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A Spectral-Type Conjugate Gradient Method for Nonsmooth Convex
Minimization ∗

Qiong Li†

Abstract. Conjugate gradient methods are efficient for smooth optimization problems, while

few researchers study conjugate gradient based methods for nonsmooth convex minimiza-

tion problems. In this paper by making full use of inherent properties of Moreau-Yosida

regularization we propose a spectral-type conjugate gradient method for nonsmooth convex

minimization, with a new line search on approximate value of the Moreau-Yosida regular-

ization function instead of its exact value. This algorithm is globally convergent under mild

conditions.
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1 Introduction

Let f : Rn → R be a nonsmooth convex function and consider unconstrained optimization

problems of the form

min
x∈Rn

f(x). (1.1)

The nonsmooth convex minimization problems are encounted in many application areas: for in-

stance, in economics [26], mechanics [23], and machine learning [31], etc. The most of methods

for solving nonsmooth convex problems may be divided in four main groups: subgradient meth-

ods [7, 14, 30], bundle methods [19, 22], smoothing technology [8, 11, 21, 24, 25, 27, 28] and

hybrid methods [2, 3, 4, 13]. In this paper we restrict our attention to a smoothing technique

technique. We adopt Moreau-Yosida regularization to convert nonsmooth problem (1.1) into a

smooth problem

min
x∈Rn

F (x), (1.2)
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where F : Rn → R is the so-called Moreau-Yosida regularization of f , which is defined by

F (x) = min
z∈Rn
{f(z) +

1

2λ
‖ z − x ‖2},

where λ is a positive parameter and ‖ · ‖ denotes the Euclidean norm.

The function F has some good properties: problems (1.1) and (1.2) are equivalent in the sense

that the solution sets of the two problems coincide with each other. F is a differentiable convex

function and has a Lipschitz continuous gradient even when the function f is nondifferentiable.

Thus, (1.1) can be solved by (1.2).

Existing methods for (1.2) are mainly Newton-type methods (see, e.g., [5, 6, 8, 11, 16, 17, 20,

21, 27, 28] and the references therein) and trust region method ( see, e.g., [18, 29, 32] and the

references therein). The algorithms studied in [8, 11, 21, 27, 28, 29] are implementable in the

sense that they utilize inexact values of the Moreau-Yosida regularization and its gradient. Rauf

and Fukushima in [28] make a direct application of the BFGS method to the Moreau-Yosida

regularization, which is globally convergent under the assumption of strong convexity of the

objective function. Sagara-Fukushima in [29] proposed an implementable trust-region method,

and proved its global convergence under the strong convexity assumption on the function to be

minimized.

It is well-known that nonlinear conjugate gradient methods are very efficient for large-scale

smooth optimization problems due to their simplicity and low storage. As far as we know,

few researchers study conjugate gradient based method for nonsmooth convex minimization,

which motivate us to propose a conjugate gradient based method for minimizing Moreau-Yosida

regularization F , with a new line search on approximate value of the function F instead of its exact

value. The line search rule is similar to but different from that in [11, 28]. In this paper, we will

focus on a spectral-type Fletcher-Reeves method (SVFR) which is a descent conjugate gradient

method, recently proposed by Lu et al [15] for solving smooth unconstrained optimization. Under

mild conditions, we prove the global convergence of the method. Note that the objective function

f need not be strongly convex.

The paper is organized as follows. In the next section, we briefly review some known results

about the objective function of (1.2) and some basic results in convex analysis and nonsmooth

analysis. In section 3, we derive our algorithm. Section 4 is devoted to proving its global

convergence. The last section contains some concluding remarks.

Throughout this paper, 〈·, ·〉 denotes inner product of two vectors.
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2 Preliminaries

In this section, we recall some basic results in convex analysis which are useful in the subsequent

discussions. Let θ : Rn → R be a function such that

θ(z) = f(z) +
1

2λ
‖ z − x ‖2,

Clearly θ(z) is strongly convex and hence p(x) = arg minz∈Rn θ(z) is well defined and unique.

Then F (x) can be expressed by

F (x) = f(p(x)) +
1

2λ
‖ p(x)− x ‖2 .

Denote the gradient of F (x) by g(x). Some features about F (x) can be seen in [12].

Properties

1. The function F is finite-valued, convex and everywhere differentiable with gradient

g(x) =
1

λ
(x− p(x)).

Moreover, the gradient mapping g : Rn → Rn is globally Lipschitz continuous with modulus
1
λ , i.e.,

‖ g(x)− g(y) ‖≤ 1

λ
‖ x− y ‖, ∀x, y ∈ Rn. (2.1)

2. x is an optimal solution to (1.1) if and only if g(x) = 0, namely p(x) = x.

It is obvious that F (x) and g(x) can be obtained by p(x). However p(x) is difficult or even

impossible to obtain. Fortunately, for each x ∈ Rn and any ε > 0, there exists a vector pa(x, ε) ∈
Rn, where the superscript character a means the approximation, such that

f(pa(x, ε)) +
1

2λ
‖ pa(x, ε)− x ‖2≤ F (x) + ε. (2.2)

Hence, we can use pa(x, ε) to define approximations of F (x) and g(x) by

F a(x, ε) = f(pa(x, ε)) +
1

2λ
‖ pa(x, ε)− x ‖2, (2.3)

and

ga(x, ε) =
1

λ
(x− pa(x, ε)). (2.4)

Implementable algorithms that are designed to find pa(x, ε) are introduced in [1, 9, 10]. The

following Proposition deriving from Fukushima and Qi [11] shows that with pa(x, ε) we can

compute approximation F a(x, ε) and ga(x, ε) to F (x) and g(x), respectively with any desired

accuracy.
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Proposition 2.1 Let pa(x, ε) be a vector satisfying

F a(x, ε) ≤ F (x) + ε,

and F a(x, ε) and ga(x, ε) be given by (2.3) and (2.4), respectively. Then we have

F (x) ≤ F a(x, ε) ≤ F (x) + ε, (2.5)

‖ pa(x, ε)− p(x) ‖≤
√

2λε, (2.6)

‖ ga(x, ε)− g(x) ‖≤
√

2ε

λ
. (2.7)

3 SVFR Type Algorithm Description

In this section, based on the idea of [15] we propose SVFR type method for solving (1.1), in

which the direction is defined by

dk =

{
−ga(xk, εk) if k = 0,

−θkga(xk, εk) + βSV FRk dk−1 if k ≥ 1,
(3.1)

where
yk−1 = ga(xk, εk)− ga(xk−1, εk−1),
βSV FRk =

‖ga(xk,εk)‖|〈ga(xk−1,εk−1),g
a(xk,εk)〉|

‖ga(xk−1,εk−1)‖3
,

θk =
|〈dk−1,ga(xk,εk)〉|−〈dk−1,ga(xk−1〉,εk−1)

‖ga(xk−1,εk−1)‖2
.

The complete algorithm is described as follows.

Algorithm 1: SVFR type algorithm

Step 0 Given constants σ1 ∈ (0, 1), ρ ∈ (0, 1), and σ2 > 0 and an initial point x0 ∈ Rn and

ε0 > 0. Let k := 0.

Step 1 Compute pa(xk, εk). Compute the search direction (3.1).

Step 2 Choose a scalar εk+1 such that 0 < εk+1 < εk. Let ik be the smallest nonnegative

integer i such that

F a(xk + ρidk, εk+1) ≤ F a(xk, εk) + σ1ρ
i〈ga(xk, εk), dk〉 − σ2ρ2i ‖ dk ‖2 +εk. (3.2)

Set αk = ρik and xk+1 = xk + αkd
k. Let k := k + 1. Go to Step 1.

Lemma 3.1 Suppose the direction dk is defined by (3.1), then we have

〈ga(xk, εk), dk〉 ≤ −‖ga(xk, εk)‖2. (3.3)
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Proof. It is obvious that (3.3) holds for k = 0. Suppose that dk−1 satisfies (3.3) for k ≥ 1. Due

to

0 ≤ βSV FRk ≤ ‖ga(xk, εk)‖2

‖ga(xk−1, εk−1)‖2
= βFRk .

We have

〈dk, ga(xk, εk)〉 = −θk‖ga(xk, εk)‖2 + βSV FRk 〈dk−1, ga(xk, εk)〉

≤ −θk‖gk‖2 + βFRk | 〈dk−1, ga(xk, εk)〉 |

= βFRk 〈dk−1, ga(xk−1, εk−1)〉

≤ −βFRk ‖ga(xk−1, εk−1‖2

= −‖ga(xk, εk)‖2.

2

Note βFRk ≤ 〈dk,ga(xk,εk)〉
〈dk−1,ga(xk−1,εk−1)〉

. We obtain

βSV FRk ≤ 〈dk, ga(xk, εk)〉
〈dk−1, ga(xk−1, εk−1)〉

. (3.4)

The following proposition ensures that, at each iteration k of the algorithm, αk is well defined

and can be determined finitely in Step 2.

Proposition 3.2 For every k, there exists ᾱk > 0 such that

F a(xk + τdk, εk+1) ≤ F a(xk, εk) + σ1τ〈ga(xk, εk), dk〉 − σ2τ2 ‖ dk ‖2 +εk, (3.5)

for all τ ∈ (0, ᾱk).

Proof. By Proposition 2.1, we have

F a(xk + τdk, εk+1) ≤ F (xk + τdk) + εk+1, (3.6)

F (xk) ≤ F a(xk, εk), (3.7)

〈g(xk), dk〉 − 〈ga(xk, εk), dk〉 = 〈g(xk)− ga(xk, εk), dk〉

≤ ‖ g(xk)− ga(xk, εk) ‖‖ dk ‖

≤
√

2εk
λ
‖ dk ‖ . (3.8)

Adding (3.6), (3.7) and (3.8) multiplied by τ , we obtain

F a(xk + τdk, εk+1) ≤ F a(xk, εk) + τ〈ga(xk, εk), dk〉+ εk+1 + τ

√
2εk
λ
‖ dk ‖

+F (xk + τdk)− F (xk)− τ〈g(xk), dk〉. (3.9)
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If dk = 0, then (3.8) implies that (3.5) holds for any τ > 0, because εk+1 < εk. Consider the case

dk 6= 0. By Lemma 3.1,

〈ga(xk, εk), dk〉 ≤ − ‖ ga(xk, εk) ‖2≤ 0,

so that

〈ga(xk, εk), dk〉 ≤ σ〈ga(xk, εk), dk〉. (3.10)

Given xk and dk, denote

φ(τ) = τ

√
2εk
λ
‖ dk ‖ +F (xk + τdk)− F (xk)− τ(g(xk), dk) + σ2τ

2 ‖ dk ‖2 .

Since F is continuous and εk+1 < εk, we have

lim
τ→0

φ(τ) = 0 < εk − εk+1.

Therefore there exists ᾱk > 0 such that φ(τ) < εk − εk+1 for all τ ∈ (0, ᾱk). That is,

εk+1 + τ

√
2εk
λ
‖ dk ‖ +F (xk + τdk)− F (xk)− τ(g(xk), dk) < −σ2τ2 ‖ dk ‖2 +εk (3.11)

for all τ ∈ (0, ᾱk). That (3.5) holds for all τ ∈ (0, ᾱk) follows from (3.9)-(3.11).

4 Global Convergence

In this section, we establish the global convergence of Algorithm 1 under Assumption A.

A1 f is bounded from below.

A2 Ω = {x ∈ Rn | F (x) ≤ F (x0) +
∞∑
i=0

εi} is bounded.

We note that this assumption is a weaker condition than the strong convexity of f as required in

[28, 29], which can be verified by the fact that the property of strong convexity of f is transmitted

to the Moreau-Yosida regularization F : If f is strongly convex, then F is strongly convex [17]

(Theorem 2.2), so we can deduce that the strong convexity of f implies the boundedness of Ω.

It is clear that the sequence {xk} generated by Algorithm 1 are contained in Ω. Combining this

assumption with the Lipschitz continuous property of the gradient g, we have that there exists a

constant γ > 0 such that

‖ g(x) ‖≤ γ, ∀x ∈ Ω. (4.1)

Combining (4.1) with Proposition 2.1, we obtain the conclusion that there exists a constant

γ1 > 0 such that

‖ ga(x, ε) ‖≤ γ1, ∀x ∈ Ω. (4.2)
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Lemma 4.1 Let {xk} and {dk} be generated by Algorithm 1. If the sequence {εk} of strictly

decreasing positive numbers satisfies the condition

∞∑
k=0

√
εk < +∞. (4.3)

Then the whole sequence {F a(xk, εk)} is convergent, and∑
k≥0
−αk〈ga(xk, εk), dk〉 < +∞. (4.4)

Proof. By the line search rule, it holds that

F a(xk+1, εk+1) ≤ F a(xk, εk) + σ1αk(g
a(xk, εk), d

k)− σ2α2
k ‖ dk ‖2 +εk (4.5)

for all k. By Lemma 3.1

〈ga(xk, εk), dk〉 ≤ − ‖ ga(xk, εk) ‖2≤ 0,

it follows that

F a(xk+1, εk+1) ≤ F a(xk, εk) + εk, (4.6)

and hence

F a(xk, εk) ≤ F a(x0, ε0) +

k−1∑
i=0

εi,

which together with the assumption
∞∑
k=0

√
εk < +∞ implies that the sequence F a(xk, εk) is

bounded from above. On the other hand, f is bounded from below by assumption, and hence

F is also bounded from below. Since F a(xk, εk) ≥ F (xk) for all k, the sequence {F a(xk, εk)} is

bounded from below. Therefore the sequence {F a(xk, εk)} has at least one accumulation point.

In fact, it can be shown in a way similar to the first part of the proof of Theorem 4.1 in [11] that

the whole sequence {F a(xk, εk)} is convergent. Applying the inequality (4.5) recursively, we have

F a(xk+1, εk+1) ≤ F a(x0, ε0) + σ1

i=k∑
i=0

αi(g
a(xi, εi), d

i)− σ2
i=k∑
i=0

α2
i ‖ di ‖2 +

i=k∑
i=0

εi.

That is,

σ1

i=k∑
i=0

−αi(ga(xi, εi), di) + σ2

i=k∑
i=0

α2
i ‖ di ‖2≤ F a(x0, ε0)− F a(xk+1, εk+1) +

i=k∑
i=0

εi. (4.7)

Since the whole sequence {F a(xk, εk)} is convergent, by taking the limit in (4.7) we have∑
k≥0

(−σ1αk〈ga(xk, εk), dk〉+ σ2α
2
k‖dk‖2) < +∞.
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This implies ∑
k≥0
−αk〈ga(xk, εk), dk〉 < +∞.

2

Lemma 4.2 Let {xk} and {dk} be generated by Algorithm 1. Then∑
k≥0

〈ga(xk, εk), dk〉2

‖dk‖2
< +∞. (4.8)

Proof. Now we prove (4.8) by considering the following two cases.

Case 1. αk = 1. We get from (3.3) ‖ga(xk, εk)‖ ≤‖ dk ‖ . Hence∑
k≥0

〈ga(xk, εk), dk〉2

‖dk‖2
≤

∑
k≥0
‖ga(xk, εk)‖2 ≤

∑
k≥0
−〈ga(xk, εk), dk〉 < +∞.

Case 2. αk < 1. By the line search step, i.e., Step 2 of Algorithm 1, ρ−1αk does not satisfy

inequality (3.2). This means

F a(xk + ρ−1αkd
k, εk+1)− F a(xk, εk) > σ1ρ

−1αk〈ga(xk, εk), dk〉 − σ2ρ−2α2
k ‖ dk ‖2 +εk. (4.9)

By the mean-value theorem and inequality (2.7), there is a tk ∈ (0, 1) such that xk+tkρ
−1αkd

k ∈ Ω

and

F (xk + ρ−1αkd
k)− F (xk) = ρ−1αk〈g(xk + tkρ

−1αkd
k), dk〉

≤ ρ−1αkgTk dk +
1

λ
ρ−2α2

k‖dk‖2.

Combining this with (2.5), we get

F a(xk + ρidk, εk+1)− F a(xk, εk) ≤ ρ−1αkgTk dk +
1

λ
ρ−2α2

k‖dk‖2 + εk+1.

Substituting this inequality into (4.9), we get

σ1〈ga(xk, εk), dk〉 − σ2ρ−1αk‖dk‖2 ≤ gTk dk +
1

λ
ρ−1αk‖dk‖2.

Due to (2.7), we get

−(1− σ1)〈ga(xk, εk), dk〉 −
√

2εk
λ
‖dk‖ ≤ (

1

λ
+ σ2)ρ

−1αk‖dk‖2,

which implies

αk > c(1− σ1)
−〈ga(xk, εk), dk〉

‖dk‖2
− c

√
2εk
λ

1

‖dk‖
,
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where c = ρ
1
λ
+σ2

. From (4.4), we obtain

∑
k≥0

((1− σ1)
〈ga(xk, εk), dk〉2

‖dk‖2
+

√
2εk
λ

〈ga(xk, εk), dk〉
‖dk‖

) < +∞.

Since ∑
k≥0
−
√

2εk
λ

〈ga(xk, εk), dk〉
‖dk‖

≤
∑
k≥0

√
2εk
λ
‖ga(xk, εk)‖ ≤

∑
k≥0

γ1

√
2εk
λ

< +∞,

the second inequality is due to (4.2). So (4.8) holds. 2

Theorem 4.3 Let {xk} and {dk} be generated by Algorithm 1. We have

lim inf
k→∞

‖gk‖ = 0. (4.10)

Proof. For the sake of contradiction, we suppose that the conclusion is not true. Then there

exists a constant ε > 0 such that

‖gk‖ ≥ ε, ∀k ≥ 0. (4.11)

From (2.7), we obtain there exists a constant ε∗ > 0 such that

‖ga(xk, εk)‖ ≥ ε∗, ∀k ≥ 0. (4.12)

We get from (3.1) and (3.4) that

‖dk‖2 = (βSV FRk )2‖dk−1‖2 − 2θk〈dk, ga(xk, εk)〉 − θ2k‖ga(xk, εk)‖2

≤ 〈dk, ga(xk, εk)〉2

〈dk−1, ga(xk−1, εk−1)〉

2

‖dk−1‖2 − 2θk〈dk, ga(xk, εk)〉 − θ2k‖ga(xk, εk)‖2

Dividing both sides of above inequality by 〈ga(xk, εk), dk〉2, we get from (4.12) that

‖dk‖2

〈ga(xk, εk), dk〉2
≤ ‖dk−1‖2

〈ga(xk−1, εk−1), dk〉2
− 2θk
〈dk, ga(xk, εk)〉

−
θ2k‖ga(xk, εk)‖2

〈ga(xk, εk), dk〉2

=
‖dk−1‖2

〈ga(xk−1, εk−1), dk〉2
− (

θk‖ga(xk, εk)‖
〈dk, ga(xk, εk)〉

+
1

‖ga(xk, εk)‖
)2 +

1

‖ga(xk, εk)‖2

≤ ‖dk−1‖2

〈ga(xk−1, εk−1), dk〉2
+

1

‖ga(xk, εk)‖2

≤
k∑
i=0

1

‖ga(xi, εi)‖2
≤ k + 1

ε2∗
.

The last inequality implies that∑
k≥0

〈ga(xk, εk), dk〉2

‖dk‖2
≥ ε2∗

∑
k≥0

1

k + 1
= +∞.

which contradicts (4.8). The proof is then complete. 2 .
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5 Concluding remarks

In this paper, by means of Moreau-Yosida regularization, by introducing a new line search on

the approximation to the Moreau-Yosida regularization, we propose a spectral-type conjugate

gradient method for nonsmooth convex minimization. The global convergence is established

under mild conditions.
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