wk)∥
∥∇Ψ(wk)∥ ,

η∥Ψ(wk)∥
∥∇Ψ(wk)∥2 } and compute

dk = dkG(λk), set τk = 1.

Step 4.2. Set w+ = wk + τkdk.
Step 4.3. If

Ψ(wk + τdk) ≤ Ck + εk + στ∇Ψ(wk)
T dk, (10)

does not hold, then set τk := ρτk, go to Step 4.2, otherwise, go to Step 5.

Step 5. Compute sk = wk+1 − wk, yk = ∇Ψ(wk+1)−∇Ψ(wk) and

αk+1 =
⟨sk, yk⟩
⟨sk, sk⟩

.

Choose ηk ∈ [ηmin, ηmax] and compute

Qk+1 = ηkQk + 1, Ck+1 =
ηkQk(Ck + εk) + Ψ(wk+1)

Qk+1
. (11)

Set k := k + 1, and go to Step 1.

The following lemma plays an important role in our convergence analysis, the
proof can be found in [18].

Lemma 2.1 Assume wk is not a stationary point of (3), tk > 0 and dkG(λ) is
generated by algorithm 2.1, then we have:

∇Ψ(wk)
T dkG(λk) ≤ −λk

γk
(1− αt)∥dkG(1)∥. (12)

3. Global convergence

In this section, we analyze the global convergence of Algorithm 2.1. The proof
of the following lemma can be obtained similar to Lemma 2.2 in [6].
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Lemma 3.1 Assume {wk} is generated by Algorithm 2.1, then we have

Ψk ≤ Ck ≤ Ck−1 + εk−1. (13)

Based on Lemma 3.1, we can easily to obtain that the algorithm is well defined
under certain conditions.

Lemma 3.2 Let {wk} be generated by Algorithm 2.1 and satisfy tk > 0, then
the algorithm is well defined.

Define the level set L = {w|Ψ(w) ≤ Ψ(w0) + ε}. Then according to Lemma 3.1,
we know that the sequence {wk} ⊆ L. In what follows, we assume the level set
is a compact set.

The following lemma shows that if the algorithm does not stop at a stationary
point of (3) in any finite step, then we have tk > 0 for every k certain conditions.
This result implies that Φ(w) and Ψ(w) are continuously differentiable at any
point generated by Algorithm 2.1.

Lemma 3.3 Let wk = (tk, xk) be generated by Algorithm 2.1, if wk is not a
stationary point of (3) and λk < 1, then for any k ≥ 0, we have

tk ≥ βkt > 0. (14)

Proof. We prove the proposition by induction.

For k = 0, from Algorithm 2.1 and the choice of β0, it holds

t0 ≥ β0t > 0.

Suppose that (14) holds for k, we need to prove the conclusion for k + 1.
By the computation of dkG(λk) and γk, we have

(dkG(λk))t = λk[−γk(tk + ∂tG
T
kGk) + βkt] ≥ −λktk + λkβkt.

by the definition of βk, it is easy to deduce that the sequence {βk} is monotone,
hence we have

tk+1 − βk+1t = tk + (dkG(λk))t − βk+1t

= ≥ (1− λk)tk + λkβkt− βk+1t

≥ (1− λk)tk + λkβkt− βkt

= (1− λk)(tk − βkt) > 0.

Therefore we have the desired result (14).

Now, we give the global convergence theorem as follows:

Theorem 3.1 Let {wk} be an infinite sequence generated by Algorithm 2.1,
then any limit point point of {wk} is a stationary point of problem (3).

Proof. Let w∗ be an accumulation point of {wk}, and relabel {wk} a subse-
quence converging to w∗. By the Step 4 in Algorithm 2.1, we have

Ψ(wk+1) ≤ Ck + εk + στk∇Ψ(wk)
T dk.

By Lemma 2.1 and the computation of γk and λk, we have

Ψ(wk+1) ≤ Ck+ εk−
λk

γk
(1−αt)στk∥dkG(1)∥2 ≤ Ck+ εk− ε(1−αt)στk∥dkG(1)∥2.

From the definition of Ck, we have
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Ck+1 =
ηkQk(Ck + εk) + Ψk+1

Qk+1

≤ (ηkQk+1 + 1)(Ck + εk)− ε(1− αt)στk∥dkG(1)∥2

Qk+1

≤ Ck + εk − ε(1− αt)στk∥dkG(1)∥2

Qk+1

By the assumption and (9), we have

∞∑
k=0

ε(1− αt)στk∥dkG(1)∥2

Qk+1
< +∞. (15)

Since ηmax < 1, we have

Qk+1 = 1 +
k∑

j=0

j∏
i=0

ηk−i ≤ 1 +
k∑

j=0

ηj+1
max

≤
∞∑
j=0

ηjmax =
1

1− ηmax
.

Hence by (15), we have

+∞ >
∞∑
k=0

ε(1− αt)στk∥dkG(1)∥2

Qk+1
>

1

1− ηmax

∞∑
k=0

ε(1− αt)στk∥dkG(1)∥2.

Therefore, we obtain

lim
k→∞

∥dkG(1)∥ = 0 or lim inf
k→∞

τk = 0.

If limk→∞ ∥dkG(1)∥ = 0, then we have the desired result.
If lim infk→∞ τk = 0, we assume that there exists an infinite sequence {τk}K
such that

lim
k∈K,k→∞

τk = 0.

In this case, from Step 4 of the Algorithm 2.1, there exists an index k large
enough such that for all k ≥ k, τk/ρ fails to satisfy the condition (10), which
means

Ψ(wk + τk/ρdk) > Ck + εk + στk/ρ∇Ψ(wk)
T dk > Ψk + στk/ρ∇Ψ(wk)

T dk,

hence

Ψ(wk + τk/ρdk)−Ψk

τk/ρ
> σ∇Ψ(wk)

T dk. (16)

By the mean value theorem, it can be written as

∇Ψ(wk + θkdk)
T dk > σ∇Ψ(wk)

T dk,

where θk > 0 is a scalar in the interval [0, τk/ρ], that goes to zero as k ∈ K goes
to infinity. Taking a convenient subsequence such that dk/∥dk∥ is convergent
to d∗, and taking limits in (16) we deduce that (1 − σ)∇Ψ(w∗)T d∗ ≥ 0. Since
(1 − σ) > 0 and ∇Ψ(wk)

T dk < 0 for all k, then ∇Ψ(w∗)T d∗ = 0, which means
the desired result.

4. Numerical tests
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This section makes some numerical examples to illustrate the computational
behavior of Algorithm 2.1. We consider the KKT system of a semi-infinite
programming (denoted by SIP). The SIP problem is to find x ∈ Rn such that

min f(x) : x ∈ X.

where X = {x ∈ Rn : g(x, v) ≤ 0, }, ∀v ∈ V, V = [a, b] ⊂ R2 is a nonempty
compact subset, f : Rn → R; g : Rn → R are twice continuously differentiable
functions.
Let

V (x) = {v ∈ V : g(x, v) = 0}
For the sake of completeness, we give the KKT system of the SIP and its cor-
responding smoothing reformulation, the detailed discussion can be found in
[17][19]. under certain conditions, there exists p positive numbers µi such that

∇f(x) +

p∑
i=1

µi∇xg(x, vi),

where vi ∈ V (x) for i = 1, 2, · · · p and p ≤ n. Hence the KKT systems of SIP is
as follows:

∇f(x) +
∑p

i=1 µi∇xg(x, vi)

g(x, v) ≤ 0, v ∈ V,

µi > 0, g(x, vi) = 0, i = 1, 2, · · · , p,

ϕ(x, vi) = 0, i = 1, 2, · · · , p.

(17)

where ϕ(x, v) = v−P (a, b, v+∇vg(x, v)), and the function P is the mid-function
defined as

(P (a, b, w))i =


ai, if wi < ai,

wi, if ai ≤ wi ≤ bi,

bi, if bi < wi.

In the KKT system (17), x is called a stationary point of the SIP problem. We
use a infinite set VN to approximate V with

VN = {vi = a+
i(b− a)

N
: i = 1, 2, · · · , N}.

Denote
GN (x) = max

v∈VN

g(x, v).

Then the approximate system of (17) can be written as

H(z) = 0, µ ≥ 0, y ≥ 0,

where z = (x, µ, v, y) ∈ Rn ×Rp ×Rp ×R, and

H(z) =



∇f(x) +
∑p

i=1 µi∇xg(x, vi)

GN (x) + y

g(x, vi), (i = 1, 2, · · · , p),

ϕ(x, vi), (i = 1, 2, · · · , p).


(18)
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GN (x) and ϕ(x; v) are nonsmooth, but semismooth. In order to use Algorithm
2.1 for solving (18), we choose the following smoothing functions of GN (x) and
ϕ(x; v), see [19].

Gs(t, x) =

 tln(
∑N

i=1 e
gi(x)/t), if t > 0

G(x), if t = 0.

ϕs(t, x, v) =


v − [

a+
√

(a−v−(∇vg(x,v)))2+4t2

2 +
b+
√

(b−v−(∇vg(x,v)))2+4t2

2 ], if t > 0

v −mid(a, b, v +∇vg(x, v)), if t = 0.

Based on the above reformulation, we can use Algorithm 2.1 to solve the ap-
proximation KKT systems of SIP.
We implemented Algorithm 2.1 in Matlab 7.5, where the parameters used in
Algorithm 2.1 are set as follows:

σ = 0.001, ρ = 0.5, δ = 2, α = 0.5, η = 0.9, t = 0.9, ε = 10−5, εk =
1

(k + 1)2
.

The starting point u0 and y0 for all examples are set t0 = t, u0 = 0.05e(p), y0 =
0.5, where e(p) represents p − order unity vector. To keep tk > 0, we set
λk := 1/λk when λk > 1. The nonmonotone parameter ηk is set as 0.55, 0.75
and 0.8 respectively. The test problems are drawn from [15]:

Problem 1 .

f(x) = x2
1 + x2

2 + x2
3, g(x, v) = x1 + x2e

x3v + e2v − 2sin(4v),

V = [0, 1], p = 1, (x0, v0) = (1, 1, 1, 1).

Problem 2.

f(x) =
1

3
x2
1 +

1

2
x1 + x2

2, g(x, v) = (1− x2
1v

2)2 − x1v
2 − x2

2 + x2,

V = [−1, 1], p = 1, (x0, v0) = (−1,−1, 1).

Problem 3.

f(x) = x2
1 + (x2 − 3)2, g(x, v) = x2 − 2 + x1sin(v/x2 − 0.5),

V = [0, 10], p = 1, (x0, v0) = (1,−1, 1)

Problem 4.

f(x) =
1

2
xTx, g(x, v) = 3 + 4.5sin(4.7π(v − 1.23)/8)− Σn

i=1xiv
i−1,

V = [0, 1], n = 10, p = 1, (x0, v0) = (1, 1, · · · , 1.)
The computed results are reported in Table 1, where p is the guess of number
in active set at solution point; NH and NdH represent the computing number
of function and its derivative defined in constrained equations; Ndis indicates
the dividing number for region V ; CPU is the total cost time (in second) for
solving SIP problems; dG(wk) and f(xk) indicate the final values of the projected
gradient and the objective function in SIP. The results reported in Table 1 shows
that Algorithm 2.1 performs well for these test problems.

5. Final remarks

In this paper, we extend the spectral projected gradient method to nonsmooth
equation and establish the global convergence. Compared with the existing
methods such as semismooth and smoothing projected Newton methods, our
method does not need to solve a system of linear equations at each iteration.
The numerical tests for the KKT systems of the semi-infinite programming show
the efficiency of the proposed method.
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Table 1. Tests results

Problem p NG NdG Ndis CPU ∥dG(wk)∥ f(xk)
1: ηk = 0.55 1 12 12 1280 6.9595 2.020e-11 0
ηk = 0.75 1 10 10 1280 5.1045 1.077e-11 0
ηk = 0.8 1 8 8 1280 4.3547 6.359.0e-13 1.4634
2: ηk = 0.55 1 39 39 1280 24.3748 1.048e-14 0.0611
ηk = 0.75 1 28 28 1280 17.0849 1.388e-17 0.0674
ηk = 0.8 1 25 25 1280 15.1721 2.289e-42 0.6687
3: ηk = 0.55 1 5 0 1280 107.7571 8.863e-6 3.5073
ηk = 0.75 1 4 0 1280 105.4672 3.316e-6 3.4084
ηk = 0.8 1 5 0 1280 111.4100 1.106e-10 3.6524
4: ηk = 0.55 1 41 44 1280 101.2510 1.757e-6 5
ηk = 0.75 1 42 42 1280 101.3971 2.389e-6 5
ηk = 0.8 1 35 41 1280 102.4249 2.497e-6 5
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