
AMO-Advanced Modeling and Optimization, Volume 13, Number 3, 2011

On Generalized Fuzzy Numbers

Angel Garrido

Facultad de Ciencias de la UNED

Abstract
Our paper analyzes some new lines on analythical concepts, as the so-

called Generalized Fuzzy Number, also introducing Triangular Numbers,
Trapezoidal Numbers, and so on, on Universes of Discourse, jointly with
some new ideas about the Generalized Fuzzy Complex Numbers.
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1. Generalized Fuzzy Numbers
AGFN (Generalized Fuzzy Number, by acronym), F, will be any fuzzy subset

[1, 2, 3] of the real line whose membership function, �F ; verifying:

1) �F (x) = 0; if �1 < x � a
2) �F (x) = L (x) is strictly increasing on [a; b]

3) �F (x) = w; if b � x � c
4) �F (x) = R (x) is strictly decreasing on [c; d]

5) �F (x) = 0; if d � x < +1
The more usual way [9, 10] to denote a GFN may be

A = (a; b; c; d;w)

In particular case when w = 1, we can express the GFN by

A = (a; b; c; d)LR

Obviously, when the functions L(x) and R(x) corresponds to straight lines,
we have a Trapezoidal Fuzzy Number.

2. Complex Fuzzy Numbers
Let U be the universe of discourse [1, 4, 5]. Then, we de�ne a Complex Fuzzy

Set (CFS, by acronym), and denoted as C, through its membership function,
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�C (x) = rC (x) exp fi !C (x)g

where i represent the imaginary unit, being rC and !C both real-valued func-
tions, with an important restriction on rC :

0 � rC (x) � 1

Hence, a CFS may be represented as an ordered collection of pairs of this
type:

C = fx j �C (x)gx2U = f(x; �C (x))gx2U

We can consider the precedent membership function, �C (x) ; as composed
by two factors [2, 4]: membership amplitude, rC (x), and membership phase,
!C (x) :

As a particular case, we may consider the case of C with a null membership
function, �C (x) = 0; for instance on the case where either rC (x) ; or rC (x) and
!C (x) = 0; therefore, null phase and amplitude.

We make a more detailed analysis of membership phase component, wrt the
fuzzy operations, union, intersection, and so on.

Let A and B two CFS.
Then,we can de�ne

�A[B(x) = [rA (x) I rB (x)] exp fi !A[B (x)g

being I here some T-conorm operator.

And similarly (but being di¤erent) we can also de�ne

�A\B(x) = [rA (x) J rB (x)] exp fi !A\B (x)g

being J in this case some T-norm operator.

It remains until now without de�nition their respective phases,

!
A[B (x) ; and !A\B (x)

3. The Lattice of Fuzzy Numbers
To expose the fundamental operations between fuzzy numbers, we �rstly

analyze the so-called Interval Operations [4, 6],

- Addition,

[a; b] (+) [c; d] = [a+ c; b+ d]
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- Di¤erence,

[a; b] (�) [c; d] = [a� d; b� c]

- Product,

[a; b] (�) [c; d] = [ac ^ ad ^ bc ^ bd; ac _ ad _ bc _ bd]

- Division,

[a; b] (=) [c; d] = [a=c ^ a=d ^ b=c ^ b=d; a=c _ a=d _ b=c _ b=d]

on the last case, de�ned in this way except when

c = d = 0

Two examples may be either

[1; 2] (+) [3; 4] = [1 + 3; 2 + 4] = [4; 6]

or

[0; 1] (+) [�3; 5] = [0 + (�3) ; 1 + 5] = [�3; 6]

The substraction of the same both fuzzy numbers will be either

[1; 2] (�) [3; 4] = [1� 4; 2� 3] = [�3;�1]

or

[0; 1] (�) [�3; 5] = [0� 5; 1� (�3)] = [0; 4]

In the �rst example for division, it produces

[1; 2] (�) [3; 4] = [1 � 3 ^ 1 � 4 ^ 2 � 3 ^ 2 � 4; 1 � 3 _ 1 � 4 _ 2 � 3 _ 2 � 4] =
= [3 ^ 4 ^ 6 ^ 8; 3 _ 4 _ 6 _ 8] = [3; 8]

And in the case of division between both fuzzy numbers of the �rst example,
we have

[1; 2] (=) [3; 4] = [1=3 ^ 1=4 ^ 2=3 ^ 2=4; 1=3 _ 1=4 _ 2=3 _ 2=4] = [1=4; 2=3]
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This essential arithmetics may be also expressed by interval operations of
�� level sets:
Let (�) 2 f(+); (�) ; (�) ; (=)g any of such operations, with the restriction

that 0 =2 B�; on the last case, and being also 0 < � � 1:
Then, we obtain this fuzzy number

A (�)B = [�2(0;1] [A (�)B]�

The generalization is possible, because we dispose of the Extension Principle,
for any arithmetic operation, (�) :
Because this may be expressed by this crucial result

[A (�)B] (z) = supz=x(�)y fmin [A (x) ; B (y)]g

Recall that a Lattice is a poset (partially ordered set) with an ordering
relation. We dispose in this case of

- Meet (g. l. b., or greatest lower bound),

and

- Join (l. u. b., or least upper bound)

operations.

So, we can describe the Lattice of Fuzzy Numbers by

MIN (A;B) = supz=min(x;y) fmin [A (x) ; B (y)]g =MEET (A;B)
and

MAX (A;B) = supz=max(x;y) fmin [A (x) ; B (y)]g = JOIN (A;B)

Also that a distributive lattice, in this case, signi�es that

MIN [A; MAX (B;C)] =MAX [MIN (A;B) ; MIN (A;C)]

and

MAX [A; MIN (B;C)] =MIN [MAX (A;B) ; MAX (A;C)]

Hence,

< F; MIN; MAX >

is a distributive lattice, being F the family, or collection, of all fuzzy sets.

Conclusion
Expressing by adequate Generalized Fuzzy Numbers will be a very inspired

and useful idea. In fact, their applications extends to many di¤erent and promis-
ing �elds, as may be on Fuzzy Logic, Measure Theory, Automata Theory, and
so on.
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