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Abstract. This article presents a new self-adaptive prediction-correction method for solving

a class of linear variational inequalities. At each iteration, it only needs to perform some

orthogonal projections onto simple convex sets and some matrix-vector multiplications. The

method makes use of a new descent direction to produce the new iterate and can be also

viewed as a projection-based descent method. Convergence of the proposed method is proved

under certain conditions. Numerical experiments are carried out to show the efficiency and

robustness of our new method.
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1 Introduction

Given an n × n matrix H and a vector c ∈ Rn, the following constrained linear variational inequality

problem arises frequently in traffic equilibrium and network economics problems[1-3], which is to find a

vector x∗ ∈ S such that

(LVI(H, c, S)) (x− x∗)⊤(Hx∗ + c) ≥ 0, ∀x ∈ S, (1)

where

S = S1 = {x ∈ Rn|Ax = b, x ∈ X},

or

S = S2 = {x ∈ Rn|Ax ≤ b, x ∈ X},
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A ∈ Rm×n, b ∈ Rm, and X is a simple nonempty closed convex subset of Rn. For example, X is the

nonnegative orthant {x ∈ Rn|x ≥ 0}, or a box {x ∈ Rn|l ≤ x ≤ u}, or a ball {x ∈ Rn|∥x∥ ≤ r}.
By introducing Lagrangian multiplier y ∈ Y = Rm and y ∈ Y = Rm

+ to the linear constraints Ax = b

and Ax ≤ b, respectively, we obtain an equivalent form of LVI(H, c, S), denoted by LVI(M, q, Ω): Find

u∗ ∈ Ω, such that

(u− u∗)⊤(Mu∗ + q) ≥ 0,∀u ∈ Ω, (2)

where

u =

 x

y

 ,M =

 H −A⊤

A 0

 , q =

 c

−b

 ,Ω = X × Y .

Since the projection onto X is trivial, problem LVI(M, q, Ω) can be solved by some projection-based

methods[4-12]. The alternating direction method is an attractive projection-based method for the above

problem LVI(M, q, Ω); see [4,5,9-12], for example. Recently, paper [9] proposed the following alternating

direction method for solving problem LVI(M, q, Ω) with S = S1:

Given (xk, yk) ∈ X ×Rm, compute x̃k via

x̃k = PX [xk − 1

µk
(Hxk +A⊤(Axk − b)−A⊤yk + c)]. (3)

Then, find the next iterative point by

xk+1 = PX [xk − τρkBk(x
k − x̃k)],

yk+1 = yk − τρk(Ax̃
k − b),

where

ρk =
(xk − x̃k)⊤Bk(x

k − x̃k) + ∥Ax̃k − b∥2

∥Bk(xk − x̃k)∥2 + ∥Ax̃k − b∥2
,

and 0 < τ < 2, µk > ∥H+A⊤A∥, Bk = µkI−(H+A⊤A). The method is simple in the sense that, at each

iteration, it only to perform two projections onto simple set X and some matrix-vector multiplications.

Moreover, it adaptively select the parameters µk so as to improve its efficiency(see Step 4 of Algorithm

3.1 in [9]).

In what follows, we assume that the constraint set Y in problem LVI(M, q,Ω) is a proper subset of

Rm, and focus on this special class of linear variational inequality problems. Note that this special class

of variational inequalities can be expressed as follows, denoted by problem LVI(H, c,W )[6]: Find a vector

w∗ ∈ W , such that

(w − w∗)⊤Q(w∗) ≥ 0 ∀w ∈ W , (4)

where
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w =


x

y

z

 , Q(w) =


Hx+ c−A⊤y

z

Ax− z − b

 ,W = X × Y ×Rm.

The purpose of this paper is to present a self-adaptive prediction-correction method for solving problem

LVI(H, c,W ), which inherits all nice properties which the method in [9] has.

The paper is organized as follows. In Section 2, we summarize some basic definitions and properties

used in this paper, then we formally propose the new self-adaptive prediction-correction method, and

the global convergence of the method is proved. In Section 3, we report some preliminary computational

results of the proposed method. Section 4 gives some concluding remarks.

2 Algorithm and Convergence

We first give some basic properties and related definitions used in the subsequent sections. For a vector x ∈
Rn and a matrix C ∈ Rn×n, we denote ∥x∥ =

√
x⊤x as the Euclidean-norm and ∥C∥ = max{∥Cx∥

∥x∥ |∥x∥ ̸=
0} as the matrix 2-norm. Let K be a nonempty closed convex set in Rn, and we use PK [·] to denote the

orthogonal projection mapping from Rn onto K. That is,

PK [x] = argmin{∥x− y∥, y ∈ K}.

The following well-known properties of the projection operator will be used below.

Lemma 2.1. Let K be a nonempty closed convex subset of Rn. For any x, y ∈ Rn and any z ∈ K, the

following properties hold:

(x− PK [x])⊤(z − PK [x]) ≤ 0. (5)

∥PK [x]− PK [y]∥2 ≤ ∥x− y∥2 − ∥PK [x]− x+ y − PK [y]∥2. (6)

From (6), we can see that the projection operator PK [·] is nonexpansive, that is,

∥PK [x]− PK [y]∥ ≤ ∥x− y∥. (7)

It is well known[15] that problem LVI(H, c,W ) is equivalent to the projection equation

w = PW [w − βQ(w)],

where β is an arbitrary positive constant. Let

e(w, β) =


e1(w, β)

e2(w, β)

e3(w, β)

 =


x− PX [x− β(Hx+ c−A⊤y)]

y − PY [y − βz]

β(Ax− z − b)


3
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denote the residual function of the projection equation, thus problem LVI(H, c,W ) is equivalent to finding

a zero point of e(w, β). In the literatures[9-12], ∥e(w, β)∥ was viewed as a measure function, which

measures how much w fails to be a solution point of problem LVI(H, c,W ).

For any given w ∈ Rn+2m, the magnitude ∥e(w, β)∥ is dependent on β. The following lemma plays

an important role in our later convergence analysis.

Lemma 2.2. For any w ∈ Rn+2m and 0 < β1 < β2, we have

∥e(w, β1)∥ ≤ ∥e(w, β2)∥, (8)

and
∥e(w, β1)∥

β1
≥ ∥e(w, β2)∥

β2
. (9)

Proof. See Lemma 1 of [13] and (2.6) of [14]. Q.E.D.

Throughout this paper, we make the following standard assumptions.

Assumptions:

A. X and Y are simple closed convex sets. That is, the projection onto the set is simple to carry out.

B. H is a positive semi-definite matrix.

C. The solution set of problem LVI(H, c,W ), denoted by W ∗, is nonempty.

We are now in the position to describe our method formally.

Algorithm 2.1 A Self-adaptive Prediction-correction Method.

Step 0. Choose an arbitrary point w0 = (x0, y0, z0) ∈ W , and set a small number ε > 0 for the solution

accuracy, µ0 > 0, τ ∈ (0, 2), σ ∈ (0, 1), and a nonnegative sequence {γi} satisfying
∑∞

i=0 γi < ∞, set

k:=0.

Step 1. If

∥e(wk, 1)∥ ≤ ε,

then stop; else, goto step 2.

Step 2.(prediction step) Set

x̄k = PX [xk − 1

µk
(Hxk + c−A⊤yk)], (10)

ȳk = PY [y
k − 1

µk
zk], (11)

z̄k = zk − 1

µk
(Axk − zk − b). (12)

Step 3.(correction step) Set

d(wk, µk) =


Bk(x

k − x̄k) +A⊤(Axk − zk − b)

µk(y
k − ȳk) + (Ax̄k − zk − b)

(yk − ȳk)− (Axk − zk − b)

 . (13)
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where Bk = µkI −H. Then compute step size αk by

αk = τ
∥xk − x̄k∥2Bk

+ µk∥yk − ȳk∥2 + µ2
k∥zk − z̄k∥2

∥d(wk, µk)∥2
. (14)

Determine the next iterate wk+1 = (xk+1, yk+1, zk+1) via

wk+1 = PW [wk − αkd(w
k, µk)]. (15)

Step 4.(adjust µk)

µk+1 =


µk/(1 + γk), if w < σ,

(1 + γk)τk, if w > 1/σ,

µk, otherwise,

where

w =
∥Axk+1 − zk+1 − b∥

∥zk+1 − zk∥
.

Set k := k + 1 and goto Step 1.

Remark 2.1. The strategy of adjusting {µk} is similar to the technique presented in [6]. From γi ≥ 0

and
∑∞

i=0 γi < ∞, it follows that

Π∞
i=0(1 + γi) < ∞.

Then, the sequence {µk} is bounded, due to its updating rules in Step 4. That is to say,

inf{µk}∞1 := µmin > 0, sup{µk}∞1 := µmax < ∞.

From now on, we assume µmin > ∥H∥ to ensure that the matrix µkI −H is positive definite.

Remark 2.2. At each iteration, the method only need to perform some projections onto simple sets and

some matrix-vector multiplications, and thus its computational load is quite tiny.

To prepare for the convergence analysis of the new algorithm, we establish an important result.

Lemma 2.3. For any solution point w∗ ∈ W ∗, we have

(wk − w∗)⊤d(wk, µk) ≥ ∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2. (16)

Proof. Setting x = xk − (Hxk + c−A⊤yk)/µk and z = x∗ in (5), we have

(x∗ − x̄k)⊤[(µkI −H)xk +A⊤yk − c− µkx̄
k] ≤ 0,

that is

(x̄k − x∗)⊤[Bk(x
k − x̄k) +A⊤yk − (Hx̄k + c)] ≥ 0. (17)

Similarly, we have

(ȳk − y∗)⊤[µk(y
k − ȳk)− zk] ≥ 0. (18)
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Furthermore, because w∗ ∈ W ∗ is a solution of LVI(H, c,W ), we can get

(x̄k − x∗)⊤[(Hx∗ + c)−A⊤y∗] + (ȳk − y∗)⊤(Ax∗ − b) ≥ 0, (19)

and

Ax∗ − z∗ − b = 0. (20)

By adding (17)-(19), it follows that

(x̄k − x∗)⊤[Bk(x
k − x̄k) +A⊤(yk − y∗)] + (ȳk − y∗)⊤[µk(y

k − ȳk)− zk +Ax∗ − b]

≥ (x̄k − x∗)⊤H(x̄k − x∗).

Since H is positive semi-definite,

(x̄k − x∗)⊤H(x̄k − x∗) ≥ 0.

Thus

(x̄k − x∗)⊤[Bk(x
k − x̄k) +A⊤(yk − y∗)] + (ȳk − y∗)⊤[µk(y

k − ȳk)− zk +Ax∗ − b] ≥ 0.

It follows that

(xk − x∗)⊤Bk(x
k − x̄k) + (yk − y∗)⊤[µk(y

k − ȳk)− zk +Ax̄k − b]

+ (yk − ȳk)⊤(zk −Ax∗ + b) ≥ ∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2,

which is equivalent to the inequality

(xk − x∗)⊤Bk(x
k − x̄k) + (yk − y∗)⊤[µk(y

k − ȳk)− zk +Ax̄k − b]

+ (yk − ȳk)⊤(zk − z∗) ≥ ∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2.

(21)

From (12) and (20), we obtain

µ2
k∥zk − z̄k∥2

= ∥Axk − zk − b∥2

= (Axk − zk − b)⊤(Axk − zk − b)

= (Axk − zk −Ax∗ + z∗)⊤(Axk − zk − b)

= (xk − x∗)⊤A⊤(Axk − zk − b)− (zk − z∗)⊤(Axk − zk − b).

(22)

Then by adding (21) and (22), we get (16) immediately. Q.E.D.

Remark 2.3. Note that wk ∈ W ∗, when w̄k = wk . Therefore, we conclude that ∥d(wk, µk)∥ ̸= 0, when

wk ̸∈ W ∗. This fact explains that the step size (14) is well-defined.

Remark 2.4. In fact, Lemma 2.3 has proved that −d(wk, µk) is a descent direction of the merit function

1
2 ||w

k − w∗||2 whenever wk ∈ W is not a solution of LVI(H, c,W ).
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In the following, we assume that the Algorithm 2.1 generates an infinite sequence {wk}, otherwise,
an approximate solution wk ∈ W is obtained.

We first investigate the technique of identifying the optimal step sizes along the descent direction

−d(wk, µk). To justify the strategy of choosing the step size αk as in Step 3, we use

w̃k(α) := PW [wk − αd(wk, µk)].

to denote the temporary point wk taking α as the step size along −d(wk, µk). The following lemma

motivates us to identify the optimal step size along this direction.

Lemma 2.4. For given wk and µk > 0, we have

Θk(α) := ∥wk − w∗∥2 − ∥w̃k(α)− w∗∥ ≥ Φk(α),

where

Φk(α) = −α2∥d(uk, βk)∥2 + 2α(∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2).

Proof. Because w̃k(α) := PW [wk − αd(wk, µk)], by setting x = wk − αd(wk, µk) and y = w∗ in (6), we

obtain

∥w̃k(α)− w∗∥2 ≤ ∥wk − αd(wk, µk)− w∗∥2 − ∥wk − αd(wk, µk)− w̃k(α)∥2,

and consequently

Θk(α) ≥ ∥wk − w̃k(α)∥2 + 2α(wk − w∗)⊤d(wk, µk)− 2α(wk − w̃k(α))⊤d(wk, µk),

Since w∗ is a solution, it follows from Lemma 2.3 that

Θk(α)

≥ ∥wk − w̃k(α)∥2 + 2α(∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2)

−2α(wk − w̃k(α))⊤d(wk, µk)

= ∥wk − w̃k(α)− αd(wk, µk)∥2 − α2∥d(wk, µk)∥2

+2α(∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2)

≥ −α2∥d(wk, µk)∥2 + 2α(∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2)

= Φk(α)

We get the assertion of this Lemma. Q.E.D.

Clearly, Θk(α) means the progress made by the new iterate wk+1(α) at the kth iteration. Therefore,

in order to accelerate the convergence, it is reasonable to choose

αk = (∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2)/∥d(wk, µk)∥2,
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i.e., the optimal value of α maximizing the quadratic function Φk(α) which provides a lower bound

function of Θk(α). Based on numerical experiences, we prefer to attach a relax factor τ ∈ (0, 2) to αk,

and simple calculation show that

Φk(ταk) = τ(2− τ)Φk(αk) = τ(2− τ)αk(∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2). (23)

Remark 2.5. It follows from (23) that

∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 − τ(2− τ)αk(∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2). (24)

The following lemma shows that the step size αk is bounded away from zero.

Lemma 2.5. For all k ≥ 0, we have

αk ≥ ς, (25)

where ς > 0 is a constant.

Proof. It follows from (8) and (10)-(12) that

∥Bk(x
k − x̄k) +A⊤(Axk − zk − b)∥

= ∥(µkI −H)(xk − x̄k) + µkA
⊤(zk − z̄k)∥

≤ (µmax + ∥H∥)∥xk − x̄k∥+ µmax∥A∥∥zk − z̄k∥

≤ (µmax + ∥H∥+ µmax∥A∥)∥wk − w̄k∥,

and

∥µk(y
k − ȳk) + (Ax̄k − zk − b)∥

= ∥µk(y
k − ȳk) + (Ax̄k −Axk) + (Axk − zk − b)∥

≤ µmax∥yk − ȳk∥+ ∥A∥∥xk − x̄k∥+ µmax∥zk − z̄k∥

≤ (2µmax + ∥A∥)∥wk − w̄k∥,

and

∥(yk − ȳk)− (Axk − zk − b)∥

≤ (1 + µmax)∥wk − w̄k∥,

This and the definition of d(wk, µk) imply

∥d(wk, µk)∥ ≤ c1∥wk − w̄k∥, ∀k ≥ 0, (26)

where
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c1 = 1 + ∥A∥+ ∥H∥+ (3 + ∥A∥)µmax.

From µk ≥ µmin > ∥H∥, it is true that

∥xk − x̄k∥2Bk
≥ (xk − x̄k)⊤(µminI −H)(xk − x̄k)

≥ λmin∥xk − x̄k∥2,

where λmin is the minimum eigenvalue of the positive definite matrix µminI −H. Then, it follows that

∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2 ≥ c2∥wk − w̄k∥2, (27)

where c2 = min{λmin, µmin, µ
2
min}. Therefore, from (26)(27) and the definition of αk, we have

αk ≥ ς,

where ς = τc2/c
2
1. This completes the proof. Q.E.D.

We are now in position to prove the global convergence of the proposed method.

Theorem 2.1. The sequence {wk} generated by Algorithm 2.1 converges to a solution of LVI(H, c,W )

globally.

Proof. Since τ ∈ (0, 2) and αk > 0, it follows from (24) that

∥wk+1 − w∗∥2 ≤ ∥wk − w∗∥2 ≤ · · · ≤ ∥w0 − w∗∥2 < +∞,

which means that the sequence {wk} is bounded. Thus, it has at least one cluster point, denoted as

w∞ = (x∞, y∞, z∞)⊤, and {wkj} be the corresponding subsequence converging to w∞. Again from (24),

we have

τ(2− τ)αk(∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2) ≤ ∥wk − w∗∥2 − ∥wk+1 − w∗∥2.

Summarizing both sides of the above inequality, we get

∞∑
k=0

{τ(2− τ)αk(∥xk − x̄k∥2Bk
+ µk∥yk − ȳk∥2 + µ2

k∥zk − z̄k∥2)}

≤
∞∑
k=0

{∥wk − w∗∥2 − ∥wk+1 − w∗∥2}

≤ ∥w0 − w∗∥2

< +∞,

which together with (25) means that

lim
k→∞

∥xk − x̄k∥2Bk
= lim

k→∞
µk∥yk − ȳk∥2 = lim

k→∞
µ2
k∥zk − z̄k∥2 = 0.
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Thus, from µk ≥ µmin > 0, we have

lim
k→∞

∥xk − x̄k∥2Bk
= lim

k→∞
∥yk − ȳk∥2 = lim

k→∞
∥zk − z̄k∥2 = 0. (28)

On the other hand, from (8) (10) and µmax ≥ µk ≥ µmin > ∥H∥, it is true that

∥xk − x̄k∥2Bk

≥ (xk − x̄k)⊤(µminI −H)(xk − x̄k)

≥ λmin∥xk − x̄k∥2

= λmin∥e1(wk, 1/µk)∥2

≥ λmin∥e1(wk, 1/µmax)∥2,

where λmin is the minimum eigenvalue of the positive definite matrix µminI − H. In a similar way, we

can prove that

∥yk − ȳk∥ = ∥e2(wk, 1/µk)∥ ≥ ∥e2(wk, 1/µmax)∥,

and

∥zk − z̄k∥ = ∥e3(wk, 1/µk)∥ ≥ ∥e3(wk, 1/µmax)∥,

Therefore, from the above three inequalities and (28), we have

lim
k→∞

∥e(wk, 1/µmax)∥ = 0. (29)

Taking the limit in (29) along the subsequence {wkj} and using the continuity of the operator ∥e(·, 1/µmax)∥,
we have

∥e(w∞, 1/µmax)∥ = 0.

So w∞ is a solution of LVI(H, c,W ). In the following we prove that the sequence {wk} has exactly one

cluster point. Assume that ŵ is another cluster point of {wk}. Then we have

δ := ∥w∞ − ŵ∥ > 0.

Because w∞ is a cluster point of the sequence {wk}, there is a k0 > 0 such that

∥wk0 − w∞∥ ≤ δ

2
.

On the other hand, since {∥wk − w∞∥} is monotonically non-increasing (since (24) and that w∞ is a

solution of LVI(H, c,W )), we have ∥wk − w∞∥ ≤ ∥wk0 − w∞∥ for all k ≥ k0, and it follows that

∥wk − ŵ∥ ≥ ∥w∞ − ŵ∥ − ∥wk − w∞∥ ≥ δ

2
,∀k ≥ k0,

which contradicts the fact that ŵ is a cluster point of {wk}. This contradiction assures that the sequence

{wk} converges to its unique cluster point w∞, which is a solution of LVI(H, c,W ). This completes the

proof. Q.E.D.
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3 Preliminary Computational Results

In this section, we illustrate the necessity and efficiency of our methods. To this end, we also code the

algorithm proposed by Wang and Luo[6].

Example 1. The example used here is a modification of the test minimax problem of Wang and

Liao[6],

min
x∈X

{max
y∈Y

{1
2
x⊤Hx+ c⊤x− y⊤Ax+ b⊤y}}.

In particular, A ∈ Rn×n is a randomly generated matrix as suggested in [6],

A = B⊤B + C +D,

where every entry of the n× n matrix B and the n× n skew-symmetric matrix C is uniformly generated

from (−5, 5), every diagonal entry of the n×n diagonal D is uniformly generated from (0, 0.3), and every

entry of the vectors b and c is randomly generated from (−1, 1). Besides, we take

X = {x|x ∈ Rn
+}, Y = {y ∈ Rn

+|∥y∥ ≤ 1},

and

H =



1 2 · · · · · · 2

0 1 2 · · ·
...

...
. . .

. . .
. . .

...
...

. . .
. . . 2

0 · · · · · · 0 1


For any y ∈ Rn, PY [y] by component is defined by

(PY [y])i =

 (y+)i, if ∥y+∥ ≤ 1,

(y+)i/∥y+∥, otherwise,

where

(y+)i = max{0, yi}.

Other parameters used in the Algorithm 2.1 are set as τ = 1.95, σ = 0.1, γi = 1. Actually, we limit the

adjustment of µk up to kmax = 100 times. It is hoped and anticipated that, after at most kmax adequate

adjustments, the parameter µk could be close enough to a proper value. For the method in [6], we take

γ = 1, β0 = 2∥H + A⊤A∥, and update the parameters βk as µk in Algorithm 2.1. To solve the linear

subVI problem in Wang and Luo’s method[6], we utilize the quadratic-program solver ‘quadprog.m’ from

the Matlab optimization toolbox. In our tests, we take
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ε = 1× 10−5, y0 = z0 = (0, · · · , 0)⊤,

and use the stopping criterion, ||wk − w̄k|| ≤ ε for both methods. All programs are coded in Matlab. ‘N’

denotes the dimension of the tested problem, and ‘IN’ denotes the number of iterations and ‘CPU’ denotes

the CPU time in seconds. We also code the proposed algorithm with a fixed parameter µ throughout the

entire algorithm without any change, denoted in the tables as “Method (F)”, and “Method(V)” means

Algorithm 2.1.

Table 1: Numerical results for different µ0

v 5 10 15 20 25 30 35 40

Wang and IN 59 56 58 54 55 54 54 51

Liao’s method CPU 0.92 0.90 0.91 0.83 0.93 0.86 0.81 0.79

Proposed IN 4 4 3 2 2 3 2 2

Algorithm 2.1 CPU 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 2: Numerical results with randomly generated x0 ∈ (0, 1)

N 50 100 200 300 400 500 1000

IN 130 132 112 108 99 84 56

Method (F) CPU 0.02 0.08 0.46 1.89 3.79 6.18 37.63

IN 5 4 4 4 3 3 2

Method (V) CPU 0.01 0.10 0.19 0.68 1.67 3.47 40.62

Table 3: Numerical results with x0 = (1, · · · , 1)⊤

N 50 100 200 300 400 500 1000

IN 68 189 195 232 176 148 130

Method (F) CPU 0.01 0.10 0.70 3.27 5.46 8.56 48.78

IN 6 5 5 4 4 4 4

Method (V) CPU 0.01 0.11 0.20 0.75 1.67 3.37 40.90

We conduct the numerical study with dimensions varying from 10 to 1000, and with different initial

points. Table 1 reports the results with the initial points as x0 generated randomly between (0, 1) ,

n = 10, and µ0 = v∥H +A⊤A∥ with different v; Table 2 reports the results with the initial points as x0

generated randomly between (0, 1); Table 3 reports the results with the initial point as x0 = (1, · · · , 1);
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Table 4: Numerical results with randomly generated x0 ∈ (0, 10)

N 50 100 200 300 400 500 1000

IN 200 330 336 396 472 490 296

Method (F) CPU 0.05 0.16 1.10 5.42 11.90 19.34 73.39

IN 8 7 7 7 7 6 6

Method (V) CPU 0.01 0.10 0.18 0.70 1.79 3.53 41.02

and Table 4 reports the results with the initial point x0 generated randomly between (0, 10). In Table

2-4, we set µ0 = 2∥H +A⊤A∥ for the both methods: Method(F) and Method(V).

The results in the Table 1 indicate that the performance of the Algorithm 2.1 is much better than that

of Wang and Liao’s method. The reason for this result may be that Algorithm 2.1 only needs to perform

some projections onto simple sets and some matrix-vector multiplications in each iteration, while Wang

and Liao’s method need to solve a subvariational inequality problem, which is difficult to solve efficiently

and exactly in each iteration. Also from this table, we can observe that the number of iteration both

methods varies slightly with different initial parameters.

The results summarized in Tables 2-4 show that adjusting the parameter µ significantly improves both

the CPU time and the iteration number compared to the case with fixed µ. The self-adaptive strategy

make the method more robust than with a fixed µ, and thus it is important to adapt µ dynamically

according to different problems.

Example 2. To show the advantage of the new prediction-correction method for large scale problems,

we implement Algorithm 2.2 to a set of spatial price equilibrium problems. The details of these problems

can be found in [5], as follows:

min
m∑
i=1

n∑
j=1

(cijxij +
1

2
hijx

2
ij).

s.t.

n∑
j=1

xij = si, i = 1, 2, · · · ,m,

m∑
i=1

xij = dj , j = 1, 2, · · · , n,

xij ≥ 0,

where si is the supply amount on the ith supply market, i = 1, · · · ,m and dj the demand amount on the

jth demand market, j = 1, · · · , n. cij ∈ (1, 100), hij ∈ (0.005, 0.01), sj and dj are generated randomly

in (0, 100) for all i = 1, · · · ,m and j = 1, · · · , n, and the other parameters τ = 1.98, µ0 = 21∥H∥,
α1 = 0.5, α2 = 2, v1 = 0.1/n, v2 = 0.9/n, µmin = 5∥H∥, µmax = 50∥H∥. The calculations were started
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with w0 = 0 and stopped when

max{∥e1(u
k)∥

∥c∥
,
∥e2(uk)∥

∥b∥
} ≤ ε,

for some prescribed ε > 0, where b = (s, d)⊤. The computational results are given in Table 5 for some

m and n. The numerical results given in Table 5 show that Algorithm 2.2 is relatively efficient, and it is

Table 5: Number of iterations for different scale and precisions

m n m×n ε = 0.1 ε = 10−2 ε = 10−3 ε = 10−4

5 10 50 12 33 126 239

10 10 100 13 36 132 273

10 15 150 17 99 178 264

20 25 500 21 62 183 409

30 40 1200 18 82 286 522

attractive from a computational point of view.

4 Conclusions

Based on the alternating direction method, we observe a new descent direction at each iteration, and

present a new self-adaptive prediction-correction method for LVI(H, c, S). The new method uses only

the function values and the total computational cost is very small. Thus, the new method is applicable

in practice. Under mild conditions, we proved the global convergence of the method. Some preliminary

computational results illustrated the efficiency of the algorithm.
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