
AMO - Advanced Modeling and Optimization, Volume 14, Number 1, 2012

1
AMO - Advanced Modeling and Optimization. ISSN: 1841-4311

257

Binary Solutions for Overdetermined Systems of Linear Equations
1

Subhendu Das, CCSI, West Hills, California, USA

Abstract

This paper presents a finite step method for computing the binary solution of an overdetermined system of linear

algebraic equations Ax = b, where A is an m x n real matrix of rank n < m, and b is a real m-vector. The method

uses the optimal policy of dynamic programming along with the branch and bound concept. Numerical examples are

given. The algorithm assumes the existence of a solution.

Keywords

Linear equations, Overdetermined systems, Numerical methods, Dynamic programming, Boolean programming,

Branch and Bound method.

Introduction

Many problems in science, engineering, business, management, and economics are formulated as a system of linear

equations. In addition many of them also look for the binary or the zero-one solution of these equations. In this

paper we solve the following Binary Programming (BP) problem:

BP: �� = �, � ∈ �	×�, � > �, � ∈ �0,1��, � ∈ �������, ������� = � (1)

We define span(A) as the space spanned by the zero-one combinations of columns of A. More precisely

������� = ��: � = ��, ∀� ∈ �0,1��� (2)

It is assumed that the elements of the matrix A are precisely known and the elements of the vector b may have some

noise errors. This situation happens in digital communication systems where b is the vector received from the

transmitter but the matrix A will be available at both the transmitter and the receiver stations. A detailed description

of such a problem can be found in [Das, 2009]. An interesting genesis is provided in [Donoho, 2004].

Subhendu Das

258

First we introduce some notations, and then describe the algorithm. Next we show how we create the test problems

so that the matrices have the correct ranks and (1) has known solutions. We give two examples. The first one is very

small, just enough to show the algorithm details. The second one is little larger and has a noisy b-vector. Then we

provide the solution tables for our algorithm. We conclude with discussions of the literature related to our problem.

Notations

The column vector [x1, x2, … , xn]’ and its components { x1, x2, … , xn } will be denoted by the lower case symbol x.

The columns of the matrix A will be similarly represented by {a1, a2, … , an }. The i-th state of the system is defined

as

�� = � ��� , !" �� = 0
��� − �� !" �� = 1 $, �% = �, ! = 1, … , � − 1 (3)

As an example, when the decision x1 = 0 is used then the state is s1 = b and when the decision x1 = 1 is chosen then

the state is s1 = b - a1. The state is related to the right hand side of (1). When a column is removed from the matrix

A, it goes to the right hand side of (1) multiplied by the corresponding value of the variable.

Algorithm

One of the major concepts we use is the Bellman’s dynamic programming (DP) principle of optimality. This concept

can be found in many text books on operations research, [Wolsey, 1998] or dynamic programming, [Nemhauser,

1966]. The DP principle is stated in the following way – “An optimal set of decisions has the property that whatever

the first decision is, the remaining decisions must be optimal with respect to the outcome which results from the first

decision”.

Thus when we look for optimal value for x1 we first choose x1 = 0 and then find the optimal values of all other

variables that give the best solution for B1 x = b with x as unconstrained to any real number. Here B1 is the A matrix,

with the first column removed, and x represents the remaining variables. This unconstrained problem is solved using

the pseudo inverse, see [Golub, 1983, p. 257]. This is the minimum summed squared error (SSE) or the least square

solution for the state s1 = b, which is the right hand side of the equation (1). Next we choose x1 = 1, and use the same

method to get the SSE for the state s1 = b - a1 of the system. The optimal decision for x1 is the minimum of the two

SSE results. The variable x1 and the column a1 are moved to the right hand side of (1). The new state, s1 , becomes

the optimal state for the next variable, x2. Thus the foundation of the algorithm is clearly based on the DP principle

of optimality.

Binary Solutions for Overdetermined Systems of Linear Equations

259

The branch and bound (BB) method is embedded in the above algorithm, because we are using the relaxed problem,

that is the unconstrained problem, to select the bounds for the two SSE values. Note that when we are deciding for x3

variable for example, there is no need to consider all possibilities for x1 and x2 again. That is because we have

considered all possible values for x3 when we considered previous variables. When we were deciding for x1 we did

indeed consider all possible combinations of x2 and x3 using the relaxation logic of pseudo inverse. The formal steps

of the procedure can be written as:

DPBB Algorithm (4)

For i = 1 to n - 1 repeat

 Select xi = 0, state si = si-1 , and Bi = [ai+1,…,an]

 Find pseudo inverse Pi of Bi

 xi0 = Pi * si //optimal values for the remaining variables

 si0 = Bi * xi0 //optimal estimate of the state using remaining variables

 SSEi0 = (si – si0)’ (si – si0) //state estimation error

 Select xi = 1, state si = si-1 – ai ,

 xi1 = Pi * si //same as above

 si1 = Bi * xi1

 SSEi1 = (si – si1)’ (si – si1)

 If SSEi1 < SSEi0 select xi = 1 Else xi = 0

End of For loop

In the above algorithm xi0 and xi1 are the unconstrained optimal values of the remaining x variables. These x

variables are then used to generate the best estimate of the current state si0 and si1 . The decision for the final variable

xn is similar. We use a different method because there are no remaining columns of A. This part of the algorithm can

be written in the following way:

DPBB Algorithm – Last (5)

For i=n do the following:

 Select state sn = sn-1

 Select xn=0

 SSEn0 = sn’sn //the error is the magnitude of the state

 Select xn = 1

 SSEn1 = (sn-an)’ (sn-an) //the error is the magnitude of the state

Subhendu Das

260

 If SSEn1 < SSEn0 select xn = 1 Else xn = 0

End of the trivial For loop.

It should be clear that our problem is essentially the same as the least square solution problem of the standard type

defined by:

min*∈�%, �+�,�� − �,-�

In our computer program we just did not take the square root of the 2-norm and used SSE instead. Observe that the

over determined system usually does not have exact solution, [Golub, 1983, p 236]. Since the matrix A is of full

rank the value for SSE can never be zero also.

Problem Construction

In this section we show how we have constructed the two test examples for demonstrating our algorithm. The first

problem has three unknowns and has ten equations. The second problem has ten unknowns and has twenty

equations. After we describe the problem constructions method, we will walk through the first example to illustrate

the algorithm in details and then simply give the partial results for the second example. Both problems are

constructed using the same principle. We have used Mathematica software tools for our analysis.

We represent the data in the columns of the A matrix as the digital sample values of several independent functions.

This process ensures that the columns are independent and therefore has full column rank. For the first problem the

following three functions were used, since there are three unknowns:

 . = 0.001, "% =
0

1 �2� = Sin�2 5 "% 2� + 1, (6)

1-�2� = Cos�2 5 "% 2� + 1 , 1:�2� = Cos�4 5 "% 2� + 1

Ten samples were generated using the equal sample interval of dT = T/10. The first sample started at t = dT.

For the second problem we use the following 10 functions, one for each column of the matrix A. The remaining

parameters were same as problem one. This problem has both negative and positive elements in the column vectors.

ℎ �2� = Sin�2 5 "% 2� ℎ-�2� = Cos�2 5 "% 2� ℎ:�2� = Cos�4 5 "% 2�
ℎ=�2� = Sin�4 5 "% 2� ℎ>�2� = Sin� 5 "% 2� ℎ?�2� = Cos� 5 "% 2� (7)

ℎ@�2� = Cos�6 5 "% 2� ℎB�2� = Sin�6 5 "% 2�
ℎC�2� = 1 − D�:%%%E ℎ %�2� = D�:%%%E

Binary Solutions for Overdetermined Systems of Linear Equations

261

For generating the b vector we selected x = {1, 0, 1} for problem 1. Therefore our algorithm should produce the

above x values as the correct solution. For the second problem we selected arbitrarily x = {1,0,1,1,1,0,1,1,1,0}, and

therefore this is the correct solution too.

For the second problem we also used a uniform random number generator for generating twenty random numbers

between 0 and 1. Then 20% of these numbers, w = {wi ,i=1,…,20}, were added to each element of the b-vector to

introduce some random noise. It is assumed that this will be the residual noise in the b-vector after it has been

processed using other signal processing algorithms, like the finite impulse response filters (FIR), see [Lyons, 1997],

on the original noisy vector. For the first problem no noise was considered.

Example 1

As stated before this example has three unknowns and ten equations. Using the matrix notation we present the given

data as follows:

Our problem is to find out the 0-1 solution of the above linear system of equations for the unknown components of

the vector x = { x1 , x2 , x3 }.

The DPBB algorithm (4) selects the unknown variables one by one, in sequence, and starting from the first variable

x1. When we select the first variable x1 for decisions, we take the last two columns of the matrix A and call it matrix

B1. The pseudo inverse P1 of the matrix B1 is given by the formula, see [Golub, 1983, p. 257]:

F = �G H G �� G H (8)

For this example the matrices B1 and P1 are given below

1.4683
1.0955
1.0855
1.4683
1.5125

0.86579

0.12058

0.12058

0.86579

1.5125

0.81381 0.90451 0.65451

1 0.65451 0.095492

1 0.34549 0.085492

0.81381 0.095492 0.65451

0.51254 0 1

0.21128 0.095492 0.65451

0.025086 0.34549 0.095492

0.025086 0.65451 0.095492

0.21128 0.90451 0.65451

0.51254 1 1

x1

x2

x3

=

Subhendu Das

262

For the selection x1 = 0, the state is s1, and is equal to the b-vector. We multiply P1 by s1 to get the optimal values of

the remaining x variables {x2, x3}. Then we multiply B1 by these x variables to get the optimal estimate for the state

s1. The difference between s1 and its optimal estimate will produce the SSE for this selection of x1. For x1 = 0

selection, we have [x2 x3]’ = P* s1 = P*b = [0.410034, 1.41003]’. Then we use this unconstrained optimal values

for x = [x2 x3]’ to get the estimate for s1 using B1 * x. The tables below show the state, the optimal estimate of the

state, the error values, and the SSE. The tables are identified as 1A and 1B for the two selections, x1 = 0 and x1 = 1,

respectively.

Decision variable is x1. Decision is x1 = 0. B = [a2, a3] is used for pseudo inverse. Initial state s0 = b

Optimal choice for remaining variables: X2= 0.410034 X3=1.41003

Initial state s0 1.4683 1.0954 1.0854 1.4683 1.5125 0.8657 0.1205 0.1250 0.8657 1.5125

New state s1 = s0 1.4683 1.0954 1.0854 1.4683 1.5125 0.8657 0.1205 0.1250 0.8657 1.5125

State estimate 1.2937 0.4030 0.2763 0.9620 1.4100 0.9620 0.2763 0.4030 1.2937 1.8200

Estimation error 0.1745 0.6924 0.8191 0.5062 0.1025 -0.0962 -0.1557 -0.2824 -0.4279 -0.3075

SSE 1.8389 Table 1A – Problem 1

Now repeat the above procedure for the selection x1 = 1 for the same variable x1. The state vector is s1 = b - a1.

Decision variable is x1. Decision is x1 = 1. B = [a2, a3] is used for pseudo inverse. Initial state s0 = b

Optimal choice for remaining variables: X2 = 0 X3 = 1.0

Initial state s0 1.4683 1.0954 1.0854 1.4683 1.5125 0.8657 0.1205 0.1250 0.8657 1.5125

a1 0.8138 1.0 1.0 0.8138 0.5125 0.2112 0.0250 0.0250 0.2112 0.5125

New state s1 = s0 - a1 0.6545 0.0954 0.0855 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

State estimate 0.6545 0.9545 0.9845 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

Estimation error 1.1E-16 -6.9E-17 -6.9E-17 1.1E-16 1.1E-16 1.1E-16 1.3E-17 1.3E-17 1.1E-16 1.1E-16

SSE 8.39E-32 Table 1B – Problem 1

Since the SSE is lower for x1 = 1, we decide that the optimal value for x1 is 1 and that is the correct result as used in

the problem formulation step.

0.90451 0.65451

0.65451 0.095492

0.34549 0.085492

0.095492 0.65451

0 1

0.095492 0.65451

0.34549 0.095492

0.65451 0.095492

0.90451 0.65451

1 1

B1 =
P1 =

0.22472 0.28360 0.13527 -0.16360 -0.32 -0.16360 0.13527 0.28360 0.22472 0.16

0.02472 -0.16360 -0.06472 0.28360 0.47999 0.28360 -0.06472 -0.16360 0.02472 0.16

Binary Solutions for Overdetermined Systems of Linear Equations

263

The decision tables, 2A and 2B, for the second variable x2 are similarly computed and shown below. In this case the

starting state is s2 = b - a1 since x1 was found as 1. The matrix B2 now is the last column of the matrix A. The pseudo

inverse P2 in this case is given by

P2 = [0.174536, 0.0254645, 0.0254645, 0.174536, 0.266666, 0.174536, 0.0254645, 0.0254645, 0.174536, 0.266666]

The corresponding unconstrained optimal value for x3 is 1.0. Note that we are now working for x2 variable. For x2 =

0 we get the following table

Decision variable is x2. Decision is x2 = 0. B = [a3] is used for pseudo inverse. Initial state s1 = b – a1

Optimal choice for remaining variables: X3=1.0

Initial state s1 0.6545 0.0954 0.0854 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

New state s2 = s1 0.6545 0.0954 0.0854 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

State estimate 0.6545 0.0954 0.0854 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

Estimation error 1.11E-16 -6.93E-17 -6.93E-17 1.11E-16 1.11E-16 1.11E-16 1.38E-17 1.38E-17 1.11E-16 1.11E-16

SSE 8.39E-32 Table 2A – Problem 1

For the selection x2 = 1 we create a similar table, along the lines of the dynamic programming theory.

Decision variable is x2. Decision is x2 = 1. B = [a3] is used for pseudo inverse. Initial state s1 = b – a1

Optimal choice for remaining variables: X3=0.33333

Initial state s1 0.6545 0.0954 0.0854 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

a2 0.9045 0.6545 0.3454 0.0954 0.0 0.0954 0.3454 0.6545 0.9045 1.0

New state s2 = s1-a2 -0.25 -0.5590 -0.2499 0.5590 1.0 0.5590 -0.2499 -0.5590 -0.25 0.0

State estimate 0.2181 0.0318 0.0318 0.2181 0.3333 0.2181 0.0318 0.0318 0.2181 0.3333

Estimation error -0.4681 -0.5908 -0.2818 0.3408 0.6666 0.3408 -0.2818 -0.5908 -0.4681 -0.3333

SSE 2.0833 Table 2B – Problem 1

The optimal decision for x2 is x2 = 0, since the SSE for the first table, 2A, is lower and that is the correct choice also

as defined in the formulation stage of the problem.

In the last step, for the variable x3, we do not use the pseudo inverse, see (5) for the DPBB algorithm. The state is

still b-a1 because the optimal value for x2 turned out to be zero. For the selection x3 = 0, SSE is computed using the

estimation error, which in this case is just the magnitude of the new state which is b-a1.

Subhendu Das

264

Decision variable is x3. Decision is x3 = 0. B is not used for pseudo inverse. Initial state s2 = s1 = b – a1

Initial state s2 0.6545 0.0954 0.0854 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

New state s3 = s2 0.6545 0.0954 0.0854 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

Estimation error 0.6545 0.0954 0.0854 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

SSE 3.7500 Table 3A – Problem 1

For the choice of x3 = 1, we generate the following table, 3B, using the same method. The new state is s2 - a2.

Decision variable is x3. Decision is x3 = 1. B is not used for pseudo inverse. Initial state s2 = s1 = b – a1

Initial state s2 0.6545 0.0954 0.0854 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

a3 0.6545 0.0954 0.0854 0.6545 1.0 0.6545 0.0954 0.0954 0.6545 1.0

New state s3 = s2 – a3 0. -8.32E-17 -8.32E-17 0 0 0 0 0 0 0

Estimation error 0. -8.32E-17 -8.32E-17 0 0 0 0 0 0 0

SSE 1.38E-32 Table 3B – Problem 1

Thus the optimal decision for x3 is 1 since SSE for the second table, 3B, is lower and is also the correct decision.

This concludes the implementation and verification of the algorithm for the example problem one. We have found

the correct optimal solution in three steps for the three unknown variables of the problem.

Example 2

We briefly describe the solution for the sample problem two. This is also a small size problem but with a noisy b-

vector. This problem has 10 unknown variables and 20 equations. The columns of the matrix A are generated from

the samples of the h functions defined in (7). We do not do any filtering in this example, instead only model the

filtered vector b by adding some residual noise w. The tables are provided for the numerically oriented readers.

The data for the matrix A is given below. To save space the complete data is not provided. It only shows some

elements of the data and hopes to provide enough information so that any one will be able to reproduce the same

data and the same results if desired. The original b vector corresponding to the correct x vector, and the noisy vector,

b + w, are also in the same table.

A matrix columns

1 2 3 4 5 6 7 8 9 10

0.2955

0.5649

0.7840

-0.7840

-0.5649

-0.2955

0.9663

0.8355

0.6305

0.6305

0.8355

0.9663

0.8355

0.3694

-0.2250

-0.2250

0.3694

0.8355

0.5649

0.9334

0.9776

-0.9776

-0.9334

-0.5649

0.1494

0.2955

0.4351

0.4351

0.2955

0.1494

1.

0.9663

0.9111

-0.9111

-0.9663

-1.

0.6234

-0.2225

-0.9009

-0.9009

-0.2225

0.6234

0.8019

1.

0.4450

-0.4450

-1.

-0.8019

0.1412

0.2636

0.3698

0.9798

0.9906

1.

1.

0.8668

0.7514

0.0881

0.0764

0.0662

b Vectors

b b + w

3.4122

3.2046

1.8856

-1.9178

-1.0652

0.9461

3.5466

3.2808

2.0184

-1.8409

-0.9618

1.1094

Binary Solutions for Overdetermined Systems of Linear Equations

265

We also do not give all the tables for solving this entire problem. It will require 10 tables, one for each variable;

each table will have 20 columns, which will be too big for the space allowed for this paper, and probably is not

necessary also. Thus we give the tables for the two decision options of the first variable x1, just to identify the nature

of the tables and the associated computer data structures for larger problems. We also do not give all the data in each

table; some columns are removed to fit the table in the page with a readable font size. The first table for the selection

x1 = 0 is shown in 1A.

Decision variable is x1. Decision is x1 = 0. B = [a2, a3,…,a10] is used for pseudo inverse. Initial state s0 = b + w

Optimal choice for remaining variables: -1.1691, 0.8434, 0.9172,-3.8932, 3.3059, 0.9510, 1.0410, 6.3035, -1.6104

Initial state s0 3.5466 3.2808 2.0184 0.7165 0.2800 0.4550 -1.0923 -1.8408 -0.9618 1.1094

New state s1 = s0 3.5466 3.2808 2.0184 0.7165 0.2800 0.4550 -1.0923 -1.8408 -0.9618 1.1094

State estimate 3.5247 3.3303 2.0153 0.6732 0.2523 0.4727 -1.1037 -1.8154 -0.9981 1.1239

Estimation error 0.0218 -0.0495 0.0030 0.0433 0.0277 -0.0177 0.0113 -0.0253 0.0363 -0.0145

SSE 0.0318 Table 1A – Problem 2

The second table for the decision x1 = 1 is created in a similar way and is shown in table 1B.

Decision variable is x1. Decision is x1 = 1. B = [a2, a3,…,a10] is used for pseudo inverse. Initial state s0 = b + w

Optimal choice for remaining variables: -0.7086, 0.8640, 1.0139, -0.9105, 0.1759, 0.9533, 1.0600, 2.4674, 0.7896

Initial state s0 3.5466 3.2808 2.0184 0.7165 0.280 -1.0923 -1.8408 -0.9618 1.1094

a1 0.2955 0.5649 0.7840 0.9334 1.0 -0.9334 -0.7840 -0.5649 -0.2955

New state s1 = s0 - a1 3.2510 2.7159 1.2344 -0.2168 -0.7199 -0.1588 -1.0568 -0.3969 1.4050

State estimate 3.2325 2.7576 1.2329 -0.2549 -0.7466 -0.1752 -1.0325 -0.4261 1.4163

Estimation error 0.0184 -0.0417 0.0014 0.0380 0.0267 0.0163 -0.0243 0.0291 -0.0113

SSE 0.0291 Table 1B – Problem 2

From the above two tables we see that SSE is lower in the table for x1 = 1 and therefore the optimal decision for x1 is

1 which is also the correct result as defined during the problem formulation stage. We now give, just for the sake of

a feeling of completeness, the last two tables for the last decision variable x10.

Decision variable is x10. Decision is x10 = 0. B is not used for pseudo inverse. Initial state s9

Initial state s9 0.1344 0.0762 0.1328 0.1616 0.1294 0.1919 0.1881 0.0769 0.1033 0.1633

New state s10 = s9 0.1344 0.0762 0.1328 0.1616 0.1294 0.1919 0.1881 0.0769 0.1033 0.1633

Estimation error 0.1344 0.0762 0.1328 0.1616 0.1294 0.1919 0.1881 0.0769 0.1033 0.1633

SSE 0.3763 Table 2A –Problem 2

Note that for the last stage there is no pseudo inverse. The estimate is the magnitude of the final state. So the error is

also based on the final state by default.

Subhendu Das

266

Decision variable is x10. Decision is x10 = 1. B is not used for pseudo inverse. Initial state s9

Initial state s9 0.1344 0.0762 0.1328 0.1616 0.1294 0.1919 0.1881 0.0769 0.1033 0.1633

a10 1 0.8668 0.7514 0.6514 0.5647 0.1173 0.1017 0.0881 0.0764 0.0662

New state s10 = s9 – a10 -0.8655 -0.7906 -0.6186 -0.4897 -0.4352 0.0746 0.0864 -0.0112 0.0269 0.0970

Estimation error -0.8655 -0.7906 -0.6186 -0.4897 -0.4352 0.0746 0.0864 -0.0112 0.0269 0.0970

SSE 2.67086 Table 2B – Problem 2

Since the lower SSE is obtained from the first table, 2A, the optimal solution for state x10 is 0, which also is the

correct solution.

We have used pseudo inverse (7) of rectangular matrices in all our DPBB algorithm steps. It is interesting to point

out that a direct application of pseudo inverse to the entire problem will also give correct result in the absence of any

noise in the b vector of the system. As an example the second problem gives the following result for x as shown in

the table below with the direct application of the formula (9) to the matrix A of (1):

� = F. �, IℎD�D F = J�′�L� � (9)

Direct application of Pseudo Inverse for the b vector

x 1.0 0.E-3 1.000 1.00 1. 0.E-2 1.0000 1.0000 1.0 0.E-2

True solution 1 0 1 1 1 0 1 1 1 0

However if we use the noisy b + w vector in the above formula (9) then the pseudo inverse gives the following

normalized solution:

Direct application of Pseudo Inverse for the noisy b + w vector

x 0.368 0.092 0.063 0.096 0.843 -0.936 0.063 0.075 -1.0 0.779

True solution 1 0 1 1 1 0 1 1 1 0

It is clear from the last table that we cannot extract the correct solution from the x values of the previous table

corresponding to the noisy b + w vector. Therefore the DPBB algorithm works better in more realistic environment.

Discussions

It should be clear that the BP problem defined by (1) and the corresponding DPBB algorithm defined by (4) is not a

NP complete problem. However, a problem very similar to (1) has been defined as NP-complete problem by [Murty,

1987]. This NP-complete problem is stated as follows. Given the positive integers �M%, M , … , M��, is there a solution

to:

∑ M��� = M% , �� = 0 O� 1, "O� �PP ! ��Q (10)

Binary Solutions for Overdetermined Systems of Linear Equations

267

Our problem is very similar to (10); except the numbers in problem (1) are all real numbers. And also (10) is an

underdetermined system and (1) is an overdetermined system. The problem (10) has also been listed in [Garey,

1979, p. 223].

Linear Integer Programming (LIP) is a well known approach for solving problems similar to the BP problem defined

in (1). For small size problems the LIP approach is very effective. The LIP requires an optimization criterion and we

do not have any such objective function with our problem (1). However, it is well known that the linear integer

programming is an NP complete problem; see [Wolsey, 1998, p. 103]. The zero-one linear integer programming is

also listed as NP complete problem in [Garey, 1979, p. 245].

It is also possible to solve the BP problem (1) by converting it to a binary quadratic programming problem. The

author [YoonAnn, 2006] has used such an approach for an overdetermined system. A class of binary quadratic

programming problem, such as with non-negative coefficients for the quadratic terms, is also known as NP problem;

see [Garey, 1979, p. 245]. Also see [Axehill, 2005]. The method discussed in the present paper solves the problem in

polynomial time.

There are many numerical methods available for solving the overdetermined linear system of equations. But most of

them are for real valued solutions. It seems that the there has not been much on work done for the binary solutions of

the problem defined in (1). The literature search did not produce any such numerical work. The general approach

seems to convert the problem to an integer optimization problem which in most cases requires NP algorithms.

The numerical error in using the pseudo inverse may be of concern as mentioned in [Cline, 1973]. He suggests some

alternative decomposition methods. However we are using Mathematica software tool, which allows calculations

with an accuracy of any preselected number of digits. As an example, using this tool, all calculations can be

performed with 100 decimal digits of accuracy without any noticeable difference in computational time on a

standard laptop computer. Thus numerical error does not appear to be of particular concern for the problem in (1).

If we replace the pseudo inverse algorithm by some other numerically efficient algorithms like Cholesky

factorization then each inverse will require (m+n/3)n
2
 operations as shown in [Golub, 1983, p. 238]. Thus it is clear

that DPBB is a polynomial time algorithm and therefore again (1) is not a NP-Complete problem.

The author of [Bellman, 1957] has first shown how the solution problem of a set of linear simultaneous equations,

with positive definite square matrix, can be converted to a multistage decision problem using his dynamic

programming (DP) principle. Later [Roger, 1968] has shown how this DP principle can be implemented using

analytical expressions for the case of the overdetermined systems. In the present paper we have extended this DP

principle numerically, together with the BB concept, to binary solutions for the overdetermined systems.

Subhendu Das

268

Conclusions

We have given a straight forward computational procedure for finding the binary solutions of the overdetermined

systems of linear equations. The procedure takes only n steps; where n is the number of unknown variables in the

equations. The algorithm is a polynomial time process.

References

1 Axehill D (2005). “Applications of integer quadratic programming in control and communication”, Thesis

1218, Dept. EE., Linkopings Uni., Sweden.

2 Bellman R (1957). “Dynamic programming and mean square deviation”, P-1147, Rand Corporation: California.

3 Cline A K (1973). “An elimination method for the solution of linear least square problems”, SIAM J. Num.

Anal., Vol. 10, No. 2.

4 Das S, Mohanty N, and Singh A (2009), “Function modulation - the theory for green modem”, Int. J. Adv. Net.

Serv.,Vol.2, No. 2&3, pp.121-143.

5 Donoho D L (2004). “For most large underdetermined systems of linear equations the minimal L1 norm is also

the sparsest solution”, Stanford University: California.

6 Garey M R and Johnson D S (1979). Computers and intractability, A guide to the theory of NP-Completeness,

W.H.Freeman and Company: New York.

7 Golub G H and Van Loan C F (1983). Matrix computations, Third edition, JHU Press: Baltimore.

8 Lyons R G (1997). Understanding digital signal processing, Addison Wesley: Massachusetts.

9 Murty K G and Kabadi S N (1987). “Some NP-Complete problems in quadratic and nonlinear programming”,

Math.Prog., North-Holland, 39, pp117-129.

10 Nemhauser G L (1966). Introduction to dynamic programming, John Wiley: New York.

11 Roger C L and Pilkington T C (1968). “The solution of overdetermined linear equations as a multistage

process”, IEEE, Tran. Bio.Med.Engg., Vol. BME-15, No. 3.

12 Wolsey L A (1998). Integer programming, John Wiley: New York.

13 YoonAnn E M (2006). “Branch and bound algorithm for binary quadratic programming with application in

wireless network communications”, Dept. Math., Iowa State Uni., USA.

