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Abstract In this paper we present a new polynomial interior-point algorithm for

the Cartesian P∗(κ) second-order cone linear complementarity problem based on

a finite kernel function. The symmetrization of the search directions used in this

paper is based on the Nesterov and Todd scaling scheme. We derive the iteration

bounds that match the currently best known iteration bounds for large- and small-

update methods, namely, O((1 + 2κ)
√
N logN log N

ε
) and O((1 + 2κ)

√
N log N

ε
),

respectively, which are as good as the P∗(κ) linear complementarity problem ana-

logue. Moreover, this unifies the analysis for P∗(κ) linear complementarity problem

and second-order cone optimization.
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1. Introduction

In this paper we consider the second-order cone linear complementarity problem

(SOCLCP), which seeks vectors x, s ∈ Rn and q ∈ Rn such that

x ∈ K, s = A(x) + q ∈ K, and 〈x, s〉 = 0,

where 〈x, s〉 = Tr(x◦s) denotes the Euclidean inner product, A : K → K is a linear

transformation, and K ⊆ Rn is the Cartesian product of several second-order cones,

i.e.,

K = K1 × · · · × KN ,

with

Kj =
{

x(j) = (x
(j)
1 ;x

(j)
2:nj

) ∈ R×Rnj−1 : x
(j)
1 ≥ ‖x(j)2:nj

‖
}

,
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for each j ∈ J = {1, · · ·, N}, x(j)2:nj
= (x

(j)
2 ; · · ·;x(j)nj ), and n =

∑N
j=1 nj . This

problem includes as a special case the well-known linear complementarity problem

(LCP), corresponding to nj = 1 for all j, i.e., K is the nonnegative orthant Rn
+,

and the Karush-Kuhn-Tucker (KKT) optimality conditions for second-order cone

optimization (SOCO) [1] can be written in the form of SOCLCP [10]. Additionally,

many important practical problems in economics and engineering, such as facility

location and Nash equilibrium, can be formulated as it. Many researchers have

studied the second-order cone complementarity problem (SOCCP) and achieved

plentiful and beautiful results [9, 10].

We call SOCLCP the Cartesian P∗(κ)-SOCLCP if the linear transformation A
has the Cartesian P∗(κ)-property, i.e., for any nonnegative real number κ, the linear

transformation A satisfies

(1) (1 + 4κ)
∑

ν∈I+(x)

〈x(ν), [A(x)](ν)〉+
∑

ν∈I−(x)

〈x(ν), [A(x)](ν)〉 ≥ 0,

where

I+(x) = {ν ∈ J : 〈x(ν), [A(x)](ν)〉 > 0}, and I−(x) = {ν ∈ J : 〈x(ν), [A(x)](ν)〉 < 0}

are two index sets. It should be pointed out that the Cartesian P∗(κ)-property

is a weaker property than the monotonicity unless κ = 0, and 0 ≤ κ1 ≤ κ2 im-

plies P∗(κ1) ⊂ P∗(κ2). Moreover, the linear transformation A with the Cartesian

P∗(κ)-property becomes the usual P∗(κ) matrix when K is specified to be Rn
+, cor-

respondingly, the Cartesian P∗(κ)-SOCLCP reduces to P∗(κ)-LCP [11]. The linear

transformation A has the Cartesian P∗-property if it has the Cartesian P∗(κ)-

property for some nonnegative κ, i.e.,

P∗ =
⋃

κ≥0

P∗(κ).

We also recall that the linear transformation A has

(a) the Cartesian P -property, if for any x ∈ K and x 6= 0, there exists an index

ν ∈ {1, 2, · · ·, N}, such that 〈x(ν), [A(x)](ν)〉 > 0;

(b) the Cartesian P0-property, if for any x ∈ K and x 6= 0, there exists an index

ν ∈ {1, 2, · · ·, N} such that x(ν) 6= 0 and 〈x(ν), [A(x)](ν)〉 ≥ 0.

It is clear that the Cartesian P∗ class involves the Cartesian P class and turns out

to be a special case in the Cartesian P0 class. The concept of the Cartesian P0- and

P -properties was first introduced by Chen and Qi [6] for a linear transformation

between the space of symmetric matrices, and later extended by Pan and Chen [15]

and Luo and Xiu [12] to the space of second-order cones and the general Euclidean

Jordan algebra, respectively.

Recently, Bai et al. [2] presented a new efficient large-update primal-dual interior-

point algorithm for linear optimization (LO) based on a finite kernel function as

follows

(2) ψ(t) =
t2 − 1

2
+
eσ(1−t) − 1

σ
, σ ≥ 1.
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which is not a kernel function in the usual sense [4]. It has a finite value at the

boundary of the feasible region, i.e.,

(3) lim
t→0

ψ(t) =
eσ − 1

σ
− 1

2
<∞.

Despite this, the iteration bound of a large-update method based on this kernel

function is shown to be O(
√
n log n log n

ε
). Moreover, Bai et al. [3] proposed a class

of polynomial interior-point algorithms for P∗(κ)-LCP based on a parametric kernel

function and obtained the currently best known iteration bounds for large- and

small-update methods, namely, O((1+2κ)
√
n log n log n

ε
) and O((1+2κ)

√
n log n

ε
),

respectively.

The purpose of the paper is to extend the primal-dual interior-point algorithm for

LO based on the finite kernel function in [2] to the Cartesian P∗(κ)-SOCLCP. We

adopt the basic analysis used in [2, 3] and revise them to be suited for the Cartesian

P∗(κ)-SOCLCP case. The symmetrization of the search directions used in this

paper is based on the Nesterov and Todd (NT) scaling scheme. Finally, we derive

the iteration bounds that match the currently best known iteration bounds for

large- and small-update methods, namely, O((1 + 2κ)
√
N logN log N

ε
) and O((1 +

2κ)
√
N log N

ε
), respectively. Moreover, our analysis is simple and straightforward

to the P∗(κ)-LCP analogue.

The paper is organized as follows. In Section 2, we review some relevant algebraic

properties of the second-order cones and the properties of the finite kernel (barrier)

function that are needed in the analysis of the algorithm. In Section 3, we first

discuss the central path for the Cartesian P∗(κ)-SOCLCP. Then we mainly derive

the new search directions based on the finite kernel function for the Cartesian P∗(κ)-

SOCLCP. The generic polynomial interior-point algorithm for the Cartesian P∗(κ)-

SOCLCP is also presented. The analysis and complexity results of the algorithm are

presented in Section 4 and 5, respectively. Finally, some conclusions and remarks

follow in Section 6.

Some of the notations used throughout the paper are as follows. Rn, Rn
+ and

Rn
++ denote the set of vectors with n components, the set of nonnegative vectors

and the set of positive vectors, respectively. ‖ . ‖ denotes the Frobenius norm for

matrices, and the 2-norm for vectors. The Löwner partial order “�” ( or ≻) on

second-order cones means that x �K s ( or x ≻K s) if x− s ∈ K (or x− s ∈ K+),

where K+ denotes the interior of K. En denotes the n×n identity matrix. Finally,

if g(x) ≥ 0 is a real valued function of a real nonnegative variable, the notation

g(x) = O(x) means that g(x) ≤ c̄x for some positive constant c̄ and g(x) = Θ(x)

that c1x ≤ g(x) ≤ c2x for two positive constants c1 and c2.

2. Preliminaries

2.1. Algebraic properties of the second-order cones. In this subsection we

briefly recall some algebraic properties of the second-order cones that are needed in

the analysis of the algorithm. Our presentation is mainly based on the references

[5, 8, 16]. To ease discussion, we assume the second-order cone K is defined with

N = 1.
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For any two vectors x, s ∈ Rn, the bilinear operator ◦ is defined by

(4) x ◦ s := (xT s;x1s2 + s1x2; · · ·;x1sn + s1xn).

This operator is commutative. Moreover, (Rn, ◦) is a Jordan algebra. Note that the

map s 7→ x◦s is linear. The matrix of this linear map, with respect to the standard

basis, is denoted as L(x), and one may easily verify that it is an arrow-shaped

(symmetric) matrix

(5) L(x) :=







x1 xT2:n

x2:n x1En−1






.

It follows that L(x)s = x ◦ s = s ◦ x = L(s)x. Moreover, x ∈ K (or K+) if and only

if L(x) is positive semidefinite (or positive definite) matrix.

Let λmax(x) and λmin(x) denote the maximal and minimal eigenvalues of L(x),

respectively, namely,

(6) λmax(x) := x1 + ‖x2:n‖, and λmin(x) := x1 − ‖x2:n‖.

It readily follows that

(7) x ∈ K ⇔ λmax(x) ≥ λmin(x) ≥ 0, and x ∈ K+ ⇔ λmax(x) ≥ λmin(x) > 0.

Furthermore, we can conclude that

(8) |λmax(x)| ≤
√
2‖x‖, and |λmin(x)| ≤

√
2‖x‖.

For any x ∈ Rn, the trace of x associated with K is defined by

(9) Tr(x) := λmax(x) + λmin(x) = 2x1,

and the determinant of x associated with K is given by

(10) det(x) := λmax(x)λmin(x) = x21 − ‖x2:n‖2.

The definition of the trace function, together with (4), implies that, for any

x, s ∈ Rn,

(11) 〈x, s〉 := Tr(x ◦ s) = 2xT s.

It follows that

(12) Tr(x ◦ x) = 2‖x‖2.

Lemma 2.1 (Lemma 2.2 in [5]). If x, s ∈ Rn, then

λmin(x+ s) ≥ λmin(x)−
√
2 ‖s‖.

Lemma 2.2 (Corollary 2.4 in [5]). If x, s ∈ K, then

λmin(x)Tr(s) ≤ Tr(x ◦ s) ≤ λmax(x)Tr(s).
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For any x ∈ Rn, the so-called spectral decomposition of x is given by

(13) x := λmax(x)z1 + λmin(x)z2,

where the Jordan frame {z1, z2} is given by

(14) z1 :=
1

2

(

1;
x2:n

‖x2:n‖

)

, and z2 :=
1

2

(

1;
−x2:n
‖x2:n‖

)

,

which are the eigenvectors of L(x) for the eigenvalues λmax(x) and λmin(x), re-

spectively. Here by convention x2:n

‖x2:n‖ = 0 if x2:n = 0.

The importance of the spectral decomposition is that it enables us to extend the

definition of any function ψ : R → R to a function that maps Rn into Rn. In

particular this holds for the finite kernel function ψ(t).

Let ψ : R → R and x ∈ Rn with the spectral decomposition as defined by (13).

Then the vector valued function ψ(x) : Rn → Rn is defined as follows

(15) ψ(x) := ψ(λmax(x)) z1 + ψ(λmin(x)) z2.

It follows that

(16) ‖ψ(x)‖ =

√
2

2

√

ψ2(λmax(x)) + ψ2(λmin(x))

and

(17) Tr(ψ(x)) = ψ(λmax(x)) + ψ(λmin(x)).

If ψ(t) is twice differentiable, like the finite kernel function ψ(t), the derivative

ψ′(t) and ψ′′(t) exist for t > 0, and we also have the vector-valued functions ψ′(x)

and ψ′′(x), namely

(18) ψ′(x) = ψ′(λmax(x))z1 + ψ′(λmin(x))z2,

and

(19) ψ′′(x) = ψ′′(λmax(x))z1 + ψ′′(λmin(x))z2.

For any x ∈ Rn, we define

(20) P (x) := 2L(x)2 − L(x2),

where L(x)2 = L(x)L(x) and x2 = x ◦ x. As a consequence we have

P (x) =







‖x‖2 2x1x
T
2:n

2x1x2:n det(x)En−1 + 2x1x
T
2:n






.

The map P (x) is called the quadratic representation of K, which is an essential

concept in the theory of Jordan algebras.

Lemma 2.3 (NT-sacling, Lemma 3.2 in [8]). Let x, s ∈ K+. Then there exists a

unique w ∈ K+ such that

x = P (w)s.

Moreover,

w = P (x
1
2 )
(

P (x
1
2 )s
)− 1

2

[

= P (s−
1
2 )
(

P (s
1
2 )x
)

1
2

]

.
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Note that P (w) is an automorphism. The point w is called the scaling point of

x and s (in this order). Hence there exists ṽ ∈ K+ such that

(21) ṽ = P (w)−
1
2x = P (w)

1
2 s,

which is the so-called NT-scaling of Rn. In the following lemma we recall several

properties of the NT-scaling scheme without its proof.

Lemma 2.4 (Proposition 3.2 in [16]). Let W = P (w)
1
2 for some w ∈ K+. Then

the following holds for any x, s ∈ Rn

(i) Tr(Wx ◦W−1s) = Tr(x ◦ s);
(ii) det(Wx) = det(w) det(x), and det(W−1s) = det(w−1) det(s);

(iii) if w is the scaling point of x and s, then det(Wx ◦W−1s) = det(x) det(s).

2.2. Back to the general case. In what follows we proceed by adapting the

definitions and properties in this section to the general case where N > 1, when

the cone underlying the given Cartesian P∗(κ)-SOCLCP is the Cartesian product

of N second-order cones Kj . First we partition any vector x ∈ Rn according to the

dimensions of the successive cones Kj , so

(22) x =
(

x(1); · · ·;x(N)
)

, and s =
(

s(1); · · ·; s(N)
)

, x(j), s(j) ∈ Rnj ,

and we define the algebra (Rn, ⋄) as a direct product of Jordan algebras

(23) x ⋄ s =
(

x(1) ◦ s(1); · · ·;x(N) ◦ s(N)
)

.

Obviously, if e(j) ∈ Kj is the unit element in the Jordan algebra for the j-th cone,

then the vector

(24) e = (e(1); · · ·; e(N))

is the unit element in (Rn, ⋄). Furthermore, we have

(25) Tr(x) =

N
∑

j=1

Tr(x(j)), ‖x‖ =

√

√

√

√

N
∑

j=1

‖x(j)‖2, and det(x) =

N
∏

j=1

det(x(j)).

One can easily verify that Tr(e) = 2N . It follows from (5) and (20) that

(26) L(x) = diag(L(x(1)), · · ·, L(x(N))),

and

(27) P (x) = diag(P (x(1)), · · ·, P (x(N))).

The NT-scaling scheme in this general case is now obtained as follows. Let w(j)

be the scalling point x(j), s(j) in Kj
+. Then

(28) P (w(j))−
1
2x(j) = P (w(j))

1
2 s(j), j ∈ J.

The scaling point of x and s in K is then defined by

(29) w = (w(1); · · ·;w(N)).

Since P (w(j)) is symmetric and positive definite for each j ∈ J , the matrix

(30) P (w) = diag(P (w(1)), · · ·, P (w(N))),
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is symmetric and positive definite as well and represents an automorphism of K
such that P (w)s = x. Therefore P (w) can be used to rescale x and s to the same

vector

(31) v = (v(1); · · ·; v(N)).

As a consequence, we adapt the definitions of ψ(v) as follows

(32) ψ(v) = (ψ(v(1)); · · ·;ψ(v(N))).

Since L(v) = diag(L(v(1)), · · ·, L(v(N))), we have

(33) λmax(v) = λmax(L(v)) = max{λmax(v
(j)) : j ∈ J},

and

(34) λmin(v) = λmin(L(v)) = min{λmin(v
(j)) : j ∈ J}.

2.3. Properties of the finite kernel (barrier) function. In this subsection we

review some useful properties of the finite kernel function and the corresponding

barrier function that are used in the analysis of the algorithm. The detailed can be

found in [2]. For ease of reference, we give the first three derivatives of ψ(t) with

respect to t as follows

(35) ψ′(t) = t− eσ(1−t), ψ′′(t) = 1 + σeσ(1−t), ψ′′′(t) = −σ2eσ(1−t).

It is quite straightforward to verify

(36)

ψ(1) = ψ′(1) = 0, ψ
′′

(t) > 0, t > 0, ψ
′′′

(t) < 0, t > 0, lim
t→∞

ψ(t) = +∞.

Moreover, ψ(t) is strictly convex and ψ′′(t) is monotonically decreasing in t ∈
(0,+∞).

Corresponding to the finite kernel function ψ(t), we define the barrier function

Ψ(v) as follows

(37)

Ψ(x, s;µ) := Ψ(v) := Tr(ψ(v)) =

N
∑

j=1

Tr(ψ(v(j))) =

N
∑

j=1

(

ψ(λmax(v
(j))) + ψ(λmin(v

(j)))
)

.

Moreover, we can conclude that the derivative of the barrier function Ψ(v) is exactly

equal to the derivative of the vector valued function ψ(v), i.e., ∇Ψ(v) = ψ′(v).

Theorem 2.5 (Proposition 2.9 in [16]). Ψ(v) is nonnegative and strictly convex

with respect to v ∈ K+ and vanishes at its global minimal point v = e = (1; 0; · · ·; 0),
i.e.,

Ψ(v) = 0 ⇔ ψ(v) = 0 ⇔ ψ′(v) = 0 ⇔ v = e.

Lemma 2.6 (Lemma 2.4 in [2]). If t1 ≥ 1
σ
and t2 ≥ 1

σ
, then

ψ(
√
t1t2) ≤

1

2
(ψ(t1) + ψ(t2)).

As a consequence of Lemma 2.6, we have the following lemma, which is crucial

for the analysis of the algorithm presented in Fig. 1.
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Lemma 2.7 (Proposition 2.9 in [16]). Let λmin(x) ≥ 1
σ
, λmin(x) ≥ 1

σ
. If v ∈ K+

satisfy

det (v ◦ v) = det (x) det (s) , and Tr(v ◦ v) = Tr(x ◦ s),

then

Ψ(v) ≤ 1

2
(Ψ(x) + Ψ(s)).

Note that ψ(t) is exponentially convex, whenever t ≥ 1
σ
. The following lemma

makes clear that when v belongs to the level set {v : Ψ(v) ≤ L}, for some given

L ≥ 8, the exponential convexity is guaranteed and it is proved that the value of σ

is large enough.

Lemma 2.8 (Lemma 2.5 in [2]). Let L ≥ 8 and Ψ(v) ≤ L. If σ ≥ 1+ 2 log(1+L),

then λmin(v) ≥ 3
2σ .

Lemma 2.9. If t ≥ 1, then

ψ(t) ≤ 1 + σ

2
(t− 1)2.

Proof. By using Taylor’s theorem and the fact that ψ′′(1) = 1 + σ, the inequality

is straightforward.

Lemma 2.10. If σ ≥ 2 and t ≥ 1, then

t ≤ 1 +
√

tψ(t).

Proof. Defining f(t) := tψ(t) − (t − 1)2, we have f(1) = 0 and f ′(t) = ψ(t) +

tψ′(t)−2(t−1). Hence f ′(1) = 0 and f ′′(t) = 2ψ′(t)+ tψ′′(t)−2 = 2(t−1)+(σt−
2)eσ(1−t) + t > 0. The last inequality holds since σ ≥ 2 and t ≥ 1. This implies the

lemma.

Lemma 2.11. If t ≥ 1, then

tψ′(t) ≥ ψ(t).

Proof. Defining f(t) := tψ′(t)− ψ(t), we have f(1) = 0 and

f ′(t) = tψ′′(t) ≥ 0.

This implies the lemma.

Lemma 2.12. Let ̺ : [0,∞) → [1,∞) be the inverse function of ψ(t) for t ≥ 1. If

σ ≥ 1, then

(38)
√
1 + 2s ≤ ̺(s) ≤

(

2s+
2 + σ

σ

)
1
2

.

If σ ≥ 2, then

(39) ̺(s) ≤ 1 +
√
s

(

2s+
2 + σ

σ

)
1
4

.
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Proof. Let ̺(s) = t ≥ 1. Then s = ψ(t). Hence, using t ≥ 1,

t2 − 1

2
− 1

σ
≤ s =

t2 − 1

2
+
eσ(1−t) − 1

σ
≤ t2 − 1

2
.

The left inequality gives

(40) ̺(s) = t ≤
(

1 + 2

(

s+
1

σ

))
1
2

=

(

2s+
2 + σ

σ

)
1
2

,

and the right inequality

̺(s) = t ≥ (1 + 2s)
1
2 .

Now we turn to the case that σ ≥ 2. By Lemma 2.10 we have

t ≤ 1 +
√

tψ(t) = 1 +
√
ts.

Substituting the upper bound for t given by (40) we obtain (39). This proves the

lemma.

For the analysis of the algorithm, we define the norm-based proximity δ(v) as

follows

(41) δ(v) :=
1√
2
‖∇Ψ(v)‖ =

1

2

√

√

√

√

N
∑

j=1

((ψ′(λmax(v(j))))2 + (ψ′(λmin(v(j))))2).

One can easily verify that δ(v) ≥ 0, and δ(v) = 0 if and only if Ψ(v) = 0.

It is clear that δ(v) and Ψ(v) depend only on the eigenvalues λmax(v
(j)) and

λmin(v
(j)) of the vectors v(j) from (37) and (41), for j ∈ J . This observation makes

it possible to apply Theorem 4.9 in [4], with z being the vector in R2N consisting

of all the eigenvalues of the second-order cone v. The theorem below immediately

follows.

Theorem 2.13. If v ∈ K+, then

δ(v) ≥ 1

2
ψ′(̺(Ψ(v))).

Corollary 2.14. If v ∈ K+ and Ψ(v) ≥ τ ≥ 1, then

δ(v) ≥ 1

6

√

Ψ(v).

Proof. Since Ψ(v) ≥ 1 and σ ≥ 1, from (38), we have

̺(Ψ(v)) ≤
(

2Ψ(v) +
2 + σ

σ

)
1
2

≤ (5Ψ(v))
1
2 ≤ 3(Ψ(v))

1
2 .

By applying Theorem 2.13 and Lemma 2.11, we have

δ(v) ≥ 1

2
ψ′(̺(Ψ(v))) ≥ ψ(̺(Ψ(v)))

2̺(Ψ(v))
=

Ψ(v)

2̺(Ψ(v))
≥ Ψ(v)

6(Ψ(v))
1
2

=
1

6

√

Ψ(v).

This proves the corollary.

In the analysis of the algorithm, which will be presented below, we need to

consider the derivatives with respect to a real parameter t of the functions ψ′(x(t))

and Ψ(x(t)), where

x(t) = (x(1)(t); · · ·;x(N)(t))
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with

x(j)(t) = (x
(j)
1 (t); · · ·;x(j)nj (t))), j ∈ J.

The usual concepts of continuity, differentiability and integrability can be naturally

extended to the vectors of functions, by interpreting them entry-wise.

The following lemma provides measure the first-order directional derivative of a

general function Ψ(x(t)) and bound its second-order derivative with respect to t.

Lemma 2.15 (Lemma 2.10 in [16]). Suppose that x(t) is a mapping from R into

Rn. If x(t) is twice differentiable with respect to t for all t ∈ (lt, ut) and ψ(t) is

also twice continuously differentiable function in a suitable domain that contains

all the eigenvalues λmax(x(t)) and λmin(x(t)) of x(t), then

d

dt
Tr(ψ(x(t))) = Tr(ψ′(x(t)) ⋄ x′(t)), ∀t ∈ (lt, ut),

and
d2

dt2
Tr(ψ(x(t))) ≤ ωTr(x(t) ⋄ x′(t)) +Tr(ψ′(x(t)) ⋄ x′′(t)),

where

ω = max

{

|ψ′′(λmax(x(t)))|, |ψ′′(λmin(x(t)))|,
|ψ′(λmax(x(t)))− ψ′(λmin(x(t)))|

2‖x2:n(t)‖

}

.

3. Polynomial interior-point algorithm for the Cartesian

P∗(κ)-SOCLCP

3.1. The central path for the Cartesian P∗(κ)-SOCLCP. Until now majority

of well known polynomial interior-point methods (IPMs) used the so-called central

path as a guideline to the optimal set, and some variant of the Newton’s method to

follow the central path approximately. Kojima et al. [11] first proved the existence

and uniqueness of the central path for any P∗(κ)-LCP and unified the theory of

P∗(κ)-LCP from the view point of IPMs. Analogously to the P∗(κ)-LCP case, the

concept of the central path can also be extended to the Cartesian P∗(κ)-SOCLCP.

In addition, the existence and uniqueness of the central path associated with the

Cartesian P∗(κ)-SOCLCP are precisely the special case of the Cartesian P∗(κ)-

SCLCP established by Luo and Xiu [12]. For more details we refer to [11, 12].

Throughout the paper, we assume that the Cartesian P∗(κ)-SOCLCP satisfies

the interior-point condition (IPC), i.e., there exists (x0 ≻K 0, s0 ≻K 0) such that

s0 = A(x0) + q. For this and other properties of the Cartesian P∗(κ)-SOCLCP,

we refer to [12]. Under the IPC holds, by relaxing the complementarity slackness

x ⋄ s = 0, we obtain

(42)







A(x)− s

x ⋄ s






=







−q

µe






, x, s ≻K 0,

where µ > 0 is a parameter. The parameterized system (42) has a unique solution,

for each µ > 0 (cf. Section 3 in [12]). This solution is denoted as (x(µ), s(µ)) and we

call (x(µ), s(µ)) the µ-center of the Cartesian P∗(κ)-SOCLCP. The set of µ-centers

(with µ running through all positive real numbers) gives a homotopy path, which

is called the central path of the Cartesian P∗(κ)-SOCLCP. If µ→ 0, then the limit
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of the central path exists and since the limit points satisfy the complementarity

condition x ◦ s = 0, the limit yields an optimal solution for the Cartesian P∗(κ)-

SOCLCP.

3.2. The new search directions for the Cartesian P∗(κ)-SOCLCP. IPMs

follow the central path approximately and find an approximate solution of the

Cartesian P∗(κ)-SOCLCP by letting µ go to zero. For any strictly feasible x ≻K 0

and s ≻K 0, we want to find displacements ∆x and ∆s such that

(43)







A(x+∆x)− (s+∆s)

(x+∆x) ⋄ (s+∆s)






=







−q

µe






.

Neglecting the term ∆x⋄∆s in the left-hand side expression of the second equa-

tion, we obtain the following system

(44)







A(∆x)−∆s

s ⋄∆x+ x ⋄∆s






=







0

µe− x ⋄ s






.

Due to the fact that x and s do not operator commute in general, i.e., L(x)L(s) 6=
L(s)L(x), this system doesn’t always have a unique solution. It is well known that

this difficulty can be solved by applying a scaling scheme. This goes as follows.

Lemma 3.1 (Lemma 28 in [18]). Let u ∈ K+. Then

x ⋄ s = µe ⇔ P (u)x ⋄ P (u)−1s = µe.

Now we replace the second equation of the system (43) by

(45) P (u)(x+∆x) ⋄ P (u)−1(s+∆s) = µe.

Applying Newton’s method again, and neglecting the term P (u)∆x ⋄ P (u)−1∆s,

we get

(46)






A(∆x)−∆s

P (u)−1(s) ⋄ P (u)∆x+ P (u)(x) ⋄ P (u)−1∆s






=







0

µe− P (u)(x) ⋄ P (u)−1(s)






.

In this paper we consider the so-called NT scaling scheme [13, 14]. Let u = w− 1
2 ,

where

w = P (x)
1
2

(

P (x
1
2 )s
)− 1

2

[

= P (s−
1
2 )
(

P (s
1
2 )x
)

1
2

]

.

Furthermore, we define

(47) v :=
P (w)−

1
2x√

µ

[

=
P (w)

1
2 s√
µ

]

,

and

(48) A := P (w)
1
2AP (w) 1

2 , dx :=
P (w)−

1
2∆x√
µ

, ds :=
P (w)

1
2∆s√
µ

.
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It should be mentioned that the transformation A also has the Cartesian P∗(κ)-

property if the linear transformationA has the Cartesian P∗(κ)-property (cf. Propo-

sition 3.4 in [12]). From (47) and (48), after some elementary reductions, we obtain

the scaled Newton system as follows

(49)







A(dx)− ds

dx + ds






=







0

v−1 − v






.

Since the linear transformation A has the Cartesian P∗(κ)-property, the system

(49) has a unique solution [12]. So far we have described the scheme that defines

the classical NT search direction for the Cartesian P∗(κ)-SOCLCP. The approach

in this paper differs only in one detail: we replace the right-hand side of the second

equation in (49) by −∇Ψ(v). Thus we will use the following system to define our

new search direction

(50)







A(dx)− ds

dx + ds






=







0

−∇Ψ(v)






.

Since (50) has the same matrix of coefficients as (49), (50) also has a unique solu-

tion.2 The new search directions dx and ds are obtained by solving (50) so that ∆x

and ∆s are computed via (48). If (x, s) 6= (x(µ), s(µ)) then (∆x,∆s) is nonzero.

By taking a default step size along the search directions, we get the new iteration

point as follows

(51) x+ := x+ α△x, and s+ := s+ α△s.

Furthermore, we have, by Theorem 2.5,

(52) x ⋄ s = µe⇔ v = e⇔ ψ′(v) = 0 ⇔ ψ(v) = 0 ⇔ Ψ(v) = 0.

Hence, the value of Ψ(v) can be considered as a measure for the distance between

the given iterate (x, s) and the µ-center (x(µ), s(µ)).

3.3. The generic interior-point algorithm for the Cartesian P∗(κ)-SOCLCP.

It is clear from the above description that the closeness of (x, s) to (x(µ), s(µ)) is

measured by the value of Ψ(v), with τ > 0 as a threshold value. If Ψ(v) ≤ τ then

we start a new outer iteration by performing a µ-update, otherwise we enter an

inner iteration by computing the search directions at the current iterates with re-

spect to the current value of µ and apply (51) to get the new iterates. If necessary,

we repeat the procedure until we find the iterates that are in the neighborhood of

(x(µ), s(µ)). Then µ is again reduced by the factor 1 − θ with 0 < θ < 1 and we

apply Newton method targeting at the new µ-centers, and so on. This process is

repeated until µ is small enough, say until Nµ < ε, at this stage we have found an

ε-approximate solution of the Cartesian P∗(κ)-SOCLCP. The parameters τ, θ and

2It may be worth mentioning that if we use the kernel function of the classical logarithmic

barrier function, i.e., ψ(t) = 1

2
(t2 − 1) − log t, then ψ′(t) = t − t−1, whence −∇Ψ(v) = v−1 − v,

and hence system (50) then coincides with the classical system (49).
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the step size α should be chosen in such a way that the algorithm is ‘optimized’

in the sense that the number of iterations required by the algorithm is as small as

possible.

The generic polynomial interior-point algorithm for the Cartesian P∗(κ)-SOCLCP

is now presented in Figure 1.

Interior-Point Algorithm for the Cartesian P∗(κ)-SOCLCP

Input:

A threshold parameter τ ≥ 1;

an accuracy parameter ε > 0;

a fixed barrier update parameter θ, 0 < θ < 1;

a strictly feasible (x0, s0) and µ0 = (x0)T s0/N such that

Ψ(x0, s0;µ0) ≤ τ .

begin
x := x0; s := s0; µ := µ0;

while Nµ ≥ ε do

begin
µ := (1− θ)µ;

while Ψ(x, s;µ) > τ do

begin
solve system (50) and use (48) to obtain (∆x,∆s);

choose a suitable step size α;

update x = x+ α∆x, s = s+ α∆s;
end

end
end

Figure 1. Algorithm

4. Analysis of the algorithm

4.1. Growth behavior of the barrier function. Note that during the course of

the algorithm the largest values of Ψ(v) occur just after the update of µ. So next

we derive an estimate for the effect of a µ-update on the value of Ψ(v).

It follows from (37) and (15) with (31) that

Ψ(βv) =

N
∑

j=1

(

ψ(βλmax(v
(j))) + ψ(βλmin(v

(j)))
)

.

As in the previous theorem, the variables are essentially only the eigenvalues λmax(v
(j))

and λmin(v
(j)) of the vectors v(j), for j ∈ J . Applying Theorem 3.2 in [4], with z

being the vector in R2N consisting of all the eigenvalues of the second-order cone

v, the theorem below immediately follows.
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Theorem 4.1. If v ∈ K+ and β ≥ 1, then

Ψ(βv) ≤ 2Nψ

(

β̺

(

Ψ(v)

2N

))

.

Corollary 4.2. Let 0 ≤ θ < 1 and v+ =
v√
1− θ

. If Ψ(v) ≤ τ , then

Ψ(v+) ≤ 2Nψ

(

̺( τ
2N )√
1− θ

)

.

Proof. With β = 1√
1−θ

≥ 1 and Ψ(v) ≤ τ , the corollary follows immediately from

Theorem 4.1.

As we will show in the next section, after each µ-update the subsequent inner

iterations will give rise to decreasing values of Ψ(v). Hence, due to Corollary 4.2,

we conclude that

(53) L := 2Nψ

(

̺( τ
2N )√
1− θ

)

is an upper bound for the value that Ψ(v) attains during the course of the algorithm.

4.2. Decrease of the barrier function and choice of the default step. In

each inner iteration after a feasible step, we get a new primal-dual pair

x+ := x+ α∆x, and s+ := s+ α∆s

and we can write

x+ =
√
µP (w)

1
2 (v + dx) and s+ =

√
µP (w)−

1
2 (v + ds).

Define

v+ :=
1√
µ
P (w+)

− 1
2x+ =

1√
µ
P (w+)

1
2 s+.

We have

v+ = P (w+)
− 1

2P (w)
1
2 (v + αdx) = P (w+)

1
2P (w)−

1
2 (v + αds),

where w+ := P (x+)
1
2 (P (x+)

1
2 s+)

− 1
2 = P (s+)

− 1
2 (P (s+)

1
2x+)

1
2 . Now, we consider

the decrease in Ψ(v) as a function of α and define

f(α) := Ψ(v+)−Ψ(v).

Our aim is to find an upper bound for f(α) by using the exponential convexity of

ψ(t), and according to Lemma 2.6. In order to do this we assume for the moment

that

(54) λmin(v
(j) + αd(j)x ) ≥ 1

σ
, and λmin(v

(j) + αd(j)s ) ≥ 1

σ
, j ∈ J.

Since v+ is the scaled vector resulting from the NT-scaling, we can conclude, by

Lemma 2.4 and (48), that

Tr
(

(v+)
2
)

=
1

µ
Tr ((x+ α∆x) ⋄ (s+ α∆s)) = Tr ((v + αdx) ⋄ (v + αds)) ,

det
(

(v+)
2
)

=
1

µ2
det ((x+ α∆x) ⋄ (s+ α∆s)) = det (v + αdx) det(v + αds).
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Theorem 2.7 implies that

Ψ(v+) ≤
1

2
(Ψ(v + αdx) + Ψ(v + αds)).

We have

f(α) ≤ f1(α) :=
1

2
(Ψ(v + αdx) + Ψ(v + αds))−Ψ(v).

It is obvious that f(0) = f1(0) = 0. From Lemma 2.15, we have

(55) f ′1(α) =
1

2
(Tr(ψ′(v + αdx) ⋄ dx) +Tr(ψ′(v + αds) ⋄ ds)),

and

(56) f ′′1 (α) =
1

2

d2

dα2
Tr (ψ(v + αdx) + ψ(v + αds)) ≤

1

2
(ω1‖dx‖2 + ω2‖ds‖2),

where

(57)

ω1 = max

{

|ψ′′(λmax(v + αdx))|, |ψ′′(λmin(v + αdx))|,
|ψ′(λmax(v + αdx))− ψ′(λmin(v + αdx))|

2‖(v + αdx)2:n‖

}

,

(58)

ω2 = max

{

|ψ′′(λmax(v + αds))|, |ψ′′(λmin(v + αds))|,
|ψ′(λmax(v + αds))− ψ′(λmin(v + αds))|

2‖(v + αds)2:n‖

}

.

It follows from (55) and (50) that

(59)

f ′1(0) =
1

2
Tr(∇Ψ(v)⋄(dx+ds)) = −1

2
Tr(∇Ψ(v)⋄∇Ψ(v)) = −‖∇Ψ(v)‖2 = −2δ(v)2 < 0,

which means that f ′1(α) is monotonically decreasing in a neighborhood of α = 0.

Since the linear transformationA has the Cartesian P∗(κ)-property andA(∆x) =

∆s from (44), we obtain

(60) (1 + 4κ)
∑

ν∈J+

〈∆x(ν),∆s(ν)〉+
∑

ν∈J−

〈∆x(ν),∆s(ν)〉 ≥ 0,

where J+ = {1 ≤ ν ≤ N : 〈∆x(ν),∆s(ν)〉 > 0} and J− = {1 ≤ ν ≤ N :

〈∆x(ν),∆s(ν)〉 < 0} are two index sets.

It follows from (48) that

〈dx, ds〉 =
〈∆x,∆s〉

µ
.

Thus we can rewrite (60) as

(61) (1 + 4κ)
∑

ν∈J+

〈d(ν)x , d(ν)s 〉+
∑

ν∈J−

〈d(ν)x , d(ν)s 〉 ≥ 0.

In order to facilitate discussion, we denote

(62) δ := δ(v), δ+ :=
∑

ν∈J+

〈d(ν)x , d(ν)s 〉, and δ− := −
∑

ν∈J−

〈d(ν)x , d(ν)s 〉.

Lemma 4.3. One has

‖dx‖ ≤
√

2(1 + 2κ)δ, and ‖ds‖ ≤
√

2(1 + 2κ)δ.

177



G.Q. Wang, Y.J. Yue, B.J. He

Proof. By (62), we have

δ+ =
∑

ν∈J+

〈d(ν)x , d(ν)s 〉 ≤ 1

4

∑

ν∈J+

∥

∥

∥d(ν)x + d(ν)s

∥

∥

∥

2

≤ 1

4

∑

ν∈J

∥

∥

∥d(ν)x + d(ν)s

∥

∥

∥

2

=
1

4
‖dx + ds‖2 =

1

2
δ2.

It follows from (61) that

(1 + 4κ)δ+ − δ− ≥ 0.

Then

δ− ≤ (1 + 4κ)δ+ ≤ 1 + 4κ

2
δ2.

Hence, we have

2δ2 = ‖dx + ds‖2 = ‖dx‖2 + ‖ds‖2 + 2(δ+ − δ−) ≥ ‖dx‖2 + ‖ds‖2 −
8k

1 + 4k
δ−.

Thus

(63) ‖dx‖2 + ‖ds‖2 ≤ 2δ2 +
8k

1 + 4k
δ− ≤ 2(1 + 2κ)δ2.

This implies the lemma.

Lemma 4.4. One has

f ′′1 (α) ≤ 2(1 + 2κ)δ2ψ′′(λmin(v)− 2α
√
1 + 2κδ).

Proof. From Lemma 2.1 and Lemma 4.3, we obtain

λmin(v + αdx) ≥ λmin(v)−
√
2α‖dx‖ ≥ λmin(v)− 2α

√
1 + 2κδ,

λmin(v + αds) ≥ λmin(v)−
√
2α‖ds‖ ≥ λmin(v)− 2α

√
1 + 2κδ.

Combining the choice of ω1 as given by (57) and the mean value theorem, we can

conclude that there exists a constant ζ∗ ∈ [λmin(v+αdx), λmax(v+αdx)] satisfying

ω1 = |ψ′′(ζ∗)|.

Since ψ′′(t) is nonnegative and monotonically decreasing in t ∈ (0,+∞), we have

ω1 = ψ′′(ζ∗) ≤ ψ′′(λmin(v + αdx)) ≤ ψ′′(λmin(v)− 2α
√
1 + 2κδ).

Similarly, we have

ω2 ≤ ψ′′(λmin(v)− 2α
√
1 + 2κδ).

From the above consequences and (56), we have

f ′′1 (α) ≤
1

2
ψ′′(λmin(v)− 2α

√
1 + 2κδ)(‖dx‖2 + ‖ds‖2) ≤ 2(1 + 2κ)δ2ψ′′(λmin(v)− 2α

√
1 + 2κδ),

which completes the proof of the lemma.

The following strategy for choosing the step size is almost a “word-by-word”

extension of LO [2] and P∗(κ)-LCP [3]. We can easily verify that the following

three lemmas are valid for the Cartesian P∗(κ)-SOCLCP by just applying the cor-

responding lemmas in [3] to the vector x in R2N consisting of all the eigenvalues of

the second-order cone x. Therefore, for the proofs of the following lemmas we refer

to [2, 3].
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Lemma 4.5 (Lemma 5.6 in [3]). If the step size α satisfies

(64) −ψ′(λmin(v)− 2α
√
1 + 2κδ) + ψ′(λmin(v)) ≤

2δ√
1 + 2κ

,

then f1(α) ≤ 0.

Lemma 4.6 (Lemma 5.7 in [3]). Let ρ(s) : [0,∞) → (0, 1] be the inverse function

of − 1
2ψ

′(t) for t ≤ 1. The largest possible value of the step size of α satisfying (64)

is given by

(65) ᾱ =
1

2
√
1 + 2κδ

(

ρ(δ)− ρ

((

1 +
1√

1 + 2κ

)

δ

))

.

Lemma 4.7 (Lemma 5.8 in [3]). One has

ᾱ ≥ 1

(1 + 2κ)ψ′′
(

ρ
((

1 + 1√
1+2κ

)

δ
)) .

From Lemma 4.7 and the definition of ρ, we have

(66)

ᾱ ≥ 1

(1 + 2κ)(1 + σeσ(1−t))
, t ∈

[

1

σ
, 1

]

where it is such that eσ(1−t)−t = 2

(

1 +
1√

1 + 2κ

)

δ.

From the second equation of (66), we get

eσ(1−t) = t+ 2

(

1 +
1√

1 + 2κ

)

δ ≤ 1 + 2

(

1 +
1√

1 + 2κ

)

δ ≤ 1 + 4δ.

It follows from Corollary 2.14 and Ψ(v) ≥ 1 that

δ ≥ 1

6

√

Ψ(v ≥ 1

6
.

Substituting this in the first equation of (66), we have

ᾱ ≥ 1

σ(1 + 2κ)(1 + eσ(1−t))
≥ 1

2σ(1 + 2κ)(1 + 2δ)
≥ 1

16σδ(1 + 2κ)
.

In what follows we use the notation

(67) α̃ =
1

16σδ(1 + 2κ)
.

And we will use α̃ as the default step size. It is obvious that ᾱ ≥ α̃.

Now, to validate the above analysis we need to show that α̃ satisfies (2.8). In

fact, from Lemmas 2.1, 2.8 and 4.3, we have

λmin(v
(j)+ α̃d(j)x ) ≥ λmin(v

(j))−
√
2α̃‖d(j)x ‖ ≥ 3

2σ
− 1

8σ
√
1 + 2κ

≥ 11

8σ
≥ 1

σ
, j ∈ J,

and

λmin(v
(j)+ α̃d(j)s ) ≥ λmin(v

(j))−
√
2α̃‖d(j)s ‖ ≥ 3

2σ
− 1

8σ
√
1 + 2κ

≥ 11

8σ
≥ 1

σ
, j ∈ J.

Lemma 4.8 (Lemma 12 in [16]). Let h(t) be a twice differentiable convex function

with h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum at t∗ > 0. If h′′(t)

is increasing for t ∈ [0, t∗], then

h(t) ≤ th′(0)

2
, 0 ≤ t ≤ t∗.
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From Lemma 4.8, we have the following lemma, which gives an upper bound for

the decreasing value of the barrier function Ψ(v) in each inner iteration.

Lemma 4.9 (Lemma 5.10 in [3]). If the step size α is such that α ≤ ᾱ, then

f(α) ≤ −αδ2.

Theorem 4.10. With α̃ being the default step size as given by (67), one has

f(α̃) ≤ −
√

Ψ(v)

96(1 + 2κ)(1 + σ)
.

Proof. It follows from Lemma 4.9 and (67) that

f(α̃) ≤ −α̃δ2 = − δ

16σ(1 + 2κ)
.

It is obvious that the last expression above is monotonically decreasing in δ. Thus,

by Corollary 2.14, after some elementary reductions, we obtain

f(α̃) ≤ −
√

Ψ(v)

96σ(1 + 2κ)
.

This proves the theorem.

5. Complexity of the algorithm

5.1. Iteration bound for large-update method. For the complexity of the

algorithm, we need to count how many inner iterations are required to return to

the situation where Ψ(v) ≤ τ . We use the value of Ψ(v) after the µ-update by Ψ0,

the subsequent values in the same outer iteration are denoted as Ψk, k = 1, 2, ···,K,

where K denotes the total number of inner iterations in the outer iteration.

According to the decrease of f(α̃), we obtain

(68) Ψk+1 ≤ Ψk − β(Ψk)
1−γ , k = 0, 1, · · ·,K,

where β = 1
96σ(1+2κ) , and γ = 1

2 .

Lemma 5.1. (Lemma 14 in [16]) Suppose t0, t1, · · ·, tK be a sequence of positive

numbers such that

tk+1 ≤ tk − βt1−γ
k , k = 0, 1, · · ·,K − 1,

where β > 0 and 0 < γ ≤ 1. Then K ≤
⌈

t
γ

0

βγ

⌉

.

The following theorem gives an upper bound for the number of inner iterations

produced by the algorithm presented in Figure 1.

Theorem 5.2. One has

K ≤ 192σ(1 + 2κ)
√

Ψ0.
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Proof. The theorem follows immediately from Lemma 5.1 and (68).

The number of outer iterations is bounded above by 1
θ
log N

ε
(cf. Lemma Π.17

in [17]). By multiplying the number of outer iterations and the number of inner

iterations we get an upper bound for the total number of iterations, namely,

192σ(1 + 2κ)

θ

√

N

1− θ

(

τ

N
+

2 + σ

σ

)

log
N

ε
.

Due to (53), (38), and ψ(t) ≤ t2−1
2 when t ≥ 1, we have

Ψ0 ≤ L = 2Nψ

(

̺( τ
2N )√
1− θ

)

≤ 2Nψ





√

τ
N

+ 2+σ
σ√

1− θ



 ≤ N

1− θ

(

τ

N
+

2 + σ

σ

)

.

From the above expression with θ = Θ(1) and τ = O(N), and also applying Lemma

2.8, one can conclude that σ = O(logN).

After some elementary reductions, we have the following theorem, which yields

the iteration bound for large-update method.

Theorem 5.3. For large-update method, one takes θ = Θ(1) and τ = O(N), then

the algorithm requires at most

O

(

(1 + 2κ)
√
N logN log

N

ε

)

.

iterations. The output gives an ε-approximate solution of the Cartesian P∗(κ)-

SOCLCP.

5.2. Iteration bound for small-update method. It is not hard to show that if

the above analysis is used for small-update method the iteration bound would not

be as good as it can be for these types of methods. For the analysis of the iteration

bound of small-update method, we need to estimate the upper bound of Ψ0 more

accurately. It should be noted that the following analysis only holds for σ ≥ 2.

From (53), (39), Lemma 2.9 and 1−
√
1− θ = θ

1+
√
1−θ

≤ θ, we have

Ψ0 ≤ L = 2Nψ

(

̺( τ
2N )√
1− θ

)

≤ 2Nψ





1 +
√

τ
2N

(

τ
N

+ 2+σ
σ

)
1
4

√
1− θ





≤ N(1 + σ)





1 +
√

τ
2N

(

τ
N

+ 2+σ
σ

)
1
4

√
1− θ

− 1





2

≤ 1 + σ

1− θ

(

θ
√
N +

√

τ

2

(

τ

N
+

2 + σ

σ

)
1
4

)2

.

From the above expression with θ = Θ
(

1√
N

)

and τ = O(1), and also applying

Lemma 2.8, we obtain σ = O(1). Using Theorem 5.2, we can conclude that the

total number of iterations is bounded above by

192σ
√
1 + σ(1 + 2κ)

θ
√
1− θ

(

θ
√
N +

√

τ

2

(

τ

N
+

2 + σ

σ

)
1
4

)

log
N

ε
,

which gives the iteration bound for small-update method.
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Theorem 5.4. For small-update method, namely, θ = Θ
(

1√
N

)

and τ = O(1),

then the algorithm requires at most

O

(

(1 + 2κ)
√
N log

N

ε

)

.

iterations. The output gives an ε-approximate solution of the Cartesian P∗(κ)-

SOCLCP.

6. Conclusions and remarks

In this paper we have generalized a new primal-dual interior-point algorithm

for LO based on the finite kernel function to the Cartesian P∗(κ)-SOCLCP. The

currently best known iteration bounds for large- and small-update methods are ob-

tained, namely, O((1+2κ)
√
N logN log N

ε
) and O((1+2κ)

√
N log N

ε
), respectively.

Moreover, the resulting analysis is simple and straightforward to the P∗(κ)-LCP

analogue.

Some interesting topics for further research remain. Firstly, the search directions

used in this paper are based on the NT-scaling scheme. It may be possible to design

similar algorithms using other scaling schemes and still obtain polynomial-time

iteration bounds. Secondly, the extensions to the P∗(κ) linear complementarity

problem over symmetric cones deserve to be investigated. Finally, the numerical

test is an interesting work for investigating the behavior of the algorithm so as to

be compared with other existing approaches.
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