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1 Introduction

The nonlinear complementarity problem (NCP) is to determine a vector x ∈ Rn such that

x ≥ 0, F (x) ≥ 0 and xTF (x) = 0, (1.1)

where F is a nonlinear mapping from Rn into itself. Throughout this paper we assume that F

is continuously differentiable and monotone with respect to Rn
+ , and the solution set of (1.1),

denoted by Ω∗, is nonempty.

Complementarity problems introduced by Lemke [17] and Cottle Dantzig [8] in the early

1960’s. These problems are being used as a powerful tool to study a wide class of problems

with applications in industry, engineering, optimization, mathematical and physical sciences in

a unified framework. It have been shown that the linear and nonlinear problems in operations

can be formulated as complementarity problems, which can be solved more effectively. There

are several methods for solving the complementarity problems, which can be divided into two

categories namely direct and indirect(iterative) methods. Direct methods are those based on

the process of pivoting, which are mainly due to Lemke [17] and Cottle and Dantzig [8]. The

practicality of the direct methods is restricted mainly due to the problem size limitations in

computer implementations. Also these methods can not be extended for nonlinear comple-

mentarity problems. These facts and reasons have stimulated much investigation of alternative

approaches for solving the nonlinear complementarity problems. In this paper, we are only

concerned with the iterative methods of proximal point methods. These iterative methods

have emerged in the last decades as a powerful technique for solving the nonlinear complemen-

tarity problems effectively. These methods are user friendly and can be implemented easily. It

is well-known that the complementarity problems can be formulated as a variational inclusion

involving the sum of the two monotone operator. This equivalent formulation has played an

important part in suggesting and developing proximal point algorithms for solving the com-

plementarity problems. Rockafellar [22, 23] gave the approximate proximal point algorithm,

which is more practical and attractive than the exact one. Given βk ≥ β > 0, the inexact

version of the proximal point algorithm generates iteratively sequence {xk} satisfying

ξk ∈ βkT (x) +∇xq(x, x
k), (1.2)
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where ξk ∈ Rn is the error term,

q(x, xk) =
1

2
∥x− xk∥2 (1.3)

and T (x) = F (x) +NRn
+
(x), where NRn

+
(.) is the normal cone operator to Rn

+ defined by

NRn
+
(x) :=

 {y : yT (v − x) ≤ 0, ∀v ∈ Rn
+}, if x ∈ Rn

+;

∅, otherwise.

Proposition 1.1[10, 21] Let K ⊂ Rn be nonempty closed and convex and F : K −→ Rn

continuous. The following properties hold:

(a) NK is maximal monotone.

(b) If F is monotone then T (x) = F (x) +NK(x) is maximal monotone.

(c) NK(x) = {0} when K = Rn or when x ∈ intK, the interior of K.

Several works [6, 9, 14, 16, 24, 26] have been concentrated on the generalization of the

proximal algorithm replacing the usual quadratic term by some nonlinear functionals r(x, xk).

Auslender et al. [2, 3] proposed a new type of proximal interior method through replacing the

quadratic function (1.3) by dϕ(x, x
k) which could be defined as

dϕ(x, y) =
n∑

j=1

y2jϕ(y
−1
j xj)

where

ϕ(t) =


1
2(t− 1)2 + µ(t− log t− 1), if t > 0;

+∞, otherwise.

and µ ∈ (0, 1). Then the problem (1.2) becomes for given xk ∈ Rn
++ and βk ≥ β > 0, the new

iterate xk+1 is solution of the following set-valued equation:

ξk ∈ βkT (x) +∇xQ(x, xk), (1.4)

where

Q(x, xk) =


1
2∥x− xk∥2 + µ

n∑
j=1

(
(xkj )

2 log
xk
j

xj
+ xjx

k
j − (xkj )

2
)
, if x ∈ Rn

++;

+∞, otherwise.

(1.5)
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Auslender et al. [2] proved that the sequence {xk} generated by (1.2) converges under the

following conditions:

+∞∑
k=1

∥ξk∥ < +∞ and
+∞∑
k=1

⟨ξk, xk⟩ exists and is finite. (1.6)

Note that (1.6) implies that (1.2) should be solved exactly. To release this difficulty

Burachik and Svaiter [7] presented a meaningful modification of the inexact LQP method with

attractive characteristic that the relative error ∥ξk∥
∥xk−xk+1∥ can be fixed on a constant.

It is easy to see that

∇xQ(x, xk) = x− (1− µ)xk − µX2
kx

−1,

where Xk = diag(xk1, x
k
2, . . . , x

k
n), x

−1 is an n-vector whose j-th element is 1/xj and µ ∈ (0, 1) is

a given constant. From Proposition 1.1(c), we have T (x) = F (x) then the problem (1.4)-(1.5)

is equivalent to the following systems of nonlinear equations

βkF (x) + x− (1− µ)xk − µX2
kx

−1 = ξk. (1.7)

Recently, He et al. [15] , Xu et al. [27] and Bnouhachem et al. [5] introduced some LQP

based prediction-correction methods and make the LQP method more practical. Each iteration

of the the above methods contains a prediction and a correction, the predictor is obtained via

solving the nonlinear equation system (1.7) under significantly relaxed accuracy criterion and

the new iterate is computed directly by an explicit formula derived from the original LQP

method for [15], while the new iterate is computed by using the projection operator for [27] and

[5]. Inspired and motivated by the above research, we propose and analyze a new LQP method

for solving nonlinear complementarity problems (1.1) by performing an additional projection

step at each iteration and another optimal step length is employed to reach substantial progress

in each iteration, which provides a significant refinement and improvement of the methods in

[27] and in [5]. Some preliminary computational results are given to illustrate the efficiency of

the proposed method.

2 Preliminaries

We list some important results which will be required in our following analysis.
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First, we denote PRn
+
(.) as the projection under the Euclidean norm, i.e.,

PRn
+
(z) = min{∥z − x∥| x ∈ Rn

+}.

A basic property of the mapping of projection is

(y − PRn
+
(y))T (PRn

+
(y)− x) ≥ 0, ∀y ∈ Rn, ∀x ∈ Rn

+. (2.1)

From (2.1), it is easy to verify that

∥PRn
+
(v)− u∥2 ≤ ∥v − u∥2 − ∥v − PRn

+
(v)∥2, ∀v ∈ Rn, u ∈ Rn

+. (2.2)

Definition 2.1 The operator F : Rn → Rn is said to be monotone, if

∀u, v ∈ Rn, (v − u)T (F (v)− F (u)) ≥ 0.

The following lemma is similar to Lemma 2 in [2]. Hence the proof will be omitted.

Lemma 2.1 [15, 27] For given xk > 0 and q ∈ Rn, let x be the positive solution of the

following equation:

q + x− (1− µ)xk − µX2
kx

−1 = 0, (2.3)

then for any y ≥ 0 we have

⟨y − x, q⟩ ≥ 1+µ
2 (∥x− y∥2 − ∥xk − y∥2) + 1−µ

2 ∥xk − x∥2. (2.4)

3 The proposed method

In this section, we propose and analyze the new modified LQP method for solving nonlinear

complementarity problems (1.1). For σ ∈ (0, 1),m1 ≥ 1 and m2 ≥ 2, for given xk > 0 and

βk > 0, each iteration of the proposed method consists of three steps, the first step offers x̃k,

the second step makes x̄k and the third step produces the new iterate xk+1.

First step: Find an approximate solution x̃k of (1.7), such that

0 ≈ βkF (x̃k) + x̃k − (1− µ)xk − µX2
k(x̃

k)−1 = ξk (3.1)

and ξk satisfies

∥ξk∥ ≤ η∥xk − x̃k∥, 0 < µ, η < 1. (3.2)
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Second step: x̄k(αk) is defined by

x̄k(αk) = PRn
+

[
xk − αkβk

1 + µ
F (x̃k)

]
, (3.3)

where

αk = max
α

{α∗
k1 ≤ α ≤ m2α

∗
k1 | Ψ(α) ≥ σΨ(α∗

k1)}, (3.4)

α∗
k1 = argmax

α
{Ψ(α) | 0 < α ≤ m1α

∗
k2}. Ψ(α) will be defined by (3.15) (3.5)

and

α∗
k2 = argmax

α
{Φ(α)| α > 0}. Φ(α) will be defined by (3.16) (3.6)

Third step: For τ > 0 and 0 < ρ < 1, the new iterate xk+1(τ) is defined by

xk+1(τ) = ρxk + (1− ρ)PRn
+

[
xk − τ(xk − x̄k(αk))

]
. (3.7)

How to choose values of τ to ensure that xk+1(τ) is closer to the solution set than xk. For

this purpose, we define

Υ(τ) = ∥xk − x∗∥2 − ∥xk+1(τ)− x∗∥2. (3.8)

Theorem 3.1 Let x∗ ∈ Ω∗, then we have

Υ(τ) ≥ (1− ρ)
(
τ{∥xk − x̄k(αk)∥2 +Θ(αk)} − τ2∥xk − x̄k(αk)∥2

)
, (3.9)

where

Θ(αk) = ∥xk − x∗∥2 − ∥x̄k(αk)− x∗∥2. (3.10)

Proof: Since x∗ ∈ Ω∗ ⊂ Rn
+ and let xk∗(τ) = PRn

+

[
xk − τ(xk − x̄k(αk))

]
it follows from (2.2)

that

∥xk∗(τ)− x∗∥2 ≤ ∥xk − τ(xk − x̄k(αk))− x∗∥2 − ∥xk − τ(xk − x̄k(αk))− xk∗(τ)∥2. (3.11)

On the other hand, we have

∥xk+1(τ)− x∗∥2 = ∥ρ(xk − x∗) + (1− ρ)(xk∗(τ)− x∗)∥2

= ρ2∥xk − x∗∥2 + (1− ρ)2∥xk∗(τ)− x∗∥2 + 2ρ(1− ρ)(xk − x∗)T (xk∗(τ)− x∗).
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Using the following identity

2(a+ b)T b = ∥a+ b∥2 − ∥a∥2 + ∥b∥2

for a = xk − xk∗(τ), b = xk∗(τ)− x∗ and (3.11), and using 0 < ρ < 1, we obtain

∥xk+1(τ)− x∗∥2 = ρ2∥xk − x∗∥2 + (1− ρ)2∥xk∗(τ)− x∗∥2 + ρ(1− ρ){∥xk − x∗∥2

−∥xk − xk∗(τ)∥2 + ∥xk∗(τ)− x∗∥2}

= ρ∥xk − x∗∥2 + (1− ρ)∥xk∗(τ)− x∗∥2 − ρ(1− ρ)∥xk − xk∗(τ)∥2

≤ ρ∥xk − x∗∥2 + (1− ρ)∥xk − τ(xk − x̄k(αk))− x∗∥2

−(1− ρ)∥xk − τ(xk − x̄k(αk))− xk∗(τ)∥2 − ρ(1− ρ)∥xk − xk∗(τ)∥2.

≤ ∥xk − x∗∥2 − (1− ρ){∥xk − xk∗(τ)− τ(xk − x̄k(αk))∥2 + ρ∥xk − xk∗(τ)∥2

−τ2∥xk − x̄k(αk)∥2 + 2τ(xk − x∗)T (xk − x̄k(αk))}

≤ ∥xk − x∗∥2 − (1− ρ){2τ(xk − x∗)T (xk − x̄k(αk))− τ2∥xk − x̄k(αk)∥2}.

Using the definition of Υ(τ), we get

Υ(τ) ≥ (1− ρ){2τ(xk − x∗)T (xk − x̄k(αk))− τ2∥xk − x̄k(αk)∥2}

= (1− ρ)(2τ{∥xk − x̄k(αk)∥2 − (x∗ − x̄k(αk))
T (xk − x̄k(αk))}

−τ2∥xk − x̄k(αk)∥2). (3.12)

Using the following identity

(x∗ − x̄k(αk))
T (xk − x̄k(αk)) =

1

2

(
∥x̄k(αk)− x∗∥2 − ∥xk − x∗∥2

)
+

1

2
∥xk − x̄k(αk)∥2,

implies

∥xk − x̄k(αk)∥2 − 2(x∗ − x̄k(αk))
T (xk − x̄k(αk)) = ∥xk − x∗∥2 − ∥x̄k(αk)− x∗∥2. (3.13)

Substituting (3.13) in (3.12) and using the notation of Θ(αk), we get the assertion of this

theorem. ⊓⊔

The following results will be used in the consequent analysis.

Theorem 3.2 [5] Let x∗ ∈ Ω∗ and Θ(αk) be defined by (3.10) respectively, then we have

Θ(αk) ≥ Ψ(αk) ≥ Φ(αk) (3.14)
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where

Ψ(αk) = ∥xk − x̄k(αk)∥2 +
2αkβk
1 + µ

(x̄k(αk)− x̃k)TF (x̃k). (3.15)

Φ(αk) = 2αkφk − α2
k∥dk∥2. (3.16)

φk =
1

1 + µ
∥xk − x̃k∥2 + 1

1 + µ
(xk − x̃k)T ξk (3.17)

and

dk = (xk − x̃k) +
1

1 + µ
ξk. (3.18)

Note that Φ(α) is a quadratic function of α and it reaches its maximum at

α∗
k2 =

φk

∥dk∥2
(3.19)

and

Φ(α∗
k2) = α∗

k2φk. (3.20)

The next lemma shows that α∗
k2

is bounded away from zero.

Lemma 3.1 [5] For given xk ∈ Rn
++ and βk > 0, let x̃k and ξk satisfy the condition (3.2),

then we have the following

α∗
k2 ≥ 1− η

2(1 + µ)
(3.21)

and

φk ≥
(
1− η

1 + µ

)
∥xk − x̃k∥2. (3.22)

Proposition 3.1 [5] Let α∗
k1

and α∗
k2

be defined by (3.5) and (3.6) respectively, F be monotone

and continuously differentiable, then we have

(i) ∥xk − x∗∥2 − ∥x̄k(α∗
k1
)− x∗∥2 ≥ Ψ(α∗

k1
)

(ii) ∥xk − x∗∥2 − ∥x̄k(α∗
k2
)− x∗∥2 ≥ Φ(α∗

k2
)

(iii) Ψ(α∗
k1
) ≥ Φ(α∗

k2
)

Furthermore, if Ψ′(α∗
k1
) = 0, we have

(iv) ∥xk − x∗∥2 − ∥x̄k(α∗
k1
)− x∗∥2 ≥ ∥xk − x̄k(α∗

k1
)∥2.
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4 Convergence analysis

In this section, we consider the convergence analysis of the proposed method.

By using Theorem 3.1 and Theorem 3.2, we get

Υ(τ) ≥ (1− ρ)Λ(τ), (4.1)

where

Λ(τ) = τ{∥xk − x̄k(αk)∥2 +Ψ(αk)} − τ2∥xk − x̄k(αk)∥2. (4.2)

Λ(τk) measures the progress obtained in the k-th iteration. It is natural to choose a step length

τk which maximizes the progress. Note that Λ(τk) is a quadratic function of τk and it reaches

its maximum at

τ∗k =
∥xk − x̄k(αk)∥2 +Ψ(αk)

2∥xk − x̄k(αk)∥2

and

Λ(τ∗k ) =
τ∗k{∥xk − x̄k(αk)∥2 +Ψ(αk)}

2
. (4.3)

Remark 4.1 Note that if τ∗k = 1 the proposed method reduces to the method in [5] Since τ∗k

is to maximize the profit function Λ(τ), we have

Λ(τ∗k ) ≥ Λ(1). (4.4)

Inequalities (4.1) and (4.4) show theoretically that the proposed method with τ∗k ̸= 1 is ex-

pected to make more progress than that in [5].

Recall that

Ψ(αk) ≥ σΨ(α∗
k1) ≥ σΦ(α∗

k2),

using (3.20), (3.21) and (3.22), we have

Ψ(αk) ≥ σΦ(α∗
k2) = σα∗

k2φk

≥ σ(1− η)2

2(1 + µ)2
∥xk − x̃k∥2. (4.5)

Since Ψ(αk) > 0, and from the definition of τ∗k it is easy to prove that

τ∗k ≥ 1

2
(4.6)
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and

Λ(τ∗k ) ≥ Λ(1)

= Ψ(αk)

≥ σ(1− η)2

2(1 + µ)2
∥xk − x̃k∥2. (4.7)

For fast convergence, we take a relaxation factor γ ∈ [1, 2) and the step-size τk by τk = γτ∗k .

Through simple manipulations, we obtain

Λ(γτ∗k ) = γτ∗k{∥xk − x̄k(αk)∥2 +Ψ(αk)} − (γ2τ∗k )(τ
∗
k∥xk − x̄k(αk)∥2)

= γ(2− γ)Λ(τ∗k ) (4.8)

It follows from (3.8), (4.1), (4.7) and (4.8) that there is a constant c > 0 such that

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − c∥xk − x̃k∥2 ∀x∗ ∈ Ω∗. (4.9)

The following result can be proved by similar arguments as those in [4, 15, 27]. Hence the

proof will be omitted.

Theorem 4.1 [4, 15, 27] If inf∞k=0 βk = β > 0, then the sequence {xk} generated by the

proposed method converges to some x∞ which is a solution of NCP.

5 Preliminary Computational Results

Note that in the special case ξk = βk(F (x̃k)− F (xk)), (3.1) can be written as

βkF (xk) + x̃k − (1− µ)xk − µX2
k(x̃

k)−1 = 0, (5.1)

the solution of (5.1) can be componentwise obtained by

x̃kj =
(1− µ)xkj − βkFj(x

k) +
√
[(1− µ)xkj − βkFj(xk)]2 + 4µ(xkj )

2

2
. (5.2)

Moreover for any xk > 0 we have always x̃k > 0.

We now describe the new algorithm as follows.

Step 0. Let β0 > 0, ε > 0, 0 < µ < 1, 0 < σ < 1, 0 < η < 1, 0 < ρ < 1, m1 ≥ 1, m2 ≥ 2,

1 ≤ γ < 2, x0 > 0 and set k := 0.
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Step 1. If ∥min(xk, F (xk))∥∞ ≤ ϵ, then stop. Otherwise, go to Step 2.

Step 2. s := (1− µ)xk − βkF (xk), x̃ki :=
(
si +

√
(si)2 + 4µ(xki )

2
)
/2,

ξk := βk(F (x̃k)− F (xk)), r := ∥ξk∥/∥xk − x̃k∥.

while (r > η)

βk := βk ∗ 0.8/r,

s := (1− µ)xk − βkF (xk), x̃ki :=
(
si +

√
(si)2 + 4µ(xki )

2
)
/2,

ξk := βk(F (x̃k)− F (xk)), r := ∥ξk∥/∥xk − x̃k∥.

end while

Step 3. Searching step size α∗
k :

Let ᾱk = argmax
α

{Φ(α) | α > 0}, where Φ(α) is defined by (3.16).

Solve the following optimization problem

α∗
k = argmax

α
{Ψ(α) | 0 < α ≤ m1ᾱk}, where Ψ(α) is defined by (3.15).

Step 4. Extending the step size:

αk = max
α

{α∗
k ≤ α ≤ m2α

∗
k | Ψ(α) ≥ σΨ(α∗

k)}

x̄k = PRn
+
[xk − αkβk

1+µ F (x̃k)],

τ∗k = ∥xk−x̄k(αk)∥2+Ψ(αk)
2∥xk−x̄k(αk)∥2

, τk = γτ∗k ,

and the new iterate is defined by

xk+1 = ρxk + (1− ρ)PRn
+

[
xk − τk(x

k − x̄k(αk))
]
.

Step 5. βk+1 =


βk∗0.7

r if r ≤ 0.5;

βk otherwise.

Step 6. k := k + 1; go to Step 1.

To test the proposed method, we consider the nonlinear complementarity problems:

x ≥ 0, F (x) ≥ 0, xTF (x) = 0, (5.3)

where

F (x) = D(x) +Mx+ q,

D(x) and Mx+ q are the nonlinear part and linear part of F (x) respectively.

We form the linear part in the test problems similarly as in Harker and Pang [13]. The

matrix M = ATA+B, where A is an n× n matrix whose entries are randomly generated in
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the interval (−5,+5) and a skew-symmetric matrix B is generated in the same way. The vector

q is generated from a uniform distribution in the interval (−500, 500). In D(x), the nonlinear

part of F (x), the components are chosen to be Dj(x) = dj ∗ arctan(xj), where dj is a random

variable in (0, 1). A similar type of problems was tested in [18] and [25].

In all tests we take ρ = 0.1, σ = 0.05,m1 = 3,m2 = 4, η = 0.9, γ = 1.98 and the logarithmic

proximal parameter µ = 0.1. All iterations start with x0 = (1, ..., 1)T and β0 = 1, and stopped

whenever

∥min(xk, F (xk))∥∞ ≤ 10−7.

All codes were written in Matlab, we compare the proposed method with those in [5] and [27],

the test results for problem (5.3) are reported in Table 5.1. k is the number of iterations and

l denotes the number of evaluations of mapping F.

The numerical results show that the proposed method is very efficient algorithm even for

large-scale classical NCP. Moreover, the new step size τk plays important role to reduce the

iterative numbers and the evaluation numbers of F.Moreover, it demonstrates computationally

that the new method is more effective than the methods presented in [5] and [27] in the sense

that the new method needs fewer iteration and less evaluation numbers of F, which clearly

illustrate its efficiency and thus justifies the theoretical assertions.
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