
AMO - Advanced Modeling and Optimization, Volume 14, Number 1, 2012
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Abstract. Recently, the alternating direction method(ADM) has gained tremendous inter-

est in the area of applied sciences, such as the image processing, and matrix decomposition.

In this paper, we propose a new alternating direction method for structured variational in-

equalities, which only needs functional values in the solution process. We give a new residual

function r(u, β), and based on it a new descent direction d(u, β) is obtained. Under Lipschitz

continuity of the underlying function f(·), its global convergence is proved. Some computa-

tional results are given to illustrate its efficiency.
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1 Introduction

Let A ∈ Rm×n and b ∈ Rm, X ⊂ Rn be a nonempty closed convex set and f be continuous mapping

from Rn into itself. In this paper, we focus on the following constrained variational inequalities: find

x∗ ∈ S, such that

(x− x∗)⊤f(x∗) ≥ 0, ∀x ∈ S, (1)

where

S = {v ∈ Rn|Av = b, v ∈ X} (2)

or

S = {v ∈ Rn|Av ≤ b, v ∈ X} (3)

By attaching a Lagrangian multiplier vector y ∈ Y = Rm and y ∈ Y = Rm
+ to the linear equality

constraints Av = b and Av ≤ b, respectively, problem (1) can be converted into the following equivalent

form, denoted by VI(F,U):

Find u∗ ∈ U , such that (u− u∗)⊤F (u∗) ≥ 0 ∀u ∈ U , (4)
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where

u =

 x

y

 , F (u) =

 f(x)−A⊤y

Ax− b

 , and U = X × Y.

A typical method for solving VI(F,U) is the decomposition method proposed by Gabay[1] and Gabay

and Mercier[2], which is attractive for large-scale problems since it decompositions the original problem

to a series of small-scale VI problems. However, solving the sub-VI exactly could be computationally

intensive by itself. To overcome this difficulty, He and Zhou[3], Han[4-6], Sun[7] proposed some modified

alternating direction methods which only needs some projections onto simple sets and calculate some

matrix-vector products. Most recently, Abdellah et al.[8] extended this type method to general vari-

ational inequalities and they claimed that an efficient alternating direction method is constructed and

showed its global convergence. Recently, the alternating direction methods (ADM) have gained impres-

sive applications in a wide range of applied science problems, such as the image processing and matrix

decomposition. In [10], the authors have applied ADM to solve the constrained total-variation image

restoration and reconstruction problem.

Motivated by the above research, in this paper, we propose a new alternating direction method for

VI(F,U). Note that in our method, we only needs functional values. Since we don’t use the concrete

structure of Y, our method can be extended to solve VI(F,U) with a proper set Y, however, the methods

in [3-6] can’t be extended to solve such problems.

The rest of this paper is organized as follows. In the next section, some basic concepts about variational

inequalities are presented. In Section 3, we describe the new alternating direction method in details, and

its global convergence is also analyzed. We report some preliminary computational results in Section 4

and some conclusions are given in Section 5.

2 Preliminaries

We first give the definition of projection operator which is defined as a mapping from Rn to a nonempty

closed convex subset K:

PK[x] := argmin{∥x− y∥|y ∈ K}, ∀x ∈ Rn.

The following well known properties of the projection operator will be used bellow.

Lemma 2.1. Let K be a nonempty closed convex subset of Rn. For any x, y ∈ Rn and any z ∈ K, the

following properties hold.

(x− PK[x])
⊤(z − PK[x]) ≤ 0, ∀x ∈ Rn, z ∈ K. (5)

∥PK[x]− PK[y]∥2 ≤ ∥x− y∥2 − ∥PK[x]− x+ y − PK[y]∥2, ∀x, y ∈ Rn. (6)
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It follows from (6) that

∥PK[x]− PK[y]∥ ≤ ∥x− y∥, ∀x, y ∈ Rn. (7)

Definition 2.1 (a) The underlying mapping f is said to be monotone on Rn if

(x− y)⊤(f(x)− f(y)) ≥ 0, ∀x, y ∈ Rn.

(b) The underlying mapping f is said to be Lipschitz continuous on Rn if there exists a constant

L > 0 such that

∥f(x)− f(y)∥ ≤ L∥x− y∥, ∀x, y ∈ Rn.

It is well known from Eaves [9] that VI(F,U) is equivalent to the following projection equation

u = PU [u− βF (u)], (8)

where β > 0 is an arbitrary but fixed parameter. Let

e(u, β) :=

 e1(u, β)

e2(u, β)

 =

 x− PX [x− β(f(x)−A⊤y)]

y − PY [y − β(Ax− b)]

 (9)

denote the residual error of the projection equation, then solving VI(F,U) is equivalent to finding the

zero points of the residual function e(u, β). We define

r(u, β) :=

 r1(u, β)

r2(u, β)

 =

 x− PX [x− β(f(x)−A⊤y)]

y − PY [y − β(A(x− r1(u, β))− b)]

 . (10)

From e1(u, β) = r1(u, β), it is obvious that finding zeros of e(u, β) is equivalent to finding zeros of r(u, β).

We make the following standard assumptions throughout this paper:

Assumptions. • f is a monotone and Lipschitz continuous mapping on X .

• The solution set of problem VI(F,U) , denoted by U∗, is nonempty.

• X is a simple closed convex set. That is, the projection onto the set is simple to carry out(e.g., X
is the nonnegative orthant Rn

+, or more generally, a box).

3 Main results

In this section, we describe our new alternating direction method formally, and prove its global conver-

gence. Firstly, setting ri = ri(u, β), i = 1, 2.

Lemma 3.1. Let u∗ = (x∗, y∗) ∈ U∗ be an arbitrary solution of VI(F,U), and the function f be a

monotone and Lipschitz continuous function, then for any u = (x, y) ∈ Rn+m, we have

(u− u∗)⊤d(u, β) ≥ ϕ(u, β),
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where

d(u, β) :=

 r1 + βA⊤r2 − βf(x) + βf(x− r1)

r2

 ,

and

ϕ(u, β) = ∥r1∥2 + ∥r2∥2 − βr⊤1 (f(x)− f(x− r1)) + βr⊤2 Ar1.

Proof. Setting x := x− β(f(x)−A⊤y) and z := x∗ in (5), we have

{x− β(f(x)−A⊤y)− PX [x− β(f(x)−A⊤y)]}⊤{PX [x− β(f(x)−A⊤y)]− x∗} ≥ 0,

combining with (10), we have,

[r1 − β(f(x)−A⊤y)]⊤(x− x∗ − r1) ≥ 0,

that is

r⊤1 (x− x∗) ≥ ∥r1∥2 + β[f(x)−A⊤y]⊤(x− x∗ − r1). (11)

From the assumption that u∗ is a solution of VI(F,U), we get

β(PX [x− β(f(x)−A⊤y)]− x∗)⊤(f(x∗)−A⊤y∗) ≥ 0.

i.e.,

β(x− x∗ − r1)
⊤(f(x∗)−A⊤y∗) ≥ 0. (12)

On the other hand, using the monotonicity of f , we obtain

β(f(PX [x− β(f(x)−A⊤y)])− f(x∗))⊤(PX [x− β(f(x)−A⊤y)]− x∗) ≥ 0,

i.e.,

βf(x− r1)
⊤(x− x∗) ≥ βr⊤1 (f(x− r1)− f(x∗)) + β(x− x∗)⊤f(x∗). (13)

Then adding (11)-(13), it follows that

(x− x∗)⊤(r1 + βf(x− r1))

≥ ∥r1∥2 + β(x− x∗ − r1)
⊤[f(x)− f(x∗)−A⊤(y − y∗)]

+βr⊤1 (f(x− r1)− f(x∗)) + β(x− x∗)⊤f(x∗)

= ∥r1∥2 + β(x− x∗ − r1)
⊤[f(x)−A⊤(y − y∗)] + βr⊤1 f(x− r1)

= ∥r1∥2 + β(x− x∗)⊤f(x)− βr⊤1 (f(x)− f(x− r1))

−β(x− x∗ − r1)
⊤A⊤(y − y∗).

(14)

Similarly, setting x := y − β(A(x− r1(u, β))− b) and z := y∗ in (5), we have

{y − β(A(x− r1)− b)− PY [y − β(A(x− r1)− b)]}⊤{PY [y − β(A(x− r1)− b)]− y∗} ≥ 0,
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i.e.,

{r2 − β[A(x− r1)− b]}⊤(y − y∗ − r2) ≥ 0. (15)

From the assumption that u∗ is a solution of VI(F,U) again, we get

β{PY [y − β(A(x− r1)− b)]− y∗}⊤(Ax∗ − b) ≥ 0,

i.e.,

β(y − y∗ − r2)
⊤(Ax∗ − b) ≥ 0. (16)

From (15)+(16), we have

(y − y∗)⊤r2 ≥ ∥r2∥2 + β(y − y∗ − r2)
⊤A(x− x∗ − r1). (17)

Then, we can get the assertion of this lemma follows directly from (14) and (17). The proof is completed.

Lemma 3.2. Let f be Lipschitz continuous with constant L and ϕ(u, β) be defined as in Lemma 3.1,

β < 2/(2L+ ∥A∥), then if u is not a solution of VI(F,U), we have

(u− u∗)⊤d(u, β) ≥ ϕ(u, β) ≥ τ∥r(u, β)∥2 > 0,

where τ = 1− β(L+ ∥A∥
2 ) > 0.

Proof. The assertion of this lemma is easy to get from Cauchy-Schwartz Inequality and the Lipschitz

continuity of f . This completes the proof.

Remark 3.1 Lemma 3.2 shows that −d(u, β) is a descent direction of the distance function ∥u− u∗∥2/2
whenever u is not a solution of VI(F,U). This fact has motivated us to construct the following algorithm.

Algorithm 3.1 Improved Alternating Direction Method

Step 0: Given ε > 0. Choose u0 ∈ U , γ ∈ (1, 2), β ∈ (0, 2/(2L+ ∥A∥)) and set k := 0;

Step 1: If ∥r(uk, β)∥ < ε, then stop; otherwise, goto Step 2.

Step 2: Calculate d(uk, β) from Lemma 3.2 and the optimal step size

ρk = τ∥r(uk, β)∥2/∥d(uk, β)∥2.

Step 3: Calculate the new iterate uk+1 = PU [u
k − γρkd(u

k, β)]. Set k := k + 1, go to Step 1.

Remark 3.2 If Y is a proper subset of Rm, our method is also effective.

Remark 3.3 From Lemma 3.2, we can adopt an Armijo line search procedure to remove the global

Lipschitz of f(·), because the Lipschitz constant L is difficult to evaluate even if f(·) is an affine mapping.

Now, we begin to investigate convergence of the proposed method.

Theorem 3.1. Let u∗ be a solution of VI(F,U) and let {uk} = {(xk, yk)} be the sequence obtained from

the Algorithm 3.1. Then {uk} is bounded and

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − γτρk(2− γ)∥r(uk, β)∥2.
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Proof. From the nonexpansivity of the projection operator and u∗ ∈ U , it follows that

∥uk+1 − u∗∥2

≤ ∥uk − γρkd(u
k, β)− u∗∥2

= ∥uk − u∗∥2 − 2γρk(u
k − u∗)⊤d(uk, β) + γ2ρ2k∥d(uk, β)∥2

≤ ∥uk − u∗∥2 − 2γρkτ∥r(uk, β)∥2 + γ2ρ2k∥d(uk, β)∥2

= ∥uk − u∗∥2 − γτρk(2− γ)∥r(uk, β)∥2,

where the second inequality follows from Lemma 3.2 and the last equality follows from the definition of

ρk. Thus, {uk} is bounded from the above inequality.

Lemma 3.3 Suppose that β < 2/(2L+ ∥A∥). Then for any k ≥ 0, there is ϖ > 0, such that

ρk ≥ ϖ.

Proof. The proof is simple, thus is omitted.

Now, we give the convergence of Algorithm 3.1.

Theorem 3.2 Suppose that the assumptions in Theorem 3.1 hold. Then, the whole sequence {uk}
converges to a solution of VI(F,U).
Proof. From Theorem 3.1 and Lemma 3.3, we have

∥uk+1 − u∗∥2 ≤ ∥uk − u∗∥2 − γτϖ(2− γ)τ∥r(uk, β)∥2.

Thus ∞∑
k=0

∥r(uk, β)∥2 < ∞,

which means that

lim
k→∞

∥r(uk, β)∥ = 0. (18)

Since {uk} is also bounded, it has at least one cluster point. Let u∞ = (x∞, y∞) be a cluster point of

the sequence {uk} and the subsequence {ukj} converges to u∞. Thus, from (18), we have

∥r(u∞, β)∥ = 0,

which implies that u∞ ∈ U∗. Setting u∗ := u∞, we again have

∥uk+1 − u∞∥ ≤ ∥uk − u∞∥,

and the whole sequence {uk} converges to u∞, a solution of VI(F,U). This completes the proof.
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4 Preliminary Computational Results

In this section, we illustrate the efficiency of our methods. The example used here is the test problem in

paper[5], which constraint set S and the mapping f are taken, respectively, as

S = {x ∈ R5
+|

5∑
i=1

xi = 10},

and

f(x) = Mx+ ρC(x) + q,

whereM is an R5×5 asymmetric positive matrix and Ci(x) = arctan(xi−2), i = 1, 2, · · · , 5. The parameter

ρ is used to vary the degree of asymmetry and nonlinearity. The data of example are illustrate as follows:

M =



0.726 −0.949 0.266 −1.193 −0.504

1.645 0.678 0.333 −0.217 −1.443

−1.016 −0.225 0.769 0.943 1.007

1.063 0.587 −1.144 0.550 −0.548

−0.256 1.453 −1.073 0.509 1.026


and

q = (5.308, 0.008 ,−0.938, 1.024, − 1.312)⊤.

In the experiment, we take the stopping criterion ε = 10−6 as the initial point. All programs are coded

in Matlab 7.1. ‘IN’ denotes the number of iterations and ‘CPU’ denotes the CPU time in seconds. The

problem has a unique solution x∗ = (2, 2, 2, 2, 2)′. We take β = 0.06, γ = 1.96 when ρ = 10 and

β = 0.006, γ = 1.98 when ρ = 20. The parameters used in Han’s method are same as those in [5].

The iteration numbers and the computational time for ρ = 10 and ρ = 20 are given in Table 1 and 2,

respectively.

The results in the Table 1 and Table 2 indicate that the performance of Algorithm 3.1 is better than

Han’s method.

5 Conclusions

In this paper, we present a new alternating direction method for monotone structured VI(f, S). Total

computational cost of the method is very tiny provided that the projection is easy to implement. Thus,

the new method is applicable in practice.
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Table 1: Numerical results for ρ = 10.

Starting point Method IN CPU

(0 2.5 2.5 2.5 2.5) Han’s method 29 0.01

Algorithm 3.1 18 0.01

(0 0 0 0 0) Han’s method 36 0.02

Algorithm 3.1 17 0.01

(25 0 0 0 0) Han’s method 49 0.02

Algorithm 3.1 36 0.01

(10 0 10 0 10) Han’s method 66 0.02

Algorithm 3.1 26 0.01

Table 2: Numerical results for ρ = 20.

Starting point Method IN CPU

(0 2.5 2.5 2.5 2.5) Han’s method 203 0.05

Algorithm 3.1 53 0.01

(0 0 0 0 0) Han’s method 209 0.05

Algorithm 3.1 42 0.01

(25 0 0 0 0) Han’s method 205 0.05

Algorithm 3.1 56 0.01

(10 0 10 0 10) Han’s method 120 0.02

Algorithm 3.1 44 0.01
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