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Abstract. In this paper, an improved SQP method is proposed to solve the nonlinear

programming problem, the direction dk
0 is only necessary to solve a equality constrained

quadratic programming, the feasible direction with descent dk and the high-order revised

direction d̃k which avoids Maratos effect are obtained by explicit formulas. Furthermore, the

global and superlinear convergence are proved under some suitable conditions.

Key words. Nonlinear inequality, Constrained optimization, SQP method, Equality

constrained quadratical programming, Global convergence, Superlinear convergence rate

1. Introduction

Consider the nonlinear inequality constrained optimization problem:

min f(x)
s.t. gj (x) ≤ 0, j ∈ I = {1, 2, . . . ,m},

(1.1)

where f, g
j

: Rn → R(j ∈ I) are continuously differentiable functions. Denote the feasible set
for (1.1) by X =

{
x ∈ Rn | gj (x) ≤ 0, j ∈ I

}
.

A point x ∈ X is said to be a KKT point of (1.1), if it is feasible and satisfies the equalities

∇f(x) +
m∑

j=1

λj∇gj (x) = 0,

λjgj
(x) = 0, j ∈ I,

(1.2)

where λ = (λ1, . . . , λm)T is nonnegative, and λ is said to be the corresponding KKT multiplier
vector.

Due to superlinear convergence rate, the SQP (sequential quadratic programming) methods
are currently considered one of the most effective methods for solving nonlinearly constrained
optimization problems [1] - [8]. SQP algorithms generate iteratively the main search direction
d0 by solving the following quadratic programming subproblem:

min ∇f(x)T d + 1
2dT Hd

s.t. g
j
(x) +∇g

j
(x)T d ≤ 0, j = 1, 2, . . . ,m,

(1.3)
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where H ∈ Rn×n is a symmetric positive definite matrix. However, such type SQP algo-
rithms have two serious shortcomings: (1) SQP algorithms require that the relate QP subprob-
lem (1.3) must be consistency. (2) There exists Matatos effect [6]. Many efforts have been
made to overcome the shortcomings through modifying the quadratic subproblem (1.3) and the
direction d [5]-[13].

P. Spellucci.[12] proposed a new SQP algorithm for solving general nonlinear programs. For
the problem (1.1), the d0 is obtained by solving QP subproblem with only equality constraints:

min ∇f(x)T d + 1
2dT Hd

s.t. gj(x) +∇gj (x)T d = 0, j ∈ I.
(1.4)

If d = 0 and λ ≥ 0, the algorithm stops. However, if d = 0, but λ < 0, the algorithm will not
implement successfully. Recently, Z.B.Zhu [13] Consider the following QP subproblem:

min ∇f(x)T d + 1
2dT Hd

s.t. a
j
(x) +∇g

j
(x)T d = 0, j ∈ L,

(1.5)

where a
j

is suitable vector, which guarantees to hold that if d0 = 0, then x is a KKT point of
(1.1),i.e. if d0 = 0, then it holds that λ0 ≥ 0. Depended strictly on the strict complementarity,
which is rather strong and difficult for testing, the superlinear convergence properties of the
SQP algorithm is obtained. In addition, another some SQP algorithms (see [14]-[16]) have been
proposed, the most advantage of these methods is that the superlinear convergence properties
are still obtained under weaker conditions without the strict complementarity.

In this paper, we will develop an improved SQP method based on the one in [13], the
direction dk

0 is only necessary to solve a equality constrained quadratic programming, which is
very similar to (1.5),In order to void the Maratos effect, combined the generalized projection
technique, a height-order correction direction is computed by an explicit formula, and it plays a
important role in avoiding the strict complementarity. Furthermore, its global and superlinear
convergence rate are obtained under some suitable conditions.

The remainder of this paper is organized as follows: The proposed algorithm is stated in
section 2. In section 3, global convergence is established. Rate of superlinear convergence is
analyzed in section 4.

2. Description of Algorithm

The active constraints set of (1.1) is denoted as follows:

I(x) = {j ∈ I | gj (x) = 0}, I = {1, 2, . . . ,m}. (2.1)

Throughout this paper, following basic assumptions are assumed.

H 2.1. The feasible set X 6= φ, and functions f, gj(j ∈ I) are twice continuously differen-
tiable.

H 2.2. ∀x ∈ X, the vectors {∇gj(x), j ∈ I(x)} are linearly independent.

Firstly, for a given point xk ∈ X, by using the pivoting operation, we obtain an approximate
active Jk = J(xk), such that I(xk) ⊆ Jk ⊆ I.
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Sub-algorithm A:
Step 1. For the current point xk ∈ X, set i = 0, εi(xk) = ε0 ∈ (0, 1).
Step 2 If det(Ai(xk)T Ai(xk)) ≥ εi(xk), let Jk = Ji(xk), Ak = Ai(xk), i(xk) = i, STOP.

Otherwise goto Step 3, where

Ji(xk) = {j ∈ I | −εi(xk) ≤ gj (x
k) ≤ 0}, Ai(xk) = (∇gj (x

k), j ∈ Ji(xk)). (2.2)

Step 3 Let i = i + 1, εi(xk) = 1
2εi−1(xk), and goto Step 2.

Theorem 2.1. [16] For any iteration, there is no infinite cycle for above subalgorithm A.
Moreover, if

{
xk
}

k∈K
→ x∗, then there exists a constant ε > 0, such that εk,ik

≥ ε, for k ∈ K, k

large enough.

Now, the algorithm for the solution of the problem (1.1) can be stated as follows.
Algorithm A:
Step 0 Initialization:
Given a starting point x0 ∈ X, and an initial symmetric positive definite matrix H0 ∈ Rn×n.

Choose parameters ε0 ∈ (0, 1), α ∈ (0, 1
2 ), τ ∈ (2, 3). Set k = 0;

Step 1 For xk, compute Jk = J(xk), Ak = A(xk) by using Sub-algorithm A.
Step 2 Computation of the vector ak :

2.1 Reorder the rows of Ak by finding its a maximal linearly independent rows subset,
and denote

Ak
4
=

(
A1

k

A2
k

)
,

where A1
k, which is invertible, is the matrix whose rows are |Jk| linearly independent rows of

Ak ,and A2
k is the matrix whose rows are the remaining n− |Jk| rows of Ak. Correspondingly,

let ∇f(xk) be decomposed as ∇f1(xk) and ∇f2(xk), i.e.,

∇f(xk)
4
=

(
∇f1(xk)
∇f2(xk)

)
.

2.2 Solve the following system of linear equations:

A1
ku = −∇f1(xk). (2.3)

Let ak =
(
ak

j , j ∈ Jk

)
∈ R

|Jk|
be the unique solution;

Step 3 Computation of the direction dk
0 :

Solve the following equality constrained QP subproblem at xk:

min ∇f(xk)T d + 1
2dT Hkd

s.t. pk
j

+∇g
j
(xk)T d = 0, j ∈ Jk.

(2.4)

Where

pk
j

=

{
−ak

j , ak
j < 0,

g
j
(xk), ak

j ≥ 0.
pk = (pk

j
, j ∈ Jk).

Let dk
0 be the KKT point of (2.4), and vk = (vk

j , j ∈ Jk) be the corresponding multiplier
vector. If dk

0 = 0, STOP. Otherwise, CONTINUE;
Step 4 Computation of the feasible direction with descent dk :
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dk = dk
0 − δkAk(AT

k Ak)−1ek. (2.5)

Where ek = (1, · · · , 1)T ∈ R|Jk|, and

δk =
‖dk

0‖(dk
0)T Hkdk

0

2|(µk)T ek| · ‖dk
0‖+ 1

, µk = −(AT
k Ak)−1AT

k∇f(xk). (2.6)

Step 5 Computation of the high-order revised direction d̃k :

d̃k = −δkAk(AT
k Ak)−1(‖dk

0‖τek + g̃
Jk

(xk + dk)). (2.7)

Where τ ∈ (2, 3), and

g̃
Jk

(xk + dk) = g
Jk

(xk + dk)− g
Jk

(xk)−∇g
Jk

(xk)T dk. (2.8)

Step 6 The line search:
Compute tk, the first number t in the sequence {1, 1

2 , 1
4 , 1

8 , . . .} satisfying

f(xk + tdk + t2d̃k) ≤ f(xk) + αt∇f(xk)T dk, (2.9)

g
j
(xk + tdk + t2d̃k) ≤ 0, j ∈ I. (2.10)

Step 7 Update:
Obtain Hk+1 by updating the positive definite matrix Hk using some quasi-Newton formulas.

Set xk+1 = xk + tkdk + t2d̃k, and k = k + 1. Go back to step 1.

3. Global Convergence of Algorithm

In this section, firstly, it is shown that Algorithm A given in section 2 is well-defined,
that is to say, it is possible to execute all the steps defined above.

Lemma 3.1. For the QP subproblem (2.4) at xk, if dk
0 = 0, then xk is a KKT point of

(1.1). If dk
0 6= 0, then dk computed in step 4 is a feasible direction with descent of (1.1) at xk.

Proof. By the KKT conditions of QP subproblem (2.4) , we have

∇f(xk) + Hkdk
0 + Akvk = 0,

pk
j

+∇gj (x
k)T dk

0 = 0, j ∈ Jk,
(3.1)

If dk
0 = 0, we have,

∇f1(xk) + A1
kvk = 0,∇f2(xk) + A2

kvk = 0,

pk
j

= 0, ak
j ≥ 0, j ∈ Jk.

(3.2)

Thereby, from (2.3), the fact A1
k is nonsingular implies that

vk = ak ≥ 0.

In a word, we get that
∇f(xk) + Akvk = 0,

g
j
(xk) = 0, vk

j ≥ 0, j ∈ Jk,
(3.3)
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let vk
j = 0, j ∈ I \ Jk, which shows that xk is a KKT point of (1.1).

If dk
0 6= 0,

gJk
(xk)T dk = AT

k dk = AT
k dk

0 − δkek = −pk − δkek.

∇f(xk)T dk
0 = −(dk

0)T Hkdk
0 + bkT AT

k dk
0 = −(dk

0)T Hkdk
0 + bkT pk,

∇f(xk)T dk = ∇f(xk)T dk
0 − δk∇f(xk)T Ak(AT

k Ak)−1ek = −(dk
0)T Hkdk

0 + bkT pk + δkµkT ek

≤ −1
2
(dk

0)T Hkdk
0 + bkT pk ≤ −1

2
(dk

0)T Hkdk
0

Thereby, dk is a feasible direction with descent of (1.1) at xk.

Lemma 3.2. The line search in step 6 yields a stepsize tk =
(

1
2

)i for some finite i = i(k).

Proof. It is a well-known result according to Lemma 3.1. For (2.9),

s
4
= f(xk + tdk + t2d̃k)− f(xk)− αt∇f(xk)T dk

= ∇f(xk)T (tdk + t2d̃k) + o(t)− αt∇f(xk)T dk

= (1− α)t∇f(xk)T dk + o(t)

For (2.10),if j 6∈ I(xk), gj(xk) < 0; j ∈ I(xk), gj(xk) = 0, ∇gj(xk)T dk < 0, so we have

gj(xk + tdk + t2d̃k) = ∇f(xk)T (tdk + t2d̃k) + o(t) = αt∇gj(xk)T dk + o(t)

The above discussion has shown the well-definition of Algorithm A.
In the sequel, the global convergence of Algorithm A is shown. For this reason, we make

the following additional assumption.

H 3.1. {xk} is bounded, which is the sequence generated by the algorithm , and there exist
constants b ≥ a > 0, such that a||y||2 ≤ yT Hky ≤ b||y||2, for all k and all y ∈ Rn.

Since there are only finitely many choices for sets Jk ⊆ I, and the sequence {dk
0 , dk

1 , d̃k, ak, vk}
is bounded, we can assume without loss of generality that there exists a subsequence K, such
that

xk → x∗,Hk → H∗, d
k
0 → d∗0, d

k → d∗, d̃k → d̃∗, ak → a∗, vk → v∗, Jk ≡ J 6= ∅, k ∈ K, (3.4)

where J is a constant set.

Lemma 3.3. Suppose that assumptions H 2.1-H 3.1 hold, then,
1) There exists a constant ζ > 0, such that ‖(AT

k Ak)−1‖ ≤ ζ;
2) lim

k→∞
dk
0 = 0;

3) lim
k→∞

dk = 0, lim
k→∞

d̃k = 0.

Proof. 1) From Sub-algorithm A and Theorem 2.1, we have the following result.

det(AT
∗A∗) = lim

k∈K
det(AT

k Ak) ≥ lim
k∈K

εk ≥ ε > 0.

Thereby, the first conclusion 1) follows.
2)Suppose by contradiction that d∗0 6= 0. Then, from Lemma 3.1, it is obvious that d∗ is
well-defined, and it holds that

∇f(x∗)T d∗ < 0,∇g
j
(x∗)T d∗ < 0, j ∈ I(x∗) ⊆ J. (3.5)
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Thus, from (3.5), it is easy to see that the step-size tk obtained in step 6 are bounded away
from zero on K, i.e.,

tk ≥ t∗ = inf{tk, k ∈ K} > 0, k ∈ K. (3.6)

In addition, from (2.9) and Lemma 3.1, it is obvious that
{
f(xk)

}
is monotonous decreasing.

So, according to assumption H 2.1, the fact that
{
xk
}

K
→ x∗ implies that

f(xk) → f(x∗), k →∞. (3.7)

So, from (2.9), (3.5), (3.6), it holds that

0 = lim
k∈K

(
f(xk+1)− f(xk)

)
≤ lim

k∈K

(
αtk∇f(xk)T dk

)
≤ 1

2
αt∗f(x∗)T d∗ < 0, (3.8)

which is a contradiction thus lim
k→∞

dk
0 = 0.

3) The proof of 3) is elementary from the result of 2),1) as well as formulas (2.5) and (2.7)

Theorem 3.4. The algorithm either stops at the KKT point xk of the problem (1.1) in
finite number of steps, or generates an infinite sequence {xk} any accumulation point x∗ of
which is a KKT point of the problem (1.1).

4. The Rate of Convergence

In this section, we will discuss the convergent rate of the algorithm, and prove that
the sequence {xk} generated by the algorithm is one-step superlinearly convergent under some
mild conditions without the strict compementarity. For this purpose, we add some regularity
hypothesis.

H 4.1. The sequence {xk} generated by Algorithm A is bounded, and possess an accumu-
lation point x∗, such that the KKT pair (x∗, u∗) satisfies the strong second-order sufficiency
conditions, i.e.,

dT∇2
xxL(x∗, u∗)d > 0,∀ d ∈ Ω

4
= {d ∈ Rn : d 6= 0,∇g

I+ (x∗)T d = 0},

where, L(x, u) = f(x) +
∑
j∈I

ujgj(x), I+ = {j ∈ I : u∗j > 0}.

Lemma 4.1. Let H2.1∼ H4.1 holds, lim
k→∞

||xk+1−xk|| = 0. Thereby, the entire sequence{xk}
converges to x∗, i.e. xk → x∗, k →∞.

Proof. From the Lemma 3.3, it is easy to see that

lim
k→∞

||xk+1 − xk|| = lim
k→∞

(‖tkdk + t2kd̃k‖) ≤ lim
k→∞

(‖dk‖+ ‖d̃k‖) = 0.

Moreover, together with Theorem 1.1.5 in [9], it shows that xk → x∗, k →∞.

Lemma 4.2. It holds, for k large enough, that
1) Jk ≡ I(x∗)

4
= I∗, a

k → u
I∗

=
(
u∗j , j ∈ I∗

)
, vk →

(
u∗j , j ∈ I∗

)
.

2) ||dk|| ∼ ||dk
0 ||, ||d̃k|| = O(||dk||2),

3) I+ ⊆ Lk = {j ∈ Jk : gj(xk +∇gj(xk)T dk
0) = 0} ⊆ I(x∗).
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Proof. 1)Prove Jk ≡ I∗.
On one hand, from Lemma 2.1, we know, for k large enough, that I∗ ⊆ Jk. On the other

hand, if it doesn’t hold that Jk ⊆ I∗, then there exist constants j0 and β > 0, such that

g
j0

(x∗) ≤ −β < 0, j0 ∈ Jk.

So, according to dk
0 → 0 and assumption H2, it holds, for k large enough, that

p
j0

(xk) +∇g
j0

(x∗)T dk
0 =

{
−ak

j0
+∇gj0

(x∗)T dk
0 ≥ − 1

2ak
j0

> 0, ak
j0

< 0,

gj0
(xk) +∇gj0

(x∗)T dk
0 ≤ −1

2β < 0, ak
j0
≥ 0.

, (4.1)

which is contradictory with (2.4) and the fact j0 ∈ Jk. So, Jk ≡ I∗( for k large enough).
Prove that ak → u

I∗
=
(
u∗j , j ∈ I∗

)
, vk →

(
u∗j , j ∈ I∗

)
.

Denote A∗ =
(
∇g

j
(x∗), j ∈ I∗

)
. Reorder the rows of A∗, and mark

A∗
4
=

(
A1
∗

A2
∗

)
,

where A1
∗, which is invertible, is the matrix whose rows are |I∗| linearly independent rows of

A∗ ,and A2
∗ is the matrix whose rows are the remaining n− |I∗| rows of A∗. Correspondingly,

let ∇f(x∗) be decomposed as ∇f1(x∗) and ∇f2(x∗), i.e.,

∇f(x∗)
4
=

(
∇f1(x∗)
∇f2(x∗)

)
.

The fact Jk ≡ I∗ implies that

A1
k → A1

∗,∇f1(xk) → ∇f1(x∗), k →∞. (4.2)

In addition, since x∗ is a KKT point of (1.1), it is evident that

∇f(x∗) + A∗uI∗
= 0, u

I∗
= −(A1

∗)
−1∇f1(x∗). (4.3)

Thereby, from (2.3), (4.2), and (4.3), it holds that

ak → u
I∗

, k →∞.

While, from (2.4), the fact that dk
0 → 0 implies that

∇f(xk) + Hkdk
0 + Akvk = 0, vk → −(A1

∗)
−1∇f1(x∗) = u

I∗
.

The claim holds.
2)The proof of 2) is elementary from the formulas (2.5), (2.7) and assumption H 2.1.
3) For lim

k→∞
(xk, dk

0) = (x∗, 0), we have Lk ⊆ I(x∗). Furthermore, it has lim
k→∞

uk
I+ = u∗I+ > 0,

so the proof is finished.
In order to obtain superlinear convergence, a crucial requirement is that a unit step size is

used in a neighborhood of the solution. This can be achieved if the following assumption is
satisfied.

H 4.2. Let
∥∥(∇2

xxL(xk, uk
Jk

)−Hk)dk
∥∥ = o

(
||dk||

)
, where L(x, uk

Jk
) = f(x) +

∑
j∈Jk

uk
j gj(x).
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According to Theorem 4.2 in [16], it is easy to obtain the following results.

Lemma 4.3. For k large enough, tk ≡ 1.

Furthermore, In a way similar to the proof of Theorem 5.2 in [2], we may obtain the following
theorem:

Theorem 4.4. Under all above-mentioned assumptions, the algorithm is superlinearly con-
vergent, i.e., the sequence {xk} generated by the algorithm satisfies that

||xk+1 − x∗|| = o(||xk − x∗||).

5. Numerical experiments

In this section, we carry out numerical experiments based on the Algorithm A. The code
of the proposed algorithm is written by using MATLAB 7.0 and utilized the optimization tool-
box. The results show that the algorithm is very effective. During the numerical experiments,
it is chosen at random some parameters as follows: ε0 = 0.5, α = 0.25, τ = 2.25, andH0 = I,
the n × n unit matrix.Hk is updated by the BFGS formula [10]. In the implementation, the
stopping criterion of Step 1 is changed to If ‖dk

0‖ ≤ 10−8 STOP .
This algorithm has been tested on some problems from Ref.[17], a feasible initial point is

either provided or obtained easily for each problem. The results are summarized in Table 1.
The columns of this table has the following meanings:
No.: the number of the test problem in [17];
n : the number of variables;
m: the number of inequality constraints;
NT: the number of iterations;
FV: the final value of the objective function.

Table 1
NO. n,m NT ‖dk

0‖ FV
30 3, 7 14 5.604630296280 E-09 0.999999929472
43 4, 3 21 5.473511535838 E-09 -43.999999999998
66 3, 8 12 8.327832675386 E-09 0.518163274180
100 7, 4 18 8.595133692328 E-09 680.630057374463
113 10, 8 45 6.056765632745 E-09 24.306209068269
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