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Change Point Detection Using Bootstrap Methods
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Abstract. This paper is concerned with change point detection via boot-
strap methods. It is shown that the common marginal distribution of boot-
strapped samples is mixture of two distributions before and after the change.
We suggest to solve the change point problems as mixture modeling problems.
Then, the EM algorithm is given to derive the estimation of parameters of
mixture distributions. Some examples show that our algorithm works well. Ap-
plication of our method in some real data sets is also considered.
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1 Introduction. During the last four decades, we have witnessed several
different methods for detecting change points. Page (1954) studied change point
analysis in the context of quality control. Chernoff and Zacks (1964), using a
quasi-Baysian approach, modeled the change points. Hinkely (1970) derived the
maximum likelihood estimation of change point. Worsley (1988) constructed
confidence intervals for change point in the exponential family distributions.
An excellent reference in change point problems is Csorgo and Horvath (1997).
This topic is a non-regular problem in statistical inference in which the ini-
tial distribution of the first k0 observations, Fθ0 , changes at k0 such that the
remaining n − k0 observations come from another distribution say Fθ1 where
Fθ0 6= Fθ1 . It is known that finding the exact and asymptotic distributions of
test statistics and estimators in this field is too difficult. Therefore, the methods
of computational statistics are widely used in this research area. Two famous
computational methods are Bootstrap and EM algorithm.

The bootstrap is a widely used, computer intensive approach belongs to the
class of resampling techniques. It is a sampling with replacement from a given
sample. Valid bootstraps are often accessible practical solutions to statistical
inference problems. Since Efron (1979) first formally considered the bootstrap
technique as another look at the jackknife, there has been a lot of books on
bootstrap methods. These have addressed regular and non-regular problems
and have allowed the observations to be either independent or dependent, see
Efron and Tibshirani (1993), Davison and Hinkley (1997) and Lahiri (2003)
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among the others. The EM algorithm is a useful method to derive the maximum
likelihood of a parameter numerically, developed by Dempster et al. (1977). It
is used in non-regular distributions like the mixture distributions.

In this paper, in a sequence with a change point, we derive the bootstrap
samples. It is seen that the common marginal distribution of bootstraped sam-
ples is mixture of two distributions, i.e., before and after change point with
mixing proportion k0/n. Therefore, we use the EM algorithm to estimate the
parameters of mixture distribution, we mean θ0, θ1 and k0. In fact, we solve
the change point problems using statistical tools applied to the mixture dis-
tribution topic. The rest of this paper is organized as follow. Section 2 is
involved by the application of bootstrap methods in change point analysis. In
section 3, we consider some examples. The change point detection in some real
data sets is considered in section 4. Throughout of this paper, we assume that
X1, ..., Xk0 , Xk0+1, ..., Xn is a sequence of independent random variables. The
k0 is unknown change point. Variables X1, ..., Xk0 are independent and iden-
tically distributed (iid) form Fθ0 and the remaining Xk0+1, ..., Xn come from
Fθ1 .

2 Bootstrap in change point. The bootstrap methods has many appli-
cations in change point analysis. In the case of iid sequence (without change
point) of random variables X1, ..., Xn, under he usual bootstrap approach, we
derive a sample X∗

1 , ..., X∗
n with replacement and with equal probabilities 1/n

assigned to Xis. This equivalent to deriving samples X∗
1 , ..., X∗

n from Fn, the
empirical distribution of the original observations. For a sequence of random
variables with a change point, the following three steps are considered.

1. Using a suitable estimation technique like cusum, cusumsq,... estimate
k0, θ0 and θ1 respectively (see Csorgo and Horvath, 1997).

2. Apply twice bootstrap approach for sequences X1, ..., Xk̂0
and Xk̂0+1,

..., Xn, independently. To this end, it is enough to generate subsamples from Fθ̂0
and Fθ̂1

, respectively. When the functional form is known, this is a parametric
bootstrap. For unknown functional forms of Fθ0 and Fθ1 , they are substituted
by their empirical distribution functions. This is a nonparametric bootstrap
approach.

3. Apply the above mentioned (in step 1) estimation methods to boot-
strapped samples X∗

1 , ..., X∗
k̂0

and X∗
k̂0+1

, ..., X∗
n to derive k̂∗

0 , and then use

X∗
1 , ..., X∗

k̂∗0
, X∗

k̂∗0+1
, ..., X∗

n to receive to θ̂∗
0 and θ̂∗

1 , respectively.

Here, we suggest using this simple bootstrap (don’t consider to steps 1-3) for
a sequence of independent observations with a change point an unknown time
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point k0, that is for X = (X1, ..., Xk0 , Xk0+1, ..., Xn). It is seen

FX∗
i |X(x) = E{1(X∗

i ≤ x)|X} = Fn(x)

= (1/n)
n∑

i=1

1(Xi ≤ x),

where 1(a ≤ b) is one if a ≤ b and zero otherwise. By taking expectation from
both sides of above equation, we find that

FX∗
i
(x) = (1/n)

n∑
i=1

P (Xi ≤ x)

=
k0

n
Fθ0(x) + (1− k0

n
)Fθ1(x),

that is, the marginal distribution of bootstraped independent samples X∗
1 , ..., X∗

n

is mixture of two distributions (that is distributions before and after the change
point) with mixing proportion k0/n = 1/n, ..., (n− 1)/n.

It is generally believed that working with mixture distributions is much eas-
ier than to work with change point problems. For example, one can compare
the corresponding asymptotic distributions. The asymptotic distributions in
change point fields are functional of stochastic processes like Brownian motion
whereas these distributions are often normal in mixture distribution. This is
why, we change our shift point problem to mixture distribution to make infer-
ence about θ0, θ1 and k0. A standard approach for estimating the parameter
of mixture distributions is EM algorithm (see Dempster et al., 1977). Unfortu-
nately, the predefined commands of statistical packages like SAS or SPLUS for
EM algorithm aren’t suitable here since the mixing proportion in our problem
takes only finite values 1/n, ..., (n− 1)/n. To overcome this difficulty, we advise
to run the EM algorithm n − 1 times for each cases k0 = 1, ..., n − 1. In each
step, we compute L̂(k0)

L̂(k0) =
n∏

i=1

(π0fθ̂0(k0)
(xi) + (1− π0)fθ̂1(k0)

(xi)),

with π0 = k0
n at which θ̂0(k0), fθ0 and θ̂1(k0), fθ1 are the estimations of param-

eters and densities before and after fixed change point k0, respectively. Then
k̂0, θ̂0 and θ̂1 are the maximizer of L̂(k0), θ̂0(k0) and θ̂1(k0), respectively. To
maximize L(k0) for each fixed k0 with respect to θ0(k0) and θ1(k0) we apply
the EM algorithm. If we repeat the bootstrap procedure R (sufficiently large)
times, we can obtain the sampling properties of k̂0, θ̂0 and θ̂1 even for small
sample sizes n. Hypotheses k0 = n or θ0 − θ1 = 0 stands for null hypothesis of
no change point. The sampling distributions of k̂0, θ̂0− θ̂1 are useful tools to
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test the null hypothesis. Note that to test H0 : k0 = n, we should let k0 moves
among 1 to n.

We insist that the marginal distribution of X∗
i is mixture and X∗

i itself is ob-
tained from conditional distribution given sample X = (X1, ..., Xk0 , Xk0+1, ..., Xn).
To generate samples Y1, ..., Yn distributed as k0

n Fθ0 +(1− k0
n )Fθ1 , in practice, we

propose the following scheme: generate n iid indices I1, ..., In among {1, 2, ..., n}
independent of X and let Yi = XIi

, i = 1, 2, ..., n. Then, note that

FYi(y) = P (Yi ≤ y) =
n∑

j=1

P (XIi ≤ y|Ii = j)/n

=
n∑

j=1

P (Xj ≤ y)/n

=
k0

n
Fθ0(y) + (1− k0

n
)Fθ1(y).

We summarize our approach in the following steps. Again, consider X =
(X1, ..., Xk0 , Xk0+1, ..., Xn).

1. Generate an iid sequence (with replacement) I1, ..., In among {1, 2, ..., n}
independent of X and let Yi = XIi

, i = 1, 2, ..., n.

2. For each k0 = 1, ..., n − 1, run n − 1 EM algorithms using a realization
of Y1, ..., Yn (taken from 1) to obtain L̂(k0), θ̂0(k0) and θ̂1(k0). The argmax of
these quantities as functions of k0 are k̂0, θ̂0 and θ̂1.

3. Repeat steps 1-3 for R times to obtain k̂
(r)
0 , θ̂

(r)
0 and θ̂

(r)
1 , r = 1, 2, ...,R.

In this way, the sampling properties of k̂0, θ̂0 and θ̂1 are derived.

3 Examples. Here, we propose some examples. In a sequence of size 100
of independent observations, there is a change point in k0. The change point
estimate, k̂0, and the estimations of parameters before and after change point,
θ̂0 and θ̂1, are given. The results are given in the following Table. Notations N,
Exp, t, C stand for normal, exponential, t-student, and Cauchy distributions,
respectively. The following Table (following the rows) shows that our method
works well in these cases (1) when the mean increases after the change point,
(2) mean decreases, (3) the variance changes, (4) variance and mean change
at the same time, (5) the parameter of distribution increases (in exponential
distribution), (6) the normal distribution shifts to Cauchy distribution with
different parameters, (7) changes in degrees of freedom in t distribution, (8) the
parameter of distribution decreases (in exponential distribution) and change
point is close to the end of sequence, (9) the support of observations changes
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from (−∞,∞) to (0,∞), and (10) means changes and change point is too close
to the end of sequence.

Table 1: Simulation Results

dist(before) dist(after) k0 k̂0 θ̂0 θ̂1

N(θ0 = 0, 1) N(θ1 = 2, 1) 25 21 0.06 1.85
N(θ0 = 1, 1) N(θ1 = −1, 1) 35 32 1.77 −0.95
N(0, θ0 = 1) N(0, θ1 = 2) 40 39 1.25 2.03
N(0, 1), θ0= (0,1) N(2, 3), θ0= (2,3) 45 41 (0.05,0.98) (1.77,3.12)
Exp(θ0 = 1) Exp(θ1 = 3) 50 49 1.12 2.77
N(θ0 = 0, 1) C(θ1 = 1, 1) 50 44 0.04 1.45
tθ0=2 tθ1=3 55 50 2.4 3.3
Exp(θ0 = 1) Exp(θ1 = 1.5) 75 77 1.05 1.35
N(θ0 = 0, 1) Exp(θ1 = 1) 85 88 0.05 1.05
N(θ0 = 0, 1) N(θ1 = −2, 1) 93 90 0.15 −1.75

4 Real data sets. Here, we study the performance of our method in some
before examined data sets having a change point.

4.1 Stock market data. The data set (taken from Hsu (1979)) is the weekly
log price relative (Xi) of the Dow Jones Industrial Average for the period July
1, 1979 to August 2, 1974. Hsu (1979) has shown that Xi’s are independent
and zero mean and normally distributed. However, there can be doubts about
the constancy of variances of the sequence. It is seen that the sequences if
more variable in the later periods than the earlier. To check this possibility, we
applied our method and found that k̂n = 89 is the point at which the variances
differ.

4.2 Aircraft arrival times. There are 212 inter aircraft arrival times
within noon through 8 p.m. on April 30 1969. The observations are independent
and have exponential distribution (see Hsu (1979)). He has shown that the data
have no change point. To examine this, we applied our method to data set. It
is seen that the change point estimation is 211. Therefore, we found that the
arrivals have a coomon rate but this rate is changes for the last observation.

4.3 Heart transplant data. This data set was taken from Kalbfleisch
and Prentice (1980). The average survival time for 35 known age groups are
considered. They have proved that the data are distributed exponentially. We
understood that there is a change point in k0 = 11 and the parameters before
and after the change point are θ0 = 202 and θ1 = 368.8.

Remark 1. We applied our method in Simulated data (Page,1954), Nile
River Data (Cobb,1978) and Pettitt’s data (Pettitt,1979). We saw that our
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method works well in all above mentioned data sets. The results are npt given
here. Interested readers can refer to Habibi (2010).
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