
AMO - Advanced Modeling and Optimization, Volume 13, Number 3, 2011

A UNIFORMLY CONVERGENT METHOD BY NON STANDARD
FINITE DIFFERENCE METHOD ON ARBITRARY MESHES FOR A

SYSTEM OF SINGULARLY PERTURBED SEMILINEAR
CONVECTION-DIFFUSION

M. GHORBANZADEH, A. KERAYECHIAN

Abstract. In this paper, a numerical solution for a system of singularly perturbed

semilinear convection-diffusion is studied. The scheme is based on locally exact schemes

or on locally Green’s functions. It is proved that the numerical scheme has first order

accuracy, which is uniform with respect to the perturbation parameters. A monotone

iterative method is applied to computing the nonlinear difference scheme. Numerical

results confirms the theory of the method.

1. Introduction

Consider the following system of l coupled singularly perturbed convection-diffusion

equations: Find u = (u1, . . . , ul) ∈ (c2(0, 1) ∩ c[0, 1]) such that

Lu := −Eu′′
+Bu′ + C(x,u) = f(x), (1.1)

x ∈ Ω = (0, 1), u(0) = u(1) = 0, with E = diag{ε1, . . . , εl} , where 0 < εi << 1 for

i = 1, . . . , l are known small positive diffusion coefficients, and f = [fi(x)]
l
i=1 is a vector-

valued right hand side and C(x,u) = (c1(x, u1(x), . . . , ul(x)), . . . , cl(x, u1(x), . . . , ul(x))
T ,

ui(x) ∈ c(0, 1) and ci are nonlinear functions for i = 1, . . . , l. Suppose that the functions

ci, bi and fi for i = 1, . . . , l, are sufficiently smooth. Furthermore, we shall assume that

B is diagonal with diagonal elements bi(x) for i = 1, . . . , l, and define

βk = min
x∈[0,1]

|bk(x)| > 0 for k = 1, . . . , l. (1.2)

We assume that bi(x) > 0 for i = 1, . . . , l. In other words, we assume that the ith equation

of problem (1.1) has a strong boundary layer at x = 1, [15]. Suppose that the matrix
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Cu = [ ∂ci
∂uj

]li,j=1 satisfies the condition

C∗ ≤ Cu ≤ C∗, (1.3)

where C∗ = [c∗ij]
l
i,j=1 and C

∗ = [c∗ij]
l
i,j=1 are M-matrices and c∗ij, c

∗
ij are constants. Recall

that for two matrixs A and B, we write A ≤ B if aij ≤ bij for all i and j. Note that

if in problem (1.1), C(x,u) = Au, then we have a linear version of singularly perturbed

convection-diffusion. Linss and Dresden [11], Linss [12], Linss and Madden [13], Madden

and Stynes [14] and Gracia and Lisbona [9] have done some works for linear version of

proplem (1.1). Bellew and O’Riordan [3], Cen [6], Amiraliyev [1] and Andreev [2] used

the finite difference method for a coupled system of two singularly perturbed convection-

diffusion equations. In one dimension with discontinous data has been investigated in

[4]. And in linear version we have some results in [5] and [8]. Our goal is to construct

an ε-uniform numerical method for solving problem on arbitrary meshes by applying

non standard finite difference, that is, a numerical method which generates ε-uniformly

convergent numerical approximations to the solution. The paper is organized as follows:

In Section 2, we establish some a priori estimates of the solution and its first derivatives. In

Section 3, we construct a numerical method by applying the non standard finite difference

method. In Section 4 we prove uniform convergence of the numerical method on arbitrary

nonuniform meshes. In Section 5, we construct a monotone iterative method for solving

the nonlinear difference scheme and prove that the iterative converges ε-uniformly to the

solution of problem (1.1). In the last section numerical results are presented, which are

in agreement with the theoretical results.

2. Properties of the continuous problem

To estimate the error in our difference approximation, we shall require some bounds

for the derivatives of the solution of problem (1.1), we assume that

l∑
j=1

∂ci
∂uj

≥ 0,
∂ci
∂ui

> 0 and
∂ci
∂uj

≤ 0 for i ̸= j, x ∈ [0, 1] and i, j = 1, . . . , l, (2.1)

and strict inequality hold at least for one k, i.e.,

l∑
j=1

∂ck
∂uj

> 0. (2.2)
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By the mean-value theorem we have

C(x,u) = C(x, 0) + Cuu(x). (2.3)

By substituting (2.3) in (1.1), we have

− Eu
′′
+Bu′ + Cuu(x) = f(x)− C(x,0). (2.4)

Lemma 2.1. If u = (u1(x), . . . , ul(x))
T , Lu ≥ 0(≤ 0) in Ω and u(0), u(1) ≥ 0(≤ 0) then

u(x) ≥ 0(≤ 0) in Ω .

Proof. Let ui(x) be minimum at ti for i = 1, . . . , l, i.e, ui(ti) = min
x∈Ω

ui(x) and also assuming

uj(tj) = min
i=1,...,l

ui(ti),

If uj(tj) ≥ 0 the lemma is proved. So let uj(tj) < 0. If uj(tj) = uk(tj) for k = 1, . . . , l,

then it follows that u′(tj) = 0 and u
′′
(tj) ≥ 0. By (2.4)

Lu|tj := −Eu′′
(tj) +Bu′(tj) + Cuu(tj) ≤ Cuu(tj) = uk(tj)Cu.1.

In this case according to (2.2) since uk(tj) < 0, the kth component of Cuu(tj) is negative,

which is a contradiction to the assumption of the lemma. If there is a k with 1 ≤ k ≤ l

such that uj(tj) < uk(tj) then

−εju
′′

j (tj) + bj(tj)u
′
j(tj) +

l∑
m=1

∂cj
∂um

(tj)um(tj)

= −εju
′′

j (tj) +
l∑

m=1

∂cj
∂um

(tj)uj(tj) +
l∑

m=1,m̸=j

∂cj
∂um

(tj)(um(tj)− uj(tj))

≤ max
m=1,...,l

(um(tj)− uj(tj))
l∑

m=1,m̸=j

∂cj
∂um

(tj) + uj(tj)
l∑

m=1

∂cj
∂um

(tj).

If
∑l

m=1,m̸=j
∂cj
∂um

(tj) < 0, it is obvious that the right hand side of the above inequality

is negative. If
∑l

m=1,m ̸=j
∂cj
∂um

(tj) = 0, then since
∂cj
∂uj

> 0, we have
∑l

m=1
∂cj
∂um

(tj) > 0.

Thus the right hand side is negative and again we reach a contradiction. So the lemma is

proved. □

I. Boglaev [4] has proved the following lemma.
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Lemma 2.2. Let u be the solution of (1.1) and suppose(1.2), (2.1) and (2.2) hold. Then

for x ∈ [0, 1] and n = 0, 1

|u(n)k (x)| ≤

C[1 + ε−n
k exp(−βkx

εk
)] bk ≤ −βk,

C[1 + ε−n
k exp(−βk(1−x)

εk
)] bk ≥ βk,

here and throughout the paper, C denotes a generic positive constant independent of εk.

3. Construction of difference scheme

The kth equation of (1.1) is as follows

− εku
′′

k + bk(x)u
′
k + ck(x, u1, u2, . . . , ul) = fk(x), (3.1)

uk(0) = uk(1) = 0 for k = 1, 2, . . . , l,

On w = [0, 1], we introduce a non uniform mesh

wh = {0 = x0 < x1 < . . . < xN−1 < xN = 1} , hi = xi+1 − xi.

Let Gi be the Green’s function for the operator −εk d2

dx2 + bk(xi)
d
dx

on [xi−1, xi+1]. In this

case the exact solution of (3.1) is

uk(x) = uk;i−1ϕ
I
ki(x) + uk;i+1ϕ

II
ki (x) +

∫ xi+1

xi−1

Gki(x, s)ψk(s)ds, (3.2)

where

ψk(s) = −ck(s, u1(s), . . . .ul(s)) + fk(s),

and

Gki(x, s) =
1

−εkwki(s)

ϕI
ki(s)ϕ

II
ki (x) xi−1 ≤ x ≤ s ≤ xi+1,

ϕI
ki(x)ϕ

II
ki (s) xi−1 ≤ s ≤ x ≤ xi+1,

ϕI
ki(x) =

1− exp(
−bk;i(xi+1−x)

εk
)

1− exp(
−bk;i(hi+hi−1)

εk
)

, ϕII
ki (x) = 1− ϕI

ki(x),

where in the above we have set uk(xi+1) = uk;i+1, uk(xi−1) = uk;i−1 and bk(x) = bk,i for

x ∈ [xi−1, xi+1].
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We have

uk(xi) = uk;i−1ϕ
I
ki(xi) + uk;i+1ϕ

II
ki (xi) +

∫ xi

xi−1

Gki(xi, s)ψk(s)ds

+

∫ xi+1

xi

Gki(xi, s)ψk(s)ds, (3.3)

and

wki(s) = ϕII
ki (s)ϕ

′I
ki(s)− ϕI

ki(s)ϕ
′II
i (s) =

−bki exp(−bki(xi+1−s)
εk

)

εk(1− exp(−bki(hi+hi−1)
εk

))
. (3.4)

By (3.3) and (3.4) we can write

uk(xi) =
1

1− exp(
−bk;i(hi+hi−1)

εk
)
[(uk;i+1 − uk;i−1) exp(

−bk;ihi
εk

) + uk;i−1 −

uk;i+1 exp(
−bk;i(hi + hi−1)

εk
) +

1− exp(
−bk;i(hi+hi−1)

εk
)

bk;i
×

∫ xi

xi−1

(1− exp(
−bk;i(s− xi−1)

εk
))ψk(s)ds+

exp(
−bk;ihi

εk
)− exp(

−bk;i(hi+hi−1)

εk
)

bk;i
×∫ xi+1

xi

[exp(
bk;i(xi+1 − s)

εk
)− 1]ψk(s)ds]. (3.5)

Now we approximate ψk(s) and f(s) for s ∈ [xi−1, xi+1] by their values at xi (ψk(s) ≃
ψk(xi), f(s) ≃ f(xi)). Then we obtain

uk;i = uk(xi) ≃
1

1− exp(
−bk;i(hi+hi−1)

εk
)
×

[(uk;i+1 − uk;i−1) exp(
−bk;ihi
εk

) + uk;i−1 − uk;i+1 exp(
−bk;i(hi + hi−1)

εk
) +

ψk(xi)

bk;i
[(1− exp(

−bk;ihi
εk

))[hi−1 +
εk
bk;i

(exp(
−bk;ihi−1

εk
)− 1)] + (exp(

−bk;ihi
εk

)

− exp(
−bk;i(hi + hi−1)

εk
))[

−εk
bk;i

(1− exp(
bk;ihi
εk

))− hi]]] := vk;i. (3.6)

Having the above approximation for (3.1), we introduce by the non standard finite differ-

ence method the following scheme

−εkα(hi−1, hi)[vk;i−1 − 2vk;i + vk;i+1] +

β(hi−1, hi)bk;i(vk;i+1 − vk;i−1)− ψk(xi) = 0, (3.7)
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where

ψk(xi) = −ck(xi, v1;i, . . . , vl;i) + fk(xi).

Now we find α(h) and β(h), such that the scheme (3.7) is exact for (3.1). By substituting

(3.6) in (3.7), we have

A1(vk;i−1 − vk;i+1) + B1ψk(xi) = 0, (3.8)

for i = 1, . . . , N − 1. where

A1 = −εkα(hi−1, hi)−
2εkα(hi−1, hi)(exp(

−bk;ihi

εk
)− 1)

1− exp(
−bk;i(hi+hi−1)

εk
)

− β(hi−1, hi)bki,

and

B1 = −1 +
2α(hi−1, hi)

εkbk;i(1− exp(
−bk;i(hi+hi−1)

εk
))
[hi−1(1− exp(

−bk;ihi
εk

)) +

hi(exp(
−bk;i(hi + hi−1)

εk
)− exp(

−bk;ihi
εk

))],

In (3.8) A1 and B1 must be zero. By setting A1 and B1 to zero we obtain

α(hi−1, hi) =
bk;i[exp(

bk;ihi

εk
)− exp(

−bk;ihi−1

εk
)]

2εk[hi−1(exp(
bk;ihi

εk
)− 1) + hi(exp(

−bk;ihi−1

εk
)− 1)]

,

and

β(hi−1, hi) =
1

2

exp(
bk;ihi

εk
)− 2 + exp(

−bk;ihi−1

εk
)

hi−1(exp(
bk;ihi

εk
)− 1) + hi(exp(

−bk;ihi−1

εk
)− 1)

,

Remark 3.1. For uniform mesh, the scheme (3.7) becomes the IL’in scheme [10].

By appling α(hi−1, hi) and β(hi−1, hi) in (3.7) we obtain

gkivk;i−1 + hkivk;i + γkivk;i+1 + ck(xi, v1;i, . . . , vl;i)− fk(xi) = 0, (3.9)

for k = 1, 2, . . . , l and i = 1, 2, . . . , N − 1,

where

gki =
−bk;i[exp( bk;ihi

εk
)− 1]

hi−1[exp(
bk;ihi

εk
)− 1)] + hi[exp(

−bk;ihi−1

εk
)− 1)]

hki =
bk;i[exp(

bk;ihi

εk
)− exp(

−bk;ihi−1

εk
)]

hi−1[exp(
bk;ihi

εk
)− 1] + hi[exp(

−bk;ihi−1

εk
)− 1]

,
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and

γki =
−bk;i[1− exp(

−bk;ihi−1

εk
)]

hi−1[exp(
bk;ihi

εk
)− 1] + hi[exp(

−bk;ihi−1

εk
)− 1]

,

we note that in (3.9), gki + hki + γki ≥ 0, for k = 1, 2, . . . , l, i = 1, 2, . . . , N − 1 and the

term hi−1(exp(
bk;ihi

εk
)− 1) + hi(exp(

−bk;ihi−1

εk
)− 1) is positive, also gki and γki are negative.

4. Uniform convergence of the scheme

Lemma 4.1. Suppose A is a matrix such that aii > 0 and aij ≤ 0 for (i ̸= j) and

i, j = 1, . . . , n. Also assume that
∑n

k=1 ajk ≥ 0 for j = 1, . . . , n. Then for every arbitrary

vector η = (η1, . . . , ηn)
T we have

∥η∥∞,ω ≤ ∥Aη∥∞,ω.

Proof. Suppose for the element j of η, ∥η∥∞,ω = |ηj|. Without lose of generality, let

|ηj| = ηj (otherwise we consider ∥Aη∥ = ∥ − Aη∥).

(Aη)j =
n∑

k=1

ajkηk = ajjηj +
n∑

k=1,k ̸=j

ajkηk ≥ ajjηj +
n∑

k=1,k ̸=j

ajk|ηk|,

(since ajk ≤ 0 for j ̸= k). Therefore

(Aη)j − ηj ≥ ajjηj +
n∑

k=1,k ̸=j

ajk|ηk| − ηj

≥ ajjηj +
n∑

k=1,k ̸=j

ajk|ηk| −
n∑

k=1

ajkηj

=
n∑

k=1,k ̸=j

ajk(ηk − ηj) ≥ 0.

So

(Aη)j ≥ ηj > 0.

Hence

∥Aη∥∞,ω = max
k=1,...,n

|(Aη)k| ≥ |(Aη)j| ≥ ηj = ∥η∥∞,ω.

□
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Theorem 4.1. The non linear difference scheme (3.9) on arbitrary meshes converges

ε-uniformly to the solution of problem (3.1):

max
0≤i≤N,1≤k≤l

|uk(xi)− vk;i| ≤ Ch , h = max
0≤i≤N−1

hi.

Proof. We now estimate the error

Zk;i = uk(xi)− vk;i, 0 ≤ i ≤ N,

in the approximation of the problem (3.1) by the nonlinear scheme (3.9). now we subtract

(3.7) from 2εkα(hi−1, hi) times of (3.5), then by using the fact that

−2εkα(hi−1, hi)

1− exp(
−bk;i(hi+hi−1)

εk
)
[
1− exp(− bk;ihi

εk
)

bk;i

∫ xi

xi−1

[1− exp(
−bk;i(s− xi−1)

εk
)]ds+

exp(
−bk;ihi

εk
)− exp(

−bk;i(hi+hi−1)

εk
)

bk;i

∫ xi+1

xi

[exp(
bk;i(xi+1 − s)

εk
)− 1]ds = −1,

we have

gkiZk;i−1 + hkiZk;i + γkiZk;i+1 −
2εkα(hi−1, hi)

1− exp(
−bk;i(hi+hi−1)

εk
)
[
1− exp(

−bk;ihi

εk
)

bk;i
×

∫ xi

xi−1

[1− exp(
−bk;i(s− xi−1)

εk
)][ψk(s)− ψk(xi)]ds+

exp(
−bk;ihi

εk
)− exp(

−bk;i(hi+hi−1)

εk
)

bk;i

∫ xi+1

xi

[exp(
bk;i(xi+1 − s)

εk
)− 1]×

[ψk(s)− ψk(xi)]ds] = 0. (4.1)

We note that for s ∈ [xi−1, xi] we have

ck(s, u1(s), . . . , ul(s)) = ck(xi, u1(xi), . . . , ul(xi))−
∫ xi

s

dck
dx

dx,

and for s ∈ [xi, xi+1] we have

ck(s, u1(s), . . . , ul(s)) = ck(xi, u1(xi), . . . , ul(xi)) +

∫ s

xi

dck
dx

dx,

and by the mean-value theorem for s ∈ [xi−1, xi]

ck(xi, u1(xi), . . . , ul(xi)) = ck(xi, v1;i, . . . , vl;i) +
l∑

j=1

∂ck
∂uj

Zj;i,
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so for s ∈ [xi−1, xi]

ψk(s)− ψk(xi) = −
l∑

j=1

∂ck
∂uj

Zj;i +

∫ xi

s

dck
dx

dx,

and for s ∈ [xi, xi+1]

ψk(s)− ψk(xi) = −
l∑

j=1

∂ck
∂uj

Zj;i −
∫ s

xi

dck
dx

dx.

Therefore (4.1) reduce to

gkiZk;i−1 + hkiZk;i + γkiZk;i+1 +
l∑

j=1

∂ck
∂uj

Zj;i =

− 2εkα(hi−1, hi)

1− exp(
−bk;i(hi+hi−1)

εk
)
[
1− exp(

−bk;ihi

εk
)

bk;i

∫ xi

xi−1

[−1 + exp(
−bk;i(s− xi−1)

εk
)]×

(

∫ xi

s

dck
dx

dx)ds+
exp(

−bk;ihi

εk
)− exp(

−bk;i(hi+hi−1)

εk
)

bk;i
×∫ xi+1

xi

[exp(
bk;i(xi+1 − s)

εk
)− 1](

∫ s

xi

dck
dx

dx)ds] := Ψ(s). (4.2)

By lemma 2.2 and the fact that ck is sufficiently smooth we have

|dck
dx

| ≤ c(1 + ε−1
k exp(

−βk(1− x)

εk
)).

By lemma 4.1 we have

∥Z∥∞ ≤ ∥Ψ∥∞.

By doing some algebra, we can show that ∥ψ(s)∥ ≤ Ch. Thus

∥Z∥∞ ≤ ∥Ψ∥∞ ≤ Ch.

□

5. Monotone iterative method

In this section, we construct an iterative method for solving the nonlinear difference

scheme (3.9) which possesses the monotone convergence. This method is based on the

approach used in [5].
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Additionally, we assume that c(x, u1(x), . . . , ul(x)) in (3.1) satisfies in (1.3).

We introduce the linear version of (3.9) as follows

gkiWk;i−1 + hkiWk;i + γkiWk;i+1 +
l∑

j=1

ckj;iWj;i + fk(xi) = 0, (5.1)

for k = 1, 2, . . . , l and i = 1, 2, . . . , N − 1. In (5.1), suppose cpp > 0, cpq ≤ 0 (p ̸= q)

and
∑l

q=1 cpq ≥ 0 for p, q = 1, 2, . . . , l.

The iterative method is constructed as follows. Choose an initial mesh function V
(0)
k =

(V
(0)
k;0 , V

(0)
k;1 , . . . , V

(0)
k;N) satisfying the boundary conditions V

(0)
k;0 = V

(0)
k;N = 0. The sequence

{V (n)
k }n≥1, for k = 1, . . . , l, is defined by the following recurrence formula:

gkiZ
(n)
k;i−1 + (hki + c∗kk,i)Z

(n)
k;i + γkiZ

(n)
k;i+1 +

l∑
j=1,j ̸=k

c∗kjZ
(n)
j;i = −Rh

ki(x, V
(n−1)
k ), (5.2)

Z
(n)
k;0 = Z

(n)
k;N = 0 1 ≤ i ≤ N − 1 , k = 1, 2, . . . , l,

V
(n)
k;i = V

(n−1)
k;i + Z

(n)
k;i 0 ≤ i ≤ N,

Rh
ki(x, V

(n−1)
k ) = gkiV

(n−1)
k;i−1 + hkiV

(n−1)
k;i + γkiV

(n−1)
k;i+1 + ck(xi, V

(n−1)
1;i , . . . , V

(n−1)
l;i ) + fk(xi),

where Rh
ki(x, V

(n−1)
k ) is the residual of the difference scheme (3.9) on V

(n−1)
k .

We say that V k(x) is an upper solution of (3.9) if it satisfies the following inequality.

gkiV k;i−1 + hkiV k;i + γkiV k;i+1 + ck(xi, V 1;i, . . . , V l;i) + fk(xi) ≥ 0.

Similarly, V k(x) is called a lower solution if it satisfies

gkiV k;i−1 + hkiV k;i + γkiV k;i+1 + ck(xi, V 1;i, . . . , V l;i) + fk(xi) ≤ 0.

Upper and lower solutions satisfy the inequality

V k;i(x) ≤ V k;i(x),

for i = 0, 1, . . . , N , k = 1, 2, . . . , l and x ∈ wh.

Theorem 5.1. Let V
(0)

k and V
(0)
k be upper and lower solution of (3.9) and let ck(x, V1(x), . . . , Vl(x))

satisfies (1.3). Then the upper sequence {V (n)}n≥1 generated by (5.2) converges monoton-

ically from above to the unique solution Vk of (3.9), the lower sequence {V (n)} generated

by (5.2) converges monotonically from below to Vk.

V
(0)
k ≤ V

(n)
k ≤ V

(n+1)
k ≤ V k ≤ V

(n+1)

k ≤ V
(n)

k ≤ V
(0)
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on wh, and the sequences converge at the linear rate

q =
l

max
k=1

∑l
j=1 c

∗
kj,i −

∑l
j=1 c∗kj,i∑l

j=1 c
∗
kj,i

.

Proof. We consider only the case of the upper sequence. If V
(0)

k is an upper solution then

from (3.9) we conclude that

Rh
ki(x, V

(0)
k ) = gkiV

(0)

k;i−1 + hkiV
(0)

k;i + γkiV
(0)

k;i+1 + ck(xi, V
(0)

1;i , . . . , V
(0)

l;i ) + fk(xi) ≥, 0

from (5.2) we have

−Rh
ki(x, V

(0)
k ) = gkiZ

(1)
k;i−1 + (gki + c∗kk;i)Z

(1)
k;i + γkiZ

(1)
k;i+1 +

l∑
j=1

c∗kj;iZj;i ≤ 0.

By lemma 2.1 we have Z
(1)
k;i ≤ 0, therefore

V
(1)
k;i = Z

(1)
k;i + V

(0)
k;i ≤ V

(0)
k;i , Z

(1)
k;0 = Z

(1)
k;N = 0.

To show that V
(1)
k is upper solution of (3.9) we must prove that Rh

ki(V
(1)
k ) ≥ 0.

Using the mean-value theorem and the equation for Z
(1)
k , we represent Rh

k(x, V
(1)
k ) in the

form

Rh
ki(x, V

(1)
k ) =

l∑
j=1

(−c∗kj;i +
∂ck
∂Vj

)Z
(1)
j;i ≥ 0, (5.3)

from (5.3) we conclude that V
(1)

k is an upper solution. By induction we obtain that

Z(n)(x) ≤ 0, x ∈ wh and V
(n+1)
k;i ≤ V

(n)
k;i n = 1, 2, . . . , and prove that {V (n)

k } is a mono-

tonically decreasing sequence of upper solutions. We now prove that the monotone se-

quence {V (n)

k } converges to the solution of (3.9).

Similar to (5.3), we obtain

Rh(x, V
(n)

k ) =
l∑

j=1

(−c∗kj;i +
∂ck
∂Vj

)Z
(n)
j;i ≥ 0,

therefore

gkiZ
(n+1)
k;i−1 + (hki + c∗kk;i)Z

(n+1)
k;i + γkiZ

(n+1)
k;i+1 +

l∑
j=1,j ̸=k

c∗kj;iZ
(n+1)
j;i =

−Rh
ki(x, V

(n)
k ) =

l∑
j=1

(c∗kj;i −
∂ck
∂Vj

)Z
(n)
j;i ≤ 0. (5.4)
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We take the absolute values of both side of (5.4),to obtain

−gkiZ(n+1)
k;i−1 − (hki + c∗kk;i)Z

(n+1)
k;i − γkiZ

(n+1)
k;i+1 −

l∑
j=1,j ̸=k

c∗kj;iZ
(n+1)
j;i =

−
l∑

j=1

(c∗kj;i −
∂ck
∂Vj

)Z
(n)
j;i . (5.5)

Since Z
(n+1)
k;i ≤ 0, (5.5) reduces to

gki|Z(n+1)
k;i−1 |+ (hki + c∗kk;i)|Z

(n+1)
k;i |+ γki|Z(n+1)

k;i+1 |+
l∑

j=1,j ̸=k

c∗kj;i|Z
(n+1)
j;i | =

l∑
j=1

(c∗kj;i −
∂ck
∂Vj

)|Z(n)
j;i |. (5.6)

By definition ∥Z∥∞ = max
1≤k≤l,1≤i≤N−1

|Zk;i|, and the fact that gki < 0 and γki < 0, we have

gki∥Z(n+1)∥∞ + (hki + c∗kk;i)∥Z(n+1)∥∞ + γki∥Z(n+1)∥∞ +

l∑
j=1,j ̸=k

c∗kj;i∥Z(n+1)∥∞ ≤
l∑

j=1

(c∗kj;i −
∂ck
∂Vj

)|Z(n)
j;i | ≤

l∑
j=1

(c∗kj;i −
∂ck
∂Vj

)∥Z(n)∥∞ ≤
l∑

j=1

(c∗kj;i − c∗kj;i)∥Z(n)∥∞,

therefore

(gki + hki + c∗kk;i + γki +
l∑

j=1

c∗kj;i)∥Z(n+1)∥∞ ≤
l∑

j=1

(c∗kj;i − c∗kj;i)∥Z(n)∥∞.

Since gki + hki + γki ≥ 0, we have

∥Z(n+1)∥∞| ≤
∑l

j=1 c
∗
kj;i −

∑l
j=1 c∗kj;i∑l

j=1 c
∗
kj;i

∥Z(n)∥∞,

so

∥Z(n+1)∥∞ ≤ qn∥Z(1)∥∞, (5.7)

where

q =
l

max
k=1

∑l
j=1 c

∗
kj;i −

∑l
j=1 c∗kj;i∑l

j=1 c
∗
kj;i

< 1.
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This proves convergence of the upper sequence at the linear rate q. We have from (5.7)

and (5.2) that the mesh function Vk(x) defined by

lim
n→∞

V
(n)

k (x) = Vk(x) x ∈ wh

is an exact solution to (3.9). The uniqueness of the solution to (3.9) follows from lemma

4.1. Indeed, if by contradiction, we assume that there exist two solutions V (1) and V (2)

to (3.9), then by the mean-value theorem, the difference δV = V (1) − V (2) satisfies the

difference problem

gkiδVk;i−1 + hkiδVk;i + γkiδVk;i+1 +
l∑

j=1

∂ck
∂Vj

δVj;i = 0, (5.8)

δV (0) = δV (1) = 0.

By lemma 4.1, ∥δV ∥∞ ≤ 0, therefore V (1) = V (2). □

6. Numerical experiments

We solve the nonlinear difference scheme (3.9) on uniform meshes by the monotone

iterative method (5.2). The stopping criterion is

max
xεϖ

|V n(x)− V n−1(x)| ≤ δ,

where δ is the required accuracy. If at step n = n∗ the stopping criterion is satisfied,

then V (x) = V n∗
(x), x ∈ ωh, where V (x) is the corresponding numerical solution. In the

absence of an exact solution for test problems, for fixed value of ε, the nonlinear difference

scheme (3.9) with N = 2048 is solved by the monotone iterative method (5.2) with the

stopping criterion δ = 10−5. This generates a reference solution Vref (x). The basic feature

of monotone convergence of the upper and lower sequences is observed in all the numerical

experiments. In fact, the monotone property of the sequences holds at every mesh point

in the domain, of course, this is expected from the analytical considerations.

Example 1. Consider the following test problem

−ε1u′′1 + 3u′1 + (u1 +
1

3
u31)− u2 = f1(x) u1(0) = u1(1) = 0,

−ε2u′′2 + u′2 − u1 + 2u2 +
1

5
u52 = f2(x) u2(0) = u2(1) = 0.
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N ε1 = 10−1 ε2 = 10−1 ε1 = 10−2 ε2 = 10−2 ε1 = 10−3 ε2 = 10−3 ε1 = 10−4 ε2 = 10−4

32 1.771e-4 2.999e-4 6.506e-4 0.0031 5.392e-4 0.0048 5.392e-4 0.0048

64 0.453e-4 0.75e-4 3.248e-4 0.0009 2.794e-4 0.0024 2.793e-4 0.0024

128 0.114e-4 0.189e-4 1.114e-4 0.0002 1.452e-4 0.0012 1.421e-4 0.0012

256 0.029e-4 0.047e-4 0.307e-4 0.0001 0.821e-4 0.0005 0.717e-4 0.0006

512 0.007e-4 0.012e-4 0.079e-4 0.0000 0.438e-4 0.0001 0.360e-4 0.0003

Table 1. Maximal approximate error EN,ε for the monotone iterative

method (5.2) applied to the test problem 1.

N ᾱNε1 ᾱNε2 ᾱ∗
Nε1

ᾱ∗
Nε2

32 0.9490 0.9713 1.0022 1

64 0.9752 0.9856 1.1615 1

128 0.9876 0.9927 0.8226 1

256 0.9936 0.9965 0.9065 1

512 - - - -

Table 2. The numerical order of convergence ᾱNε for ε1 = ε2 = 10−4,

and the uniform numerical order of convergence ᾱ∗
Nε for all ε1 and ε2 in

Table1, applied to the test problem 1.

In this example, c(x, u1, u2) =

(
u1 +

1
3
u31 −u2

−u1 2u2 +
1
5
u52

)
, ∂c

∂u
=

(
1 + u21 −1

−1 2 + u42

)
, B =(

3 0

0 1

)
, f1(x) = 1 and f2(x) = 2. We consider C∗ =

(
1 −1

−1 2

)
and by lemma 2.2

there is C∗ such that C∗ ≤ ∂c
∂u

≤ C∗ for x ∈ wh = [0, 1]. In our numerical experiments,

the lower solution V (0)(x) = 0 for x ∈ (0, 1) and V (0)(0) = V (0)(1) = 0. In Table 1 for

various values of ε andN , we present the maximal approximate error EN,ε = max
x∈wh

N

EN,ε(x),

EN,ε(x) ≡ |VN,ε(x) − Vref,ε(x)| where VN,ε(x) is the numerical solution of the nonlinear

difference (3.9) by the monotone iterative method (5.2).

Fig. 1. shows for very small ε, the error is independent of ε and decreases withN , that is

the nonlinear difference scheme by the monotone iterative method converges ε−uniformly.
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Figure 1. EN,ε with N = 128 and ε1 = ε2 = 0.001 and ε1 = ε2 = 0.0001

for u2(x) of the test problem 1.

The numerical order of convergence αN,ε and the uniform numerical order of convergence

α∗
N are calculated as in [7].

RN,εk = max
x∈ϖh

N

|VN(x; εk)− V2N(x; εk)|, R
∗
N = max

εk
RN,ε,

αN,εk = log2(
RN,εk

R2N,εk

), α∗
N = (log2

R
∗
N

R
∗
2N

),

for k = 1, . . . , l, and are close to one (Table 2). This confirms the theoretical result in

Theorem 4.1.

Example 2. Consider the following test problem:

−εu′′ + b(x)u′ + c(x, u) + f(x) = 0, u(0) = u(1) = 0,

c(x, u) = 1− exp(−u), b(x) = 1, f(x) =

1, x ≤ 0.5,

0.5, x > 0.5,

Consider the lower solution V0(x) = 0, x ∈ ωh to (3.9). We conclude that c∗ = min
0≤u≤1

cu =

e−1, c∗ = max
0≤u≤1

cu = 1, where c∗ and c∗ are defined in (3.1). In Table 3, the maximal

approximate error is presented for various value of ε and N. The numerical order of

convergence αN,ε and the uniform numerical order of convergence α∗
N are close to one,

which confirms the theoretical result in theorem 4.1. The approximate error EN,ε with
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N ε = 0.1 ε = 0.01 ε = 0.001 ε = 0.0001

32 0.0062 0.0022 0.0038 0.0041

64 0.0032 0.0022 0.0018 0.0020

128 0.0016 0.0014 0.0008 0.0010

256 0.0007 0.0007 0.0003 0.0005

512 0.0003 0.0003 0.0002 0.0002

1024 0.0001 0.0001 0.0001 0.0001

Table 3. Maximal approximate error EN,ε for the monotone iterative

method (5.2) applied to the test problem 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

 

 

ε=0.0001

ε=0.001

Figure 2. EN,ε with N = 128 and ε = 0.001 and ε = 0.0001 for the test

problem 2.

N = 128 and ε = 10−3, 10−4 is depicted in Fig. 2. The maximum of the approximate

error is attained in the boundary layer at x = 1.
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