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1. I
����
����


The purpose of this work is double. On one hand, we are going to present in a detailed
enough way, the general principles of penalty methods. On the other hand, we are going to
study the works of A. Auslender et Al ([1]) and let us give algorithms of resolution known as
ε-Proximal penality. These results will be given within the framework of a nondifferentiable
optimization.
Results of diverse numerical essays will illustrate the behavior of the algorithm and finalize

its efficiency will be afterward presented.
Consider the following optimization problem:

(P)
{

α := Inff(x)
subject to x ∈ C,

where
. C := {x ∈ Rn : gi(x) ≤ 0, i = 1, ...,m}
. f is a finite value and not necessarly differentiable convex function;
. gi, i = 1, ...,m, are convex functions of C1.
Suppose that lim

(‖x‖−→+∞)
f(x) = +∞ (i.e., f is inf-compact).

The penalty methods constitute a family of particularly interesting algorithms of the double
point of view of the principal simplicity and the practical efficiency. There are two variants
for these methods, the most used: the exterior penalty methods and the interior penalty
methods.
The ε-Proximal penalty method, be going to lead us to introduce the exterior penalty

methods. For it we content with presenting the principle of these methods. Then, their
principle comes because the problem

(P)
{

α := Inff(x)
subject to x ∈ C

is equivalent to the following unconstrained problem:

(EP) αe := Inf
x∈Rn

{ϕ(x) = f(x) + ΨC(x)} ,
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where

ΨC(x) :=






0 if x ∈ C,

+∞ if x /∈ C

is the indicator function of the set C.
So, the general principle of these methods consists in replacing the probblem (P) by the

following unconstrained problem:

(Pr) αr := Inf
x∈Rn

{ϕ(x, r) = f(x) + rh(x)} ,

where r > 0 and h(x) is a function defined on Rn such that





(i) h is continuous;

(ii) h(x) ≥ 0 ∀x ∈ Rn;

(iii) h(x) = 0 ⇐⇒ x ∈ C

so that when (r −→ +∞) the obtained solution x(r) tends to x ∈ S (solutions set of (P)).
r is called penalty coefficient, h is called exterior penalty function. It is not difficult to

build functions h(x). For example:

h(x) :=
m∑

i=1

(gi(x))
2

called classical penalty function;

h(x) :=
m∑

i=1

g+i (x)

called interior penalty function, where

g+i (x) =Max(0, gi(x)).

The choice of an appropriate value of the penalty coefficient r results from a compromise:
. on one hand, r must be chosen large enough so that the point x(r) obtained is close to

all the solutions;
. on the other hand, if r is chosen too large, the function ϕ can be ill-conditioned where

from numerical difficulties in the search for the optimum without constraint.
This explains why the penalty methods are generally implemented under iterative shape in

the following way:
We begin by choosing a penalty coefficient r1 of not too much raised value (to avoid the

numerical difficulties) then we resolve the problem without constraints:

(Pr1) αr1 := Inf
x∈Rn

{ϕ(x, r1) = f(x) + r1h(x)} .

Let x(r1) be the obtained point.
If the quantity r1h(x(r1)) is enough weak, x(r1) is a good approximation of the optimum,

and the calculations are ended. Should the opposite occur, we shall thus choose a penalty
coefficient r2 > r1 (for example: r2 = 10r1) and we shall resolve the new problem without
constraint:

(Pr2) αr2 := Inf
x∈Rn

{ϕ(x, r2) = f(x) + r2h(x)} ,

we shall obtain a new point x(r2), and so on.
The following algorithm shows the necessary steps of the resolution:
Algorithm 1:
Step 0: (k = 0)
We begin by choosing a penalty coefficient r0, a precision δ > 0, (k = 0).
Step 1: (k ≥ 0)
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We resolve the problem without constraints

αrk := Inf
x∈Rn

{ϕ(x, rk) = f(x) + rkh(x)} .

Step 2:
Let x(rk) be the obtained solution. If

rkh(x(rk)) < δ

then x(rk) is a good approximation of the optimum and the calculations are ended.
Should the opposite occur, we choose a penalty coefficient rk+1 > rk (for example: rk+1 =

10rk), k −→ k + 1, we return to the step 1.

Remark 1. In every step k of the previous process, it is advantageous to use the point x(rk−1)
obtained in the step k − 1 as an initial point of the used algorithm of optimization.

2. M��
 R��
���

2.1. The Proximal Regularization.
A method allowing to find the minimum of a non necessarily differentiable convex function

is the proximal method of J.J. Moreau ([3], [6]).
Its principle is the following one: to the problem

(1) α := Inf
x∈Rn

f(x)

we associate the following problem:

(2) αy := Inf
x∈Rn, y∈Rn

{
F (x, y) = f(x) +

1

2
‖x− y‖2

}
.

The relaxation algorithm applied to this problem is transformed and engenders a sequence{
xk, yk

}
such that xk+1 be a solution of the problem

α := Inf
x∈Rn

{
F (x, yk) = f(x) +

1

2

∥∥∥x− yk
∥∥∥
2
}

and yk+1 be a solution of the problem

α := Inf
y∈Rn

{
F (xk+1, y) = f(xk+1) +

1

2

∥∥∥xk+1 − y
∥∥∥
2
}
= xk+1.

Thus a simpler iteration : xk+1 is a solution of the problem

Inf
x∈Rn

{
f(x) +

1

2

∥∥∥x− xk
∥∥∥
2
}
.

The following theorem summarizes the most remarkable properties of this method.

Theorem 1. ([3]) Let us suppose f a convex function. Denote ϕ the following function:

(3) ϕ(y) := Inf
x∈Rn

{
f(x) +

1

2
‖x− y‖2

}
.

(a) For all y ∈ Rn, there exists an unique solution x(y) of

Inf
x∈Rn

{
f(x) +

1

2
‖x− y‖2

}
.

(b) ϕ(y) is a convex differentiable function of gradient

(4) ∇ϕ(y) = y − x(y)

and one has
∇ϕ(y) ∈ ∂f(x(y)).

(c) The sequence defined by

(5) xk+1 = x(xk)
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converges to an optimal solution of Inf
x∈Rn

f(x).

(d) The iteration xk+1 = x(xk) also spells

(6) xk+1 = xk +∇ϕ(x(y))
Definition 1. The function ϕ : Rn −→ R defined by

ϕ(y) := Inf
x∈Rn

{
f(x) +

1

2
‖x− y‖2

}

is called regularized of the function f on Rn.

According to the previous theorem, we indeed understand why ϕ one is regularized. It pre-
serves the good properties of f (convexity, even minimum) but moreover, it is differentiable.

Proof. (Theorem 1)
(a) The function

ϕ(x) = f(x) +
1

2
‖x− y‖2

is strictly convex at x, where from the uniqueness of the solution.
(b) Let y1, y2 and x1, x2 be the associated solutions.
For t ∈ [0, 1] , denote x = tx1 + (1− t)x2. We have

tϕ(y1) + (1− t)ϕ(y2) = tf(x1) + (1− t)f(x2) +
1
2 ‖x1 − y1‖2 + 1−t

2 ‖x2 − y2‖2

≥ f(tx1 + (1− t)x2) +
1
2 ‖t(x1 − y1) + (1− t)(x2 − y2)‖2

= f(x) + 1
2 ‖x− ty1 − (1− t)y2‖2

≥ Inf
x∈Rn

{
f(x) + 1

2 ‖x− ty1 − (1− t)y2‖2
}
= ϕ(ty1 + (1− t)y2).

For the calculation of the gradient, we choose some direction w ∈ Rn, and a real t > 0. We
have

ϕ
′

(y, w) = lim
(t−→0)

ϕ(y + tw)− ϕ(y)

t

the directional derivative of ϕ in the direction w. We have

ϕ(y + tw)− ϕ(y) ≤ f(x(y)) + 1
2 ‖x(y)− (y + tw)‖2 − ϕ(y)

= 1
2 ‖x(y)− (y + tw)‖2 − 1

2 ‖x(y)− y‖2

= t2

2 ‖w‖
2 + t(y − x(y))tw.

then
ϕ(y + tw)− ϕ(y)

t
≤ t

2
‖w‖2 + (y − x(y))tw,

which implies

ϕ
′

(y,w) ≤ (y − x(y))tw.

Since

ϕ
′

(y,−w) ≥ −ϕ′

(y, w)

then,

ϕ
′

(y,w) ≥ −ϕ′(y,−w) ≥ (y − x(y))tw.

Thus

ϕ
′

(y, w) = (y − x(y))tw, for all w,

hence

∇ϕ(y) = y − x(y).
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Since x(y) realize the minimum in the expression (3), we have

0 ∈ ∂(f(x(y)) +
1

2
‖x(y)− y‖2) =⇒ y − x(y) = ∇ϕ(y) ∈ ∂f(x(y)).

(c) Denote x some solution of the problem Inf
x∈Rn

f(x).

Given that xk+1 = x(xk), we have necessarily

f(xk+1) +
1

2

∥∥∥xk+1 − xk
∥∥∥
2

what implies that the sequence
{
f(xk)

}
k∈N

is decraising and since it is lower bounded by

f(x), it converges to f . Besides, we also deduct that from it the series

(7) M =
∑

k∈N

∥∥∥xk+1 − xk
∥∥∥
2

is convergent, and thus

(8) lim
(k−→+∞)

∥∥∥xk+1 − xk
∥∥∥ = 0.

Show that
{
xk
}
k∈N

is bounded. Since ϕ is convex, we can deduct that

ϕ(x) ≥ ϕ(xk) + (∇ϕ(xk))t(x− xk).

Hence
ϕ(x) ≥ ϕ(xk) + (xk − xk+1)t(x− xk).

Besides, f(xk) ≥ f(x), what leads to

(xk − xk+1)t(x− xk) ≤ 0.
We can then write

∥∥xk+1 − x
∥∥2 =

∥∥xk+1 − xk
∥∥2 +

∥∥xk − x
∥∥2 + 2(xk+1 − xk)t(xk − x)

≤
∥∥xk+1 − xk

∥∥2 +
∥∥xk − x

∥∥2 .
It holds that for all k,

∥∥∥xk+1 − x
∥∥∥
2
≤
∥∥x0 − x

∥∥2 +M < +∞.

Thus the sequence
{
xk
}
k∈N

is bounded, it admits, thus, cluster points. Let x∗ one of them.

Let t ∈ [0, 1], we can write

f(xk+1) +
1

2

∥∥∥xk+1 − xk
∥∥∥
2
≤ f(txk+1 + (1− t)x) +

1

2

∥∥∥txk+1 − (1− t)x− xk
∥∥∥
2

or

f(xk+1) +
1

2

∥∥∥xk+1 − xk
∥∥∥
2
≤ tf(xk+1) + (1− t)f(x) +

1

2

∥∥∥txk+1 − (1− t)x− xk
∥∥∥
2
.

Let
{
xk

′
}

k
′
be a subsequence of

{
xk
}
k∈N

convergent to x∗. The subsequence
{
xk

′

+1
}

k
′

converges so to x∗ because

lim
(k′−→+∞)

∥∥∥xk
′

+1 − xk
′
∥∥∥ = 0.

Taking the limit in the previous inequality, we obtain

f(x∗) ≤ tf(x∗) + (1− t)f(x) +
1

2
‖(1− t)(x− x∗)‖2 .

Hence

f(x∗)− f(x) ≤ 1− t

2
‖x− x∗‖2 .

If we take a limit when t tends to 1, we find that f(x) = f(x∗).
(d) We have

∇ϕ(xk) = xk − xk+1 =⇒ xk+1 = xk +∇ϕ(xk).
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An iteration of the Proximal algorithm is thus equivalent to one step of gradient on the
regularized function. �

Remark 2. For a concave function h, we deduct the function ϕ in the following way:

(9) ϕ(y) = Sup
z

{
h(z)− 1

2
‖y − z‖2

}
.

Thus

∇ϕ(y) = (zy − y),

where y realize the Sup in the expression (9).

We thus have the following Proximal algorithm:
Algorithm 2:
Step 0: (k = 0)
Let x0 ∈ Rn, a precision δ > 0, (k = 0).
Step 1:
Find xk+1 solution of the problem

Inf
x∈Rn

{
f(x) +

1

2

∥∥∥x− xk
∥∥∥
2
}
.

Step 2:
If
∥∥xk+1 − xk

∥∥ < δ then xk+1 is a good approximation of the optimum and the calculations
are ended.
Else, make k −→ k + 1 and return to step 1.

Remark 3. The same remark as the Remark 1. In every step k, it is advantageous to use the
point xk−1 obtained in the step k − 1 as initial point of the used algorithm of optimization.

To resolve the problem of optimization (P), A. Auslender et Al ([1]) have proposed an
algorithm of resolution allowing to find a minimum of (P). They coupled the Proximal method
with that of type exterior penalties and also suggested resolving a sequence of unconstrained
problems of the following shape:

(10) (P) α := Inf
x∈Rn

{
f(xk) + rkh(x

k) +
1

2

∥∥∥x− xk
∥∥∥
2
}

whose every solution is calculated with a precision ε.
Hence, we obtain the following ε-Proximal penalty algorithm:
Algorithm 3:
Step 0: (k = 0)
Let us given x0 ∈ Rn a precision δ > 0, ε0 be given, (k = 0).
Step 1: (k ≥ 0)
Find xk+1 solution of the problem

(11) f(xk+1) + rkh(x
k+1) +

1

2

∥∥∥xk+1 − xk
∥∥∥
2
≤ f(x) + rkh(x) +

1

2

∥∥∥x− xk
∥∥∥
2
+ εk

Step 2:
Stopping test.
The convergence of this last sequence will be shown in the last paragraph.

2.2. Resolution of The Problem (P).
Consider the following optimisation problem:

(P)
{

α := Inff(x)
subject to x ∈ C,

where

C := {x ∈ Rn : gi(x) ≤ 0, i = 1, ...,m} .
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We introduce the penalty functions h which satisfie the following conditions:





(i) h is convex of a C1;

(ii) h(x) ≥ 0, ∀x ∈ Rn;

(iii) h(x) = 0 ⇐⇒ x ∈ C.

Set

S := argmin
x∈C

f(x) ; α := Inf {f(x) : x ∈ C} ,

and fk := f + rkh. Denote S
k the following set:

Sk := {x ∈ Rn : fk(x) ≤ α}
and Skδ the following set:

Skδ := {x ∈ Rn : fk(x) ≤ α+ δ}
and

S∞δ := {x ∈ C : f(x) ≤ α+ δ} .
We need also to the following elementary result:

Lemma 1. Let C be a convex set, then C is bounded ⇐⇒ DC = ∅, where DC is the directions
set of C defined by

DC := {d ∈ Rn : d �= 0, x+ λd ∈ C, ∀x ∈ C, ∀λ ≥ 0} .
We have the following lemma:

Lemma 2. If the function f is inf-compact, then fk is also inf-compact for k ≥ k.

Proof. We have

S ⊂ Sk+1 ⊂ Sk ∀k and S = ∩
k
Sk.

Indeed;

S ⊂ Sk ∀k =⇒ S ⊂ ∩
k
Sk.

On the other hand, let x ∈ ∩
k
Sk, then

fk(x) ≤ α, ∀k =⇒ f(x) + rkh(x) ≤ α, ∀k.
Thus

f(x) + lim
(k−→+∞)

rkh(x) ≤ α =⇒ lim
(k−→+∞)

rkh(x) = 0.

Since lim
(k−→+∞)

rk = +∞, we have h(x) = 0. This implies x ∈ C. Hence

(f(x) ≤ α and x ∈ C) =⇒ f(x) = α =⇒ x ∈ S =⇒ ∩
k
Sk ⊂ S.

Then, it holds that S = ∩
k
Sk.

S is a nonempty compact set because f is inf-compact. Show that there exists k ∈ N such

that Sk be compact.
Suppose Sk is not compact ∀k ∈ N. Let x ∈ S. We define

Kk :=
{
d ∈ Rn : ‖d‖ = 1, x+ td ∈ Sk, ∀t > 0

}
.

We have Kk �= ∅. Indeed; Sk is not a bounded closed convex set, then according to the
Lemma 2 there exists at least d �= 0 such that

x+ td ∈ Sk, ∀t > 0,
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take d
‖d‖ ∈ Kk. Since Kk is compact and Kk+1 ⊂ Kk, ∀k, we have ∩

k
Kk �= ∅, where

∩
k
Kk =

{
d ∈ Rn : ‖d‖ = 1, x+ td ∈ ∩

k
Sk, ∀t > 0

}

= {d ∈ Rn : ‖d‖ = 1, x+ td ∈ S, ∀t > 0}
this implies that S is not a bounded set, thus a contradiction.

Then, ∃k ∈ N such that Sk be a compact set (consequently Sk is a compact set for all
k ≥ k).
But, we know (classical result of convex analysis) that f is inf-compact ⇐⇒ ∃λ0 such that

Sλ0(f) is compact, where Sλ0(f) is a level set of f . It holds, according to this result, that fk
is inf-compact. �

Definition 2. Let h : Rn −→ R be a convex function. We call Prox mapping of h the mapping
defined as follows:

y −→ Ψ(y, x) = h(y) +
1

2
‖y − x‖2 (x ∈ Rn).

Remark 4. The mapping Ψ is strongly convex.

Put

Prox(h;x) = arg min
y∈Rn

Ψ(y, x).

We have, according to R.T. Rockafellar ([7], Theo.31.5, p.340),

(12) ‖Prox(h;x1)− Prox(h;x2)‖ ≤ ‖x1 − x2‖
We have the following lemma:

Lemma 3. If y = argmin
y∈Rn

Ψ(y, x) and Ψ(z, x) ≤ Ψ(y, x) + ε then

‖z − y‖ ≤
√
2ε.

Proof. Since Ψ is strongly convex, we have

Ψ(y, x) ≤ Ψ(y, x)− 1
2
‖y − y‖2 , for all y.

For y = z, we have

Ψ(y, x) ≤ Ψ(z, x)− 1
2
‖z − y‖2 .

Then

Ψ(y, x) ≤ Ψ(y, x) + ε− 1
2 ‖z − y‖2

=⇒ ‖z − y‖2 ≤ 2ε =⇒ ‖z − y‖ ≤
√
2ε.

�

2.3. Study of the Convergence.
Let

{
xk
}
k
be a sequence satisfying:

f(xk+1) + rkh(x
k+1) +

1

2

∥∥∥xk+1 − xk
∥∥∥
2
≤ f(x) + rkh(x) +

1

2

∥∥∥x− xk
∥∥∥
2
+ εk,

where

εn ≥ 0 and
∑

n

εn < +∞.

Retake the Algorithm 3. We have the following theorem:
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Theorem 2. ([1]) Let
{
εk
}

be a sequence satisfying εn ≥ 0 and
∑

n

εn < +∞. Let {rk} be a

sequence such that

rk+1 > rk > 0 and lim
k
rk = +∞.

Then the sequence
{
xk
}
k
which satisfies

f(xk+1) + rkh(x
k+1) +

1

2

∥∥∥xk+1 − xk
∥∥∥
2
≤ f(x) + rkh(x) +

1

2

∥∥∥x− xk
∥∥∥
2
+ εk

is bounded.

Proof. First of all S �= ∅ (f is inf-compact). Let x ∈ S. Put

yk = arg min
y∈Rn

{
Ψ(y, xk) = fk(y) +

1

2

∥∥∥y − xk
∥∥∥
2
}
;

we remark that

Ψ(xk+1, xk) ≤ min
y∈Rn

Ψ(y, xk) + εk.

Then, according to the Lemma 4, we have
∥∥∥xk+1 − yk

∥∥∥ ≤
√
2εk.

On the other hand, yk = Prox(fk;x
k) and x = Prox(fk;x). According to the expression

(12), we have ∥∥∥yk − x
∥∥∥ ≤

∥∥∥xk − x
∥∥∥ .

Then ∥∥xk+1 − x
∥∥ =

∥∥xk+1 − yk + yk − x
∥∥ ≤

∥∥xk+1 − yk
∥∥+

∥∥yk − x
∥∥

≤
√
2εk +

∥∥xk − x
∥∥ < M +

∑

k

√
2εk < +∞.

Consequently
{
xk
}
is a bounded sequence. �

In the following theorem, we shall show that every limit point of this sequence is an element
of S.

Theorem 3. Let {xs}s be a convergent subsequence which converges to x, then x is an optimal
solution of (P).
To show this theorem we have need to the following lemma:

Lemma 4. Let Skδ be the set

Skδ := {x ∈ Rn : fk(x) ≤ α+ δ} .
There exists Mk

δ > 0 (k is defined in the Lemma 3) such that

(13) < g, x− y >≥Mk
δ ‖x− y‖

for all x /∈ Skδ , y ∈ S, g ∈ ∂fk(x), k ≥ k.

Proof. Let z be the intersection point of [x, y] with the boundary of Skδ such that x /∈ Skδ and
y ∈ S. Then fk(z) = α+ δ. On the other hand,

fk(z) ≥ α+ δ (k ≥ k) =⇒ fk(z)− fk(y) ≥ α+ δ − α = δ.

But we know that

f
′

(x, y − x) ≤ f(y)− f(x) and f(x)− f(y) ≤ f
′

(x, x− y)

(classical result of derivation), then we have

fk(z)− fk(y) ≤ f
′

k(z, z − y) ≤ f
′

k(x, z − y).
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But

z = y + ‖z−y‖
‖x−y‖(x− y) =⇒ δ ≤ f

′

k(x, z − y) = f
′

k(x,
‖z−y‖
‖x−y‖(x− y))

=⇒ f
′

k(x, z − y) ≥ δ
‖z−y‖ ‖x− y‖ =⇒ f

′

k(x, z − y) ≥Mk
δ ‖x− y‖

with

Mk
δ := inf

{
δ

‖z′ − y′‖ , y
′ ∈ S, z

′ ∈ Fr(Skδ )

}
> 0.

Since Skδ ⊂ Skδ , we have Mk
δ ≥Mk

δ , thus

(14) f
′

k(x, z − y) ≥Mk
δ ‖x− y‖ , for all k ≥ k.

If fk is a differentiable function at x, we have

f
′

k(x, z − y) =< ∇fk(x), z − y > .

Else, let g ∈ ∂fk(x), then g = lim
i
∇fk(xi), where xi −→ x.

Then

f
′

k(xi, z − y) =< ∇fk(xi), z − y >≥Mk
δ ‖xi − y‖

=⇒ lim
i
< ∇fk(xi), z − y >≥ lim

i
Mk
δ ‖xi − y‖

=⇒< g, z − y >≥Mk
δ ‖x− y‖

thus wich shows the lemma. �

For the proof of the previous theorem, we consider the following notations inspired of ([1]):

rk(δ) := sup
y∈Sk

δ

inf
x∈S

‖x− y‖ ; T∞δ :=

{
x ∈ Rn : fk(x) ≤ α+

1

2
r2k(δ)

}
;

Akδ := Skδ ∪ T kδ ; qk(δ) := sup
y∈Ak

δ

inf
x∈S

‖x− y‖ ; εp(k) := max
j>k

εj

Akpδ := Akδ +B(0;
√
2εp); qkp(δ) = sup

y∈Akp
δ

inf
x∈S

‖x− y‖ ;

and

Wδk := S +B(0; qk p(k)(δ)).

We have

(15) lim
(k−→+∞,δ−→0)

qk p(k)(δ) = 0.

To show the Theorem 6, we have need also to the following definition:

Definition 3. Let C ⊆ R
n. The relative interior of the set C, denoted ri(C), is defined as

follows:

(16) ri(C) := {x ∈ C : ∃ε > 0, (x+ εC) ∩ aff(C) ⊆ C}
with

x+ εC := {y ∈ Rn : ‖x− y‖ ≤ ε}
and aff(C) is the affine hull of C.

Proof. (of Theorem 6) Denote

K :=
{
s ≥ k : xs /∈ Skδ , y

s /∈ Skδ

}
, Kc :=

{
s ≥ k : s /∈ K

}
.

We shall show that there exists s such that xs ∈ Kc, for all s ≥ s.
Indeed; if xs /∈ Skδ , y

s /∈ Skδ , we have (x
s − ys) ∈ ∂fk(y

s).
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Indeed; according to the definition of ys we have for all y,

fk(y) ≥ fk(y
s) + 1

2(‖ys − xs‖2 − ‖y − xs‖2)

≥ fk(y
s) + 1

2(< ys − xs, ys − xs > − < y − xs, y − xs >)

≥ fk(y
s) + 1

2(< ys − xs, ys − xs > − < y + ys − ys − xs, y − xs >)

≥ fk(y
s) + 1

2(< ys − xs, ys − y > + < y − ys, y − xs >)

≥ fk(y
s) + 1

2(< ys − xs, ys − y > + < y − ys, y − ys + ys − xs >)

≥ fk(y
s) + 1

2(2 < ys − xs, ys − y > +
∥∥y − y2

∥∥2),
which implies

fk(y) ≥ fk(y
s)+ < xs − ys, y − ys > .

According to the Lemma 7, we have

< xs − ys, ys − y >≥Mk
δ ‖ys − y‖ , for all y ∈ S,

on the other hand, owing to this formula

< xs − y, ys − y >=< xs − ys, ys − y > + < ys − y, ys − y >

≥Mk
δ ‖ys − y‖+ ‖ys − y‖2 .

Thus
< xs − y, ys − y >≤ ‖xs − y‖ ‖ys − y‖

=⇒ ‖xs − y‖ ‖ys − y‖ ≥Mk
δ ‖ys − y‖+ ‖ys − y‖2 ,

it holds that

(17) ‖xs − y‖ ≥Mk
δ + ‖ys − y‖

The Lemma 4 and the formula (17) give

(18)

∥∥xs+1 − y
∥∥ ≤

∥∥xs+1 − ys
∥∥+ ‖ys − y‖

≤ √2εs + ‖xs − y‖ −Mk
δ <

√
2εs + ‖xs − y‖

We remark that if s is too large, the formula (18) does not satisfied; then there exists s
such that xs ∈ Kc, for all s ≥ s.
We notice that if s ≥ s, then we have two cases:

xs /∈ Skδ and ys ∈ Skδ or xs ∈ Skδ and some ys.

. If xs /∈ Skδ and ys ∈ Skδ , according to the Lemma 4, we have∥∥xs+1 − ys
∥∥ ≤ √2εs =⇒ xs+1 ∈ Skδ +B(0;

√
2εs)

=⇒ xs+1 ∈ Akδ +B(0;
√
2εs) = Akpδ

then xs+1 ∈Wδk.
. If xs ∈ Skδ and some ys, we have xs+1 ∈Wδk.
Indeed;

f(ys) + rsh(ys) +
1
2 ‖ys − xs‖2 ≤ f(x) + 1

2 ‖x− xs‖2 , ∀x ∈ S

=⇒ f(ys) + rsh(ys) ≤ f(x) + 1
2 ‖x− xs‖2 , ∀x ∈ S

≤ α+ 1
2r
2
s(δ).

Hence

fs(y
s) ≤ α+

1

2
r2s(δ) =⇒ ys ∈ T sδ .
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According to the Lemma 4, we have
∥∥xs+1 − ys

∥∥ ≤ √2εs =⇒ xs+1 ∈ T sδ +B(0;
√
2εs)

=⇒ xs+1 ∈ Asδ +B(0;
√
2εs) =⇒ xs+1 ∈ Aspδ =⇒ xs+1 ∈Wδk.

Where from the following conclusion: xs+1 ∈Wδk, for all s ≥ s, then

d(xs, S) ≤ qsp(s)(δ), for s ≥ s+ 1.

If we make the limit on s when s tends to +∞ and δ tends to 0, we find a result according
to the expression (16) of the Definition 3. �

Stopping Test:
We notice, first of all, according to the Theorem 1 that

(xk − xk+1) ∈ ∂(f + rkh)(x
k+1),

then,
ξ ∈ ∂h(xk+1) =⇒ gk+1 = ((x

k − xk+1)− rkξ) ∈ ∂f(xk+1).

For the stopping test in the Algorithm 3, we propose the following test:

‖gk+1‖
∥∥∥xk+1 − xk

∥∥∥ ≤ εk,

where gk+1 ∈ ∂f(xk+1).
We have the following proposition:

Proposition 1. Let δ > 0, if ‖gk+1‖
∥∥xk+1 − xk

∥∥ < δ then f(xk+1) ≤ f(x) + δ, where x is
an optimal solution of (P).
Proof. Admitting that ∥∥∥xk+1 − xk

∥∥∥ ≃
∥∥∥x− xk+1

∥∥∥ ,

then, we have
f(x) ≥ f(xk+1)+ < gk+1, x− xk+1 >

=⇒ f(x) ≥ f(xk+1)− ‖gk+1‖
∥∥x− xk+1

∥∥

=⇒ f(x) ≥ f(xk+1)− ‖gk+1‖
∥∥xk+1 − xk

∥∥

=⇒ f(x) ≥ f(xk+1)− δ =⇒ f(xk+1) ≤ f(x) + δ.

�

2.4. Numerical Experiments.
In this paragraph, we propose some numerical examples illustrating the convex nondiffer-

entiable programming algorithms that we displayed in this work.
Let us remind that the previous algorithms consist in resolving a sequence of unconstrained

problems every problem of which must be resolved by the Algorithm 4 below by making the
linesearch given by the expression (20) below.

Example 1. Consider the following problem:

(P)





α := Inf

{
f(x) =

3
max
i=1

(xtAix+ btix+ ci)

}

subject to x21 + 3x2 + 2x1 ≤ 0,
where

A1 =

(
2 −1
1 4

)
, b1 =

(
2
−1

)
, c1 = 4;

A2 =

(
2 1
1 4

)
, b2 =

(
0
−2

)
, c2 = −5;

A3 =

(
2.5 2
0.5 2

)
, b3 =

(
4
−3

)
, c3 = 3;
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x0

initial
k

k
total

xk f(xk) rk εk rkh(x
k)

sk =
‖gk‖ .∥∥xk+1 − xk

∥∥
time
s

(2, 0) 4 196 (−0.391, 0.210) 3.49 104 10−4 10−86.0 10−72.0 0.17
(4, 3) 6 268 (−0.460, 0.236) 3.49 106 10−6 10−8 10−22.0 0.22
(−2, 1) 5 379 (−0.404, 0.215) 3.48 105 10−5 10−92.0 10−87.0 0.28

Table 1

ε-Proximal Penalty algorithm: (δ = 10−6)

F��
�� 1. The objective function value at each step

Example 2. Consider the following optimization problem:

(P)
{

α := Inf
{
f(x) = max(2x+ 2, (x+ 1)2, x2 + 1)

}

subject to 2x+ 3 ≤ 0.

x0

initial
k

k
total

xk f(xk) rk εk rkh(x
k) sk = ‖gk‖

∥∥xk+1 − xk
∥∥ time

s
5 4 15 −1.5 3.25 104 10−4 10−55.6 10−125.5 0.06
62 7 26 −1.5 3.25 107 10−7 10−85.6 10−125.5 0.06
−412 4 15 −1.5 3.25 104 10−4 10−55.6 10−125.5 0.05

Table 2

ε-Proximal Penalty algorithm: (δ = 10−11)

Example 3. Consider the following optimization problem:

(P)






α := Inf {f(x) = max(f1(x), f2(x))}
subject to

{
x1 + 2x2 ≤ 0
x2 + 1 ≤ 0 ,

where

f1(x) = x21 + x22 − x2 − x1 − 1; f2(x) = 3x21 + 2x22 + 2x1x2 − 16x1 − 14x2 + 22
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F��
�� 2. The objective function value at each step

x0

initial
k

k
total

xk f(xk) rk εk rkh(x
k)

sk =
‖gk‖

∥∥xk+1 − xk
∥∥

time
s

(2, 0) 6 20 (2,−1) 14 106 10−6 10−69.0 10−95.0 0.05
(−4, 3) 6 24 (2,−1) 14 106 10−6 10−69.0 10−93.0 0.05
(6,−7) 6 24 (2,−1) 14 106 10−6 10−69.0 10−93.0 0.06

Table 3

ε-Proximal Penalty algorithm:(δ = 10−8)

F��
�� 3. The objective function value at each step

Example 4. Consider the following optimization problem:

(P)






α := Inf {f(x) = max(f1(x), f2(x), f3(x))}
subject to

{
x1 − x2 + 1 ≤ 0
2x2 − 1 ≤ 0 ,

where
f1(x) = x21 + x22; f2(x) = (x1 + x2)

2; f3(x) = (2x1 + 3x2)
2.
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x0

initial
k

k
total

xk f(xk) rk εk rkh(x
k)

sk =
‖gk‖ .∥∥xk+1 − xk

∥∥
time
s

(3, 2) 6 35 (−0.5, 0.5) 0.5 106 10−6 10−76.7 10−75.7 0.06
(5, 4) 6 33 (−0.5, 0.5) 0.5 106 10−6 10−79.1 10−79.8 0.05
(−2,−4) 6 27 (−0.5, 05) 0.5 106 10−6 10−6 10−61.2 0.05

Table 4

ε-Proximal Penalty algorithm: (δ = 10−5)

Example 5. Consider the following optimization problem:

(P)






α := Inf

{
f(x) =

3
max
i=1

(xtAix+ btix+ ci)

}

subject to

{
x1 + x3 ≤ 0
2x1 + 1 ≤ 0 ,

where

A1 =




1 0 1
1 1 0
0 0 1



 , b1 =




1
−1
0



 , c1 = 0;

A2 =




1 0 0
−1 1 0
0 0 1



 , b1 =




0
1
0



 , c2 = −2;

A3 =




1 −1 0
0 1 0
0 0 1



 , b1 =




0
0
0



 , c3 = 2;

x0

initial
k

k
total

xk f(xk) rk εk rkh(x
k)

sk =
‖gk‖ .∥∥xk+1 − xk

∥∥
time
s

(1, 2, 4) 8 36 (0,−0.5, 0) 2.25 109 10−9 10−116.3 10−103.4 0.11
(2, 8, 0) 3 19 (0,−0.5, 0) 2.25 104 10−4 10−66.3 10−101.4 0.06
(−2,−1, 5) 9 37 (0,−0.5, 0) 2.25 1010 10−10 10−101.4 10−136.9 0.11

Table 5

ε-Proximal Penalty algorithm: (δ = 10−9)

Example 6. Consider the following optimization problem:

(P)






α := Inf





f(x) =






−x+ |x|+ e|x| if x ≤ 0

x2 + |x|+ e|x| else






subject to x+ 1 ≤ 0.

x0

initial
k

k
total

xk f(xk) rk εk rkh(x
k)

sk =
‖gk‖

∥∥xk+1 − xk
∥∥

time
s

1 11 33 −1 4.718 1011 10−11 10−115.6 10−124.3 0.05
−2 5 14 −1 4.718 105 10−5 10−55.6 10−124.3 0.06
−1.5 5 14 −1 4.718 105 10−5 10−55.6 10−124.3 0.05

Table 6

ε-Proximal Penalty algorithm: (δ = 10−11)
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2.5. Comments and Conclusions.
Basing itself on the results obtained in the previous experiments, we can make the following

remarks:
for the ε-Proximal penalty algorithms, we have used the classical penalty functions

h(x) =
m∑

i=1

(gi(x))
2

and the sequence (rk)k such that rk+1 = 10rk.
Generally, the obtained solutions are enough precise.
The number of iterations depends, on one hand of the algorithm used to resolve the un-

constrained subproblems, on the other hand on initial points. This approach possesses the
property of the global convergence.
From a theoretical point of view, this approach uses the regularization of Prox. It makes

the regularity for the subproblems. So the idea to bring the resolution of primal problem to
a sequence of auxiliary problems.
The algorithm which we had used requiet the knowledge at least of a subgradient in every

step, and the value of the function to be minimized, then a difficulty concerning the determi-
nation of a subgradient which is, generally, difficult in practice.

3. A���
���

For the application of the algorithms of the results obtained previously in the case of
nondifferentiable problems, we need to introduce the BFGS method within the framework
of nondifferentiable optimization for the resolution of unconstrained subproblems. Then we
give an algorithm concerning the line-search.
We saw in the previous algorithms that we need, in every step, to resolve a problem without

constraints whose objective function is nondifferentiable. For it we propose the BFGS algo-
rithm. The calculation of a descent direction at xk, in this algorithm, requests the knowledge
of the value of f(xk) and an arbitrary subgradient g ∈ ∂f(xk).
Then we have the necessary steps of this algorithm:
Algorithm 4: ([5])
Step 0:
Let x0 ∈ Rn, k = 0, g0 ∈ ∂f(x0), B0 = Id, δ > 0.
Compute t0 by a line-approach along the direction d0 = −B0g0.
Compute

x1 = x0 + d0.

If ‖g0‖
∥∥x1 − x0

∥∥ ≤ δ stop, else go to step 1:
Step 1:
Compute tk by a line-approach along the direction

(19) dk = −Bkgk.
Compute xk+1 by the following iterative process:

(20) xk+1 = xk + tkdk,

where

(21)






B0 = Id

Bk+1 = Bk + (1 +
γt
k
.Bk.γk
δtk.γk

)
(δk.δ

t
k)

(δtk.γk)
− δk.γ

t
k
.Bk+Bk.γk.δ

t
k

δt.γk
,

with
δk = xk+1 − xk, γk = gk+1 − gk.

Step 2:
If

‖gk‖
∥∥∥xk+1 − xk

∥∥∥ ≤ δ

stop, else k −→ k + 1 and return to the step 1.
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3.1. Linesearch.
Before giving the procedure of the linesearch, we need to the following lemmas:

Lemma 5. ([4]) If ∃t0 ≥ 0 and g ∈ ∂f(x+ t0d) such that < g, d >≥ 0, then there exists t ≥ 0
such that

(i) t > t =⇒< g, d >≥ 0, ∀g ∈ ∂f(x+ td)

(ii) t < t =⇒< g, d >≤ 0, ∀g ∈ ∂f(x+ td).

Moreover, t minimizes f in the direction d and

∃g ∈ ∂f(x+ td) such that < d, g >= 0.

Proof. Consider the following convex function h(t) = f(x+ td).
Let us notice at first that h(t) ≥ h(0) for t ≤ 0, and h(0) ≥ h(t) for t ≥ 0. Let t > 0.
We have

(22) ∂h(t) = {< d, g >: g ∈ ∂f(x+ td)}
For t ≥ t0, we have

f(x+ td) ≥ f(x+ t0d) + (t− t0) < d, g >≥ f(x+ t0d) =⇒ h(t) ≥ h(t0).

The function h(t) attains its minimum at a point t ∈ [0, t0]. Then, ∀t < t, ∀g ∈ ∂f(x+ td),
we have

h(t) ≥ h(t) ≥ h(t) + (t− t) < d, g >,

hence
< d, g >≤ 0.

On the other hand, ∀t > t, ∀g ∈ ∂f(x+ td), we have

h(t) ≥ h(t) ≥ h(t) + (t− t) < d, g >,

thus
< d, g >≥ 0.

Finally, because t minimize h(t) whithout constraints (because h(t) ≤ h(0) ≤ h(t) for
t < 0), then 0 ∈ ∂h(t), hence

∃g ∈ ∂f(x+ td) such that < d, g >= 0.

�

To make our linesearch, we are going to be inspired by this lemma. Let us call t the optimal
step in the direction of d.
We are going to try hard to frame t by two values t1 and t2, such that:
(a) at t1 we shall have a subgradient g1 ∈ ∂εf(x);
(b) at t2 we shall have a subgradient g2 ∈ ∂εf(x+ t2d) such that

< g2, d >≥ −m ‖d‖2 ,
where 0 ≤ m ≤ 1.
Calculating a convex combination

g = λg1 + (1− λ)g2, 0 ≤ λ ≤ 1
suitably chosen, we can arrive at the following conclusion:

(23) g ∈ ∂εf(x) and < g, d >≥ −m ‖d‖2 .
Remark 5. 1) The ε-subgradient g in the expression (20) is a subgradient nowhere, but it has
no importance.
2) The properties

g ∈ ∂εf(x) and < g, d >≥ −m ‖d‖2
mean that:
on one hand

g ∈ ∂εf(x) =⇒ f(x+ td) ≥ f(x) + t < g, d > −ε =⇒< g, d >≤ ε

t
,
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thus t is big enough (Lemma 9);
on the other hand,

< g, d >≥ −m ‖d‖2
implies t is enough small (Lemma 9). In this case we can take t as an optimal step.

Let us envisage now the most current case where t ∈ ]0,+∞[. Suppose
g1 ∈ ∂f(x+ t1d)

such that
f(x+ t1d) ≥ f(x)− ε

and
g2 ∈ ∂f(x+ t2d)

such that
f(x+ t2d) ≥ f(x)− ε.

We have the following lemma:

Lemma 6. In order that
g = λg1 + (1− λ)g2, 0 ≤ λ ≤ 1

is an element of ∂εf(x), it is enough that

(24) λt1 < g1, d > +(1− λ)t2 < g2, d >≤ 0
Proof. We have

f(y) ≥ f(x+ t1d)+ < g1, y − x− t1d >, ∀y

f(y) ≥ f(x+ t2d)+ < g2, y − x− t2d >, ∀y.
By convex combination we obtain

∀y ∈ Rn, f(y) ≥ λf(x+ t1d) + (1− λ)f(x+ t2d) + λ < g1, y − x− t1d >

+(1− λ) < g2, y − x− t2d > .

Since
f(x+ tid) ≥ f(x)− ε (i = 1, 2),

this implies
∀y ∈ Rn, f(y) ≥ f(x)− ε+ < λg1 + (1− λ)g2, y − x >

−(λt1 < g1, d > +(1− λ)t2 < g2, d >).

According to the expression (21), we have

f(y) ≥ f(x)+ < λg1 + (1− λ)g2, y − x > −ε,
hence the lemma is shown. �

Consequently the linesearch can be stopped with

g = λg1 + (1− λ)g2

as soon as λ ∈ [0, 1] satisfy simultaneously

(25)






< λg1 + (1− λ)g2, d >≥ −m ‖d‖2

λt1 < g1, d > +(1− λ)t2 < g2, d >≤ 0
Let us synthetize the previous results. We are going to execute a linesearch in two phases.

The first one consists in extrapolating t1 so as to find one t2 if it exists there. The second
phase will be a sequence of interpolation between t1 and t2.
Algorithm 5: ([4])
1st Phase:
(a) Let t1 ≥ 0 and g1 ∈ ∂f(x+ t1d) such that < g1, d >≤ −m ‖d‖2 .
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(b) Let t > t1 be given. Compute f(x+ td) and g ∈ ∂f(x+ td). We test

f(x+ td) < f(x)− ε.

If yes, end (we take t as an optimal step).
Else, we go to the following step:
(c) Test

< g, d >< −m ‖d‖2 .
If yes, t is enough small. We shall put t1 = t, g1 = g; we lock up at (b).
Else, we go to the following step:
(d) Test

f(x+ td) ≥ f(x) + t < g, d > −ε.
If yes, stop, we set t1 as an optimal step.
Else,
(e) set t2 = t and g2 = g and go to the second phase.
2d Phase:
(a

′

) We test if there exists λ satisfying simultaneously:





0 ≤ λ ≤ 1

λ < g1, d > +(1− λ) < g2, d >≥ −m ‖d‖2

λt1 < g1, d > +(1− λ)t2 < g2, d >≤ 0.
If yes, end and we have

g = λg1 + (1− λ)g2
where

< g, d >≥ −m ‖d‖2 and g ∈ ∂εf(x).

We take
t = λt1 + (1− λ)t2.

Else, we go to the next step: (b
′

) We interpolate between t1 and t2: let t ∈ ]t1, t2[. We
compute f(x+ td) and g ∈ ∂f(x+ td). We test

f(x+ td) < f(x)− ε.

If yes, stop (we take t as an optimal step). Else, we go to the next step: (c
′

) Compute < g, d >.
If

< g, d >≤ −m ‖d‖2 ,
t is enough small: we proclaim t1 = t and g1 = g and we lock up at (a

′

). Else, we go to the
next step: (d

′

) If < g, d >≥ 0, t is too large: we proclaim t2 = t and g2 = g and we lock up

at (a
′

). Else: (e
′

) end, we take t as an optimal step. We summarize this paragraph by giving
a possible organigram for the linesearch. Generally, we choose m = 0.1 and t1 = 0.
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F��
�� 4.



EPSILON-PROXIMAL POINT ALGORITHMS FOR NONDIFFERENTIBLE CONVEX... 195

3.2. Comments.
In the previous algorithm, we notice that:

• if (a) is not verified we go to (2);
• at (d) we have

g ∈ ∂εf(x) and < g, d >≥ −m‖d‖2 ;
• in the second phase, we have

g1 ∈ ∂f(x+ t1d) and g2 ∈ ∂f(x+ t2d)

< g1, d >< −m ‖d‖2 and < g2, d >≥ −m ‖d‖2

and also
f(x+ t1d) ≥ f(x)− ε and f(x+ t2d) ≥ f(x)− ε,

thus, according to the Lemma 10, we can find λ satisfying (a
′

). Then, if the value λ,
as in the organigram, satisfies (a

′

) we stop, otherwise we go to (b
′

);

• at (e′), we have −m ‖d‖2 << g, d >< 0, then, it is finished because

< g, d >≥ −m ‖d‖2

and that
f(x+ td) ≥ f(x)− ε

0 ≥ t < g, d >





=⇒ g ∈ ∂εf(x).

In the previous organigram:

• if (1) take place then we are in (b);
• if (2) take place then we are in (d);
• if (3) take place then we are in (a′);
• if (4) take place then we are in (e′).
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