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Abstract

This paper describes a pivoting heuristic based on tabu search and its

integration into an enumerative framework for solving the Linear Comple-

mentarity Problem (LCP). The tabu pivoting heuristic works with basic

solutions and performs pivot operations guided by two indicators, one

concerned with the satisfaction of the complementarity conditions and

the other with the feasibility of the solution. It incorporates the concept

of tabu search employing a strategy that avoids the repetition of recent

moves. The heuristic ends when a solution to the LCP is found or after

a specified number of iterations. In the latter case, an enumerative al-

gorithm is applied which integrates the tabu pivoting heuristic within a

branching framework. Computational experience on test problems is re-

ported to highlight the efficiency of the proposed methodology for solving

the LCP.

Keywords: Linear complementarity problem, Tabu search, Pivoting

techniques, Enumerative algorithms

1 Introduction

The Linear Complementarity Problem (LCP) consists of finding vectors z ∈Rn

and w ∈Rn such that

w = Mz + q (1)

z ≥ 0, w ≥ 0 (2)
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zTw = 0 (3)

where q is an n-dimensional vector and M is a square matrix of order n.

This problem has several applications, which include economic equilibrium

analysis, game theory, portfolio selection and structural analysis, among others.

A number of important optimization problems can be solved by finding a solu-

tion of its associated LCP or one of its generalizations [Murty, 1988; Cottle et

al., 2009; Júdice, 1994].

It is well-known that the LCP is NP-hard, although it is polynomially solv-

able for some classes of matrices M , such as Positive-Semi-Definite (PSD) ma-

trices [Murty, 1988]. One of the earliest methods, and probably the most famous

procedure for solving the LCP, is the Lemke’s algorithm [Lemke, 1968], which

can solve some classes of LCP. There are other several direct and iterative al-

gorithms, but these procedures also face the limitation of only being able to

process the LCP when M has some special properties. Therefore, enumerative

algorithms are the only ones that can solve the LCP without imposing condi-

tions on the class of matrix M .

There are different alternative formulations of the LCP that have been ex-

ploited in the design of procedures for its solution. The reformulation of the LCP

as a mixed integer linear program has led to an enumerative algorithm based

on the so-called reformulation-linearization technique by [Sherali et al., 1998].

Reformulating the LCP as a nonconvex quadratic program (the minimization of

(3) subject to (1) and (2)) has been used by [Al-Khayyal, 1987] and [Júdice et

al., 2002] to develop enumerative algorithms for the LCP. [Júdice et al., 2002]

discusses an enumerative algorithm (EMRG) for finding a global minimum of

the quadratic formulation of the LCP, which uses a Modified Reduced-Gradient

(MRG) method [Al-Khayyal, 1987] in each node generated by the procedure.

The authors also present an enumerative sequential algorithm based on the bi-

linear formulation of the LCP. The results reported using subset sum problems

(a special case of the knapsack problem) show that the enumerative algorithm

based on the quadratic formulation performed in general better than the enu-

merative algorithm based on the bilinear formulation. An alternative enumer-

ative algorithm (EAset) for finding a global minimum of the same quadratic

formulation of the LCP was tested by [Ribeiro, 2004] using the same instances.

EAset is similar to EMRG but uses an Active-Set method in each node to find a

stationary point of the objective function on a set defined by the corresponding

linear constraints (instead of an MRG).

The LCP can also be solved by exploiting its reformulation as a Mathemati-

cal Program with Equilibrium (complementarity) Constraints (MPEC) [Júdice

et al., 2002]. A branch-and-bound algorithm (EMPEC) for solving this special

MPEC has been proposed in [Júdice et al., 2006], which incorporates disjunctive
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cuts for computing lower bounds and uses a complementarity active-set algo-

rithm for computing upper bounds. Computational results with this EMPEC

method for solving some LCP instances are reported in this latter paper. These

results, as well as those of the EMRG and EAset algorithms, are used in the

present paper for comparison purposes.

We propose herein a procedure to solve the LCP that incorporates the con-

cept of tabu search.

In the last decades many metaheuristic algorithms have been developed as

viable alternatives for solving optimization problems. Tabu search is one such

metaheuristic approach, which was firstly proposed by [Glover, 1986]. As de-

scribed by Glover, “the approach [tabu search] undertakes to transcend local opti-

mality by a strategy of forbidding (or, more broadly, penalizing) certain moves.

The purpose of classing a move forbidden – i.e. tabu – is chiefly to prevent

cycling”. Although the LCP is not intrinsically an optimization problem, the

penalization of recent moves fits the same primary purpose of avoiding revisiting

solutions during the search.

Tabu search has been widely used on combinatorial optimization problems,

for which several problem-specific variants of the basic algorithm have been

developed. Many of the applications in the literature involve integer program-

ming problems, scheduling, location, routing, travelling salesman and related

problems. Fewer tabu search procedures have been developed for continuous

optimization and in particular for global optimization problems. Some exam-

ples of such procedures can be found in [Chelouah and Siarry 2000; Gendreau

et al., 1996; Kovacevic-Vujcic and Cangalovic, 1999]; Lan et al., 2007; Rajesh

et al., 2003] and references therein.

Tabu search algorithms using extreme points have been successfully applied

to zero-one integer and mixed-integer programming. [Aboudi and Jörnsten,

1994] and [Løkketangen et al., 1994] explore the use of the tabu search principle

within the Pivot and Complement heuristic by [Balas and Martin, 1980] for

solving general zero-one integer programs. [Løkketangen and Glover, 1995] and

[Løkketangen and Glover, 1998] designed procedures to solve general zero-one

mixed integer problems which also combine tabu search mechanisms with adja-

cent extreme point search. The principle of using a priority list combined with

tabu restrictions on pivot operations has inspired the pivoting heuristic for the

LCP to be presented herein.

The tabu pivoting heuristic to be introduced in this paper operates with

basic solutions satisfying (1) and performs pivot operations for reaching both

complementarity (3) and feasibility (2). It uses two functions to guide the search,

measuring the numbers of violated complementary conditions and of violated

feasibility constraints. The relative values of these functions define the direction

of search at each iteration. A tabu data structure is used for the selection of
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an entering nonbasic variable in order to prevent cycling and avoid revisiting

solutions. The heuristic is executed until a solution to the LCP is found or

a maximum number of iterations is attained. If the heuristic cannot reach a

solution of the LCP in the predefined number of iterations, an enumerative

algorithm is applied, which incorporates the tabu pivoting heuristic within a

branching process.

This Branch and Tabu Pivoting (BTP) algorithm has been tested on ran-

domly generated LCPs of different types. The computational experiments have

also included some LCP instances resulting from subset sum problems that were

previously tested in other studies. Therefore, a comparison with the EMRG and

the EAset algorithms [Júdice et al., 2002; Ribeiro, 2004] and with the EMPEC

(enumerative algorithm for MPEC problems) by [Júdice et al., 2006] is pre-

sented, leading to the conclusion that the new BTP algorithm is a competitive

technique for solving these NP-hard LCPs.

The rest of the paper is organized as follows. Some fundamental concepts

of the LCP and the notation are introduced in section 2. In section 3 the tabu

pivoting heuristic is described and different procedures for obtaining the initial

solution are discussed in section 4. The BTP algorithm is proposed in section 5.

Results from the computational experience are reported in section 6 and some

concluding remarks are presented in section 7.

2 Basic Concepts for the LCP

It follows from the definition (1)-(3) that the LCP contains the linear con-

straints, which constitute the so-called feasible set S={(z,w): w = Mz + q,

z ≥ 0, w ≥ 0}, and the nonlinear complementarity constraint zTw = 0. This

latter constraint requires the complementarity conditions z iwi =0 to be satisfied

for each pair (zi, wi), i=1,...,n, i.e., at least one variable of each pair must be

equal to zero.

A solution (z, w) is said to be feasible if it belongs to the feasible set S. On

the other hand, it is called complementary if it satisfies

w = Mz + q

ziwi = 0 i = 1, ..., n

Due to this definition, for each solution of (1), zi, and wi are called comple-

mentary variables and zi (wi) is said to be the complementary variable of wi (zi),

independently of the complementarity conditions to hold or not. Furthermore

(z, w) is a solution to the LCP if and only if it is feasible and complementary.

Any basic feasible solution of the LCP has n basic variables and n nonbasic

variables, as a direct consequence of the problem structure. If a basic feasible

solution is not complementary, it contains at least one pair of variables (zi, wi)
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violating the complementarity condition, which is called a violating pair, and

at least another pair (zj , wj) such that zj=0, wj=0 and both nonbasic, which

constitute a free pair.

3 The tabu pivoting heuristic algorithm

The tabu pivoting heuristic algorithm aims at finding a solution of the LCP,

i.e. a solution that is simultaneously feasible and complementary. It works with

basic solutions satisfying w = Mz + q and performs single pivot operations,

alternating some oriented to the satisfaction of the complementarity conditions

with others designed to force the feasibility of constraints. The choice for the

operation is done according to the relative values of two functions, which are

indicators to what extent these requirements are not fulfilled by the current

basic solution.

The algorithm requires an initial basic feasible solution to start with. This

topic is discussed in the next section. If the initial basic feasible solution is

not complementary, the tabu pivoting algorithm is applied. If a basic solution

has at least a negative basic variable, then it is infeasible and its indicator of

infeasibility, designated by NoFeasib, is defined as the number of variables with

negative value. One objective of the tabu pivoting heuristic is to minimize this

function to zero in order to obtain a feasible solution. On the other hand, for

each basic solution we can define NoCompl as the number of pairs of variables

that violate complementarity (NoCompl=0 if a complementarity solution is at

hand). The other objective of the heuristic is to minimize NoCompl to zero, in

order to obtain a complementary solution.

In the initial solution, NoFeasib=0 and NoCompl is strictly positive, unless it

is a solution of the LCP. The heuristic alternates two types of pivot operations,

according to the relative values of NoFeasib and NoCompl, and stops when

NoFeasib=NoCompl=0 (that is, a solution of the LCP has been found) or a

predefined number of iterations (MaxIter) has already been performed.

If NoFeasib ≥ NoCompl, the pivot operation should be performed towards

reaching feasibility. A basic variable with negative value is chosen to leave the

basis. In the selection of the nonbasic variable that enters into the basis the first

priority is given to the complementary variable of the leaving basic variable. If

this is not possible, a tabu classification system (consisting in assigning penalties

to recent moves) is used to select the entering variable among the candidates.

If NoCompl > NoFeasib, the pivot operation should be performed towards

reaching complementarity. In this situation, a move from the current basic

solution to an adjacent one involves exchanging a violating basic variable with

a free nonbasic variable. In the selection of the violating and the free variables,

an exchange that benefits (or does not destroy) feasibility is privileged and the
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tabu classification system is used to select the entering free variable when there

are several candidates.

The tabu classification system penalizes recent moves and avoids exchanging

variables that have been involved in recent operations. This operates like a

classical tabu memory, although there are no absolute forbidden moves, but

rather highly penalized variables that are selected only if there are no alternative

variables with zero or lower penalties. The tabu data structure is a vector of

order 2n, which registers a tabu classification (penalty) for the variables zi,

i=1,...,n, and wi, i=1,...,n. The tabu vector is initialized with zeros, indicating

that no moves are penalized. Whenever a variable leaves the basis, its tabu

classification becomes equal to a tabu tenure (TT ), the maximum penalty. In

addition, all the other positive elements of the tabu vector are decreased by one.

These penalties are used for the selection of the entering nonbasic variable, as

the variable with lowest tabu classification is chosen among the candidate list.

The type of tabu strategy employed by this heuristic has been so-called

‘aspiration by default ’ in the Tabu Search literature, which means that if a tabu

move has to be performed then it should be selected the “oldest” one in the list

(see, e.g., [Glover and Laguna, 1993; Michalewicz and Fogel, 2004]).

3.1 Tabu Pivoting Heuristic Algorithm

Step 0 – Find an initial basic feasible solution. If the problem is infeasible,

stop: the LCP has no solution. Otherwise NoFeasib=0 and compute NoCompl

for this solution. Initialize the iteration counter, Iter = 0, and the tabu vector

with zeros.

While (NoCompl > 0 or NoFeasib > 0) and (Iter < Maxiter) Do

Step 1 – Choice of the leaving and entering variables.

(I) If NoCompl > NoFeasib, then:

(i) Choose a violating leaving basic variable and a free entering

nonbasic variable, according to the following priorities:

• the current solution is feasible and an exchange is possible be-

tween a violating and a free variables preserving feasibility;

• the solution is infeasible and there exists a negative violating

variable and a free nonbasic variable with a negative entry in

the row of the simplex tableau associated with this violating

variable.

(ii) If no pair of leaving and entering variables is found in (i),

let L be the set of pairs of violating and free variables that can

be exchanged by a pivot operation. If L 6= ∅, construct a priority

list SL of pairs of L such that, for each violating variable with a
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positive (negative) value, there is a positive (negative) entry of the

simplex tableau defined by the row of this variable and a column of

a free variable. The entering variable is a free variable of a pair of

SL, or of L if SL=∅, associated to the smallest penalty of the tabu

classification. The leaving variable is the violating variable of the

corresponding pair.

(iii) If L = ∅, the entering is a nonbasic variable that has the

smallest penalty of the tabu classification and can be exchanged with

a violating variable by a pivot operation. The leaving is this latter

variable.

(II) Else (NoFeasib ≥ NoCompl):

(i) Choose the leaving variable xi (zi or w i) as the basic variable

with the most negative value.

(ii) Choose the complementary of xi as the entering variable,

provided it is nonbasic and there is a negative entry in the row of

the current simplex tableau associated with xi.

(iii) Otherwise find the entering variable as the one with smallest

penalty in the current tabu classification among the nonbasic vari-

ables with negative entries in the row associated with xi. For tie

breaking, give priority to free variables if they exist.

Step 2 – Compute the new basic solution by performing a pivot operation

with the pivot defined by the leaving and entering variables. Update the tabu

vector, calculate NoCompl and NoFeasib, and set Iter ← Iter +1.

End While.

A first example illustrating the application of this algorithm is presented

below.

Example 1

Consider the LCP with n = 5 and defined by the following matrix M and

vector q:

M =

















9 4 9 3 3

7 2 10 3 4

5 8 6 3 4

2 7 3 8 8

7 8 1 5 8

















q =

















3

−9

2

10

−5

















Since M is a positive matrix, then the LCP has a solution for each vector q

(Murty 1988) and, in particular, for this given q. Furthermore, Lemke’s algo-

rithm (Lemke 1968) is able to process this LCP (Murty 1988). Despite this, we

have chosen this problem to illustrate the algorithm.

A basic feasible solution is first computed and is given below.
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zT = (0.650794 0 0.444444 0 0)

wT = (12.85714 0 7.920635 12.63492 0)

violating free violating free

The associated simplex tableau is

w5 z5 w2 z2 z4 Xb

z1 -0.15873 1.206349 0.015873 1.238095 0.746032 0.650794

w1 -0.42857 3.857143 -0.85714 1.142857 1.714286 12.85714

z3 0.11111 -0.44444 -0.11111 -0.66667 -0.22222 0.444444

w3 -0.12698 -0.63492 -0.5873 -5.80952 -0.60317 7.920635

w4 0.015873 -6.92063 -0.30159 -6.52381 -7.1746 12.63492

There exist two violating pairs and two free pairs (NoCompl =2) and NoFea-

sib=0, as the solution is feasible. The algorithm should move towards comple-

mentarity and there are four possible moves that preserve feasibility (pivots in

italics in the tableau). The first nonbasic variable is chosen since all candidates

have no tabu status. The basic variable z3 is replaced by the nonbasic w5 and a

predefined tabu tenure is assigned to the tabu classification of the leaving basic

variable z3. After performing the pivot operation, the following simplex tableau

is obtained.

z3 z5 w2 z2 z4 Xb

z1 1.428571 0.571429 -0.14286 0.285714 0.428571 1.285714

w1 3.857143 2.142857 -1.28571 -1.42857 0.857143 14.57143

w5 9 -4 -1 -6 -2 4

w3 1.142857 -1.14286 -0.71429 -6.57143 -0.85714 8.428571

w4 -0.14286 -6.85714 -0.28571 -6.42857 -7.14286 12.57143

The new solution is feasible (NoFeasib=0), but it is not complementary

(NoCompl=1). Now there is only one pivot operation that preserves feasibility.

Hence, a pivot operation exchanging z1 with z2 is performed. The following

solution of the LCP is found after this operation.

zT= ( 0 4.5 0 0 0 )

wT= ( 21 0 38 41.5 31 )

4 Finding an initial basic feasible solution

The tabu pivoting heuristic requires a basic feasible solution to start with. This

initial solution can be obtained by solving a dual feasible linear program with
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the feasible set S. For instance, the following program can be used for this

purpose:

min eTw

s.t. (z, w) ∈ S

where e ∈Rn is a vector of ones. We denote this program by (P1). Note that

there is no particular reason to consider the objective function of (P1) and

another alternative is to minimize eT z over S. We denote this latter program

by (P2). More advanced procedures may be designed to find an initial basic

feasible solution, which are discussed below.

4.1 Modified reduced-gradient algorithm

A modified reduced-gradient (MRG) algorithm [Al-Khayyal, 1987] searches for

a so-called local start minimum of the function g(z,w) = zTw on the set S,

which is an extreme point (z̄, w̄) of S satisfying g(z̄, w̄) ≤ g(z,w) for all extreme

points (z,w) ∈ S adjacent to (z̄, w̄).

In order to describe the MRG algorithm, let (z̄, w̄) be an extreme point

of S corresponding to a basic feasible solution with basis B. If (z,w) is an

adjacent extreme point, then (z,w) = (z̄, w̄) + µ (dz, dw), where µ is the so-

called maximum stepsize used in the simplex method and d=(dz, dw) is a feasible

direction. The vector d can be defined in terms of the basis matrix B and of the

columns of the matrix M or of the identity matrix I. Let F and T be the index

sets of the basic and nonbasic variables respectively and let s be the index of the

entering nonbasic variable that is increased from zero to generate the adjacent

basic feasible solution. Then the feasible direction d is given by

ds = 1

dj = 0 for all j ∈ T−{s}

dF =

{

−B−1M•s

B−1I•s

if s is a column of a zi variable

if s is a column of a wi variable

where M•s and I•s are the sth column of the matrices M and I respectively.

There is a decrease in g produced by a movement to a new adjacent extreme

point (µ >0) if and only if z̄T dw + w̄T dz + µdTz dw < 0. In each iteration, the

MRG algorithm searches for a feasible descent direction d and a positive stepsize

µ satisfying this condition. If such d and µ exist, the algorithm finds a new ad-

jacent extreme point with a decrease of the objective function g. Otherwise the

algorithm terminates with a local star minimum, provided that all the stepsizes

are positive.

The solution returned by the MRG algorithm is a basic feasible solution.

Therefore, it is either a solution to the LCP or it is noncomplementary and can

be used as the initial solution for the tabu pivoting heuristic.
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4.2 Procedure based on Lemke’s algorithm

Lemke’s algorithm [Lemke, 1968] is probably the most famous procedure for

solving the LCP. In this algorithm, a nonnegative vector p and an artificial

variable z0 are added to the LCP in order to get the following Generalized

Linear Complementarity Problem (GLCP):

w = q +Mz + z0p

z ≥ 0, w ≥ 0, z0 ≥ 0

zTw = 0

We assume that the vector q has at least a negative component, as z = 0

is a solution to the LCP otherwise. Then there exists a value z̄0 >0 such that

w = q+ z̄0p ≥ 0. This value z̄0 can be obtained by performing a pivot operation

that replaces a basic variable wr by z0, where r satisfies

−
qr

pr
= max

{

−
qi

pi
: qi < 0

}

After performing this operation, a basic feasible solution of the GLCP is at

hand.

In each iteration of Lemke’s algorithm a pivot operation is performed. The

entering variable is the nonbasic variable whose complementary variable has

left the basis in the previous iteration. This rule keeps the complementarity

constraint satisfied throughout the algorithm. The leaving basic variable is

selected by the simple minimum quotient rule similar to the one that is used by

the simplex method for linear programming.

The algorithm terminates in a solution of the LCP, when z0=0, or in an

unbounded ray. This last form of termination may have no meaning at all.

However, there are some cases where such termination cannot occur or only

occurs when the feasible set of the LCP is empty (Murty 1988; Cottle et al.

2009).

If Lemke’s algorithm terminates in a ray and the LCP is feasible, the last

solution cannot be directly used as the initial solution for the tabu pivoting

heuristic, because it is infeasible to the LCP. Therefore, a post-processing phase

should be applied in order to get a basic feasible solution of the LCP. This phase

consists of minimizing z0 in the feasible set of the GLCP problem starting with

the final solution given by Lemke’s algorithm. We have introduced the following

modification in the rule of the simplex method for selecting the nonbasic variable

to enter into the basis: unless there is an entering variable that leads z0 to leave

the basis (which is the first choice), the procedure attempts to choose a nonbasic

variable that decreases z0 and whose complementary variable is also nonbasic.

If there is no such candidate, the procedure selects the entering variable that

leads to the largest decrease of z0.
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Example 2

Consider again the LCP of example 1. In that example, the initial basic

feasible solution has been obtained by solving (P1). Now the modified reduced-

gradient (MRG) algorithm is applied and finds a basic feasible solution given

by the tableau below.

w5 z1 w2 z2 z4 Xb

z5 -0.13158 0.82895 0.01316 1.02632 0.61842 0.53947

w1 0.07895 -3.19737 -0.90789 -2.81579 -0.67105 10.77632

z3 0.05263 0.36842 -0.10526 -0.21053 0.05263 0.68421

w3 -0.21053 0.52632 -0.57895 -5.15789 -0.21053 8.26316

w4 -0.89474 5.73684 -0.21053 0.57895 -2.89474 16.36842

Suppose that this solution is the initial basic solution for the tabu pivoting

algorithm. Hence NoCompl =1 and NoFeasib=0 and a variable of the violating

pair (z3,w3) leaves the basis by replacing it with a variable of the free pair

(z2, w2). There is no pivot operation that preserves feasibility and a negative

pivot must be chosen. So, z3 is replaced by w2 and the resulting solution is

complementary but infeasible. The tabu vector, say t, is updated by assigning a

predefined tabu tenure (TT ) to the component of z3 (the leaving basic variable).

By choosing TT equal to 10, we get the following tabu vector.

z1 z2 z3 z4 z5 w1 w2 w3 w4 w5

t = [ 0 0 10 0 0 0 0 0 0 0 ]

The simplex tableau of the new solution is given below.

w5 z1 z3 z2 z4 Xb

z5 -0.125 0.875 0.125 1 0.625 0.625

w1 -0.375 -6.375 -8.625 -1 -1.125 4.875

w2 -0.5 -3.5 -9.5 2 -0.5 -6.5

w3 -0.5 -1.5 -5.5 -4 -0.5 4.5

w4 -1 5 -2 1 -3 15

Then NoFeasib=1 > NoCompl =0 and the leaving variable w2 is the unique

basic variable with a negative value. The candidates to enter into the basis are

the nonbasic variables with negative coefficient in the row of w2, i.e. all except

z2. The highest priority is given to the complementary variable of w2 if it is

a candidate, but unfortunately it is not. Hence, another entering variable has

to be chosen causing the loss of complementarity. The tabu classification is

first used to filter the set of candidate variables {w5,z1, z3, z4} leading to the

exclusion of z3 (note the worthwhile role of the tabu status in order to prevent
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cycling). As three contenders remain, the first one, w5, is chosen. The pivot

operation exchanging w2 with w5 is performed yielding a noncomplementary

feasible solution. The tabu vector is updated by assigning the value TT to the

component of w2 and the other nonzero components are decreased by 1, leading

to the following vector.

z1 z2 z3 z4 z5 w1 w2 w3 w4 w5

t = [ 0 0 9 0 0 0 10 0 0 0 ]

The simplex tableau of the new solution is given below.

w2 z1 z3 z2 z4 Xb

z5 -0.25 1.75 2.5 0.5 0.75 2.25

w1 -0.75 -3.75 -1.5 -2.5 -0.75 9.75

w5 -2 7 19 -4 1 13

w3 -1 2 4 -6 0 11

w4 -2 12 17 -3 -2 28

Then NoCompl =1 > NoFeasib=0 and the algorithm exchanges a basic

variable of the violating pair (z5,w5) with a variable of the free pair (z2, w2).

The pivot operation defined by z5 and z2 is performed, as it is the only one that

preserves feasibility. The simplex tableau corresponding to the new solution is

given below.

w2 z1 z3 z5 z4 Xb

z2 -0.5 3.5 5 2 1.5 4.5

w1 -2 5 11 5 3 21

w5 -4 21 39 8 7 31

w3 -4 23 34 12 9 38

w4 -3.5 22.5 32 6 2.5 41.5

Since NoCompl =NoFeasib = 0, this is a solution of the LCP.

Examples 1 and 2 illustrate the solution of a LCP by the tabu pivoting

algorithm using two different initial basic feasible solutions. In the first case, the

initial solution has two violating pairs and the heuristic required 2 iterations to

find a solution to the LCP. On the other hand, the initial solution of the second

case has only one violating pair, but the heuristic required 3 iterations to find a

solution to the LCP. Therefore, these examples illustrate that a better starting

solution in terms of the indicator NoCompl may lead to a longer process to find

a solution to the LCP.

As already mentioned, the tabu pivoting heuristic is allowed to execute a

maximum number of iterations. If it attains this number without reaching a
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solution to the LCP, then an enumerative algorithm is applied starting with the

basic solution given by the heuristic. This algorithm is discussed in the next

section.

5 The Branch and Tabu Pivoting Algorithm

The Branch and Tabu Pivoting (BTP) algorithm to be described in this sec-

tion employs a search tree based on the dichotomy zi =0 or wi =0 that holds

for each pair of complementary variables. A depth-first search scheme is de-

signed according to the figure 1, where xi denotes a variable zi or wi and x̄i its

complementary.

Figure 1: Branching schema

A sub-problem is associated to each node of the tree and is processed by

the tabu pivoting heuristic for a maximum number of MaxIter child iterations.

This number should be smaller than the maximum number of iterations that

is allowed in the root of the tree, MaxIter root, as the algorithm tries to avoid

the use of the enumerative method by allowing a larger number of iterations of

the heuristic before branching. If the maximum number of iterations is attained

with a complementary and infeasible solution, the heuristic continues until a

noncomplementary solution (or a solution to the LCP) is found. The tabu

vector used by the heuristic is inherited from parent to children.

If the tabu pivoting heuristic is applied to a node i, one of the following

situations should occur:

1. A complementary and feasible solution to the sub-problem i is found and

the BTP algorithm stops with a solution of the LCP.

2. The sub-problem i is infeasible (an infeasible solution has been obtained

if there is no nonbasic variable with a negative coefficient in the row of a

negative basic variable) and the node is fathomed.
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3. The heuristic performs the maximum number of iterations and terminates

with a noncomplementary solution.

In situation 3, the node is branched. The left child, node i+1, is created by

selecting a violating basic variable xv and a free nonbasic variable. This selection

follows the same rules as in the tabu pivoting heuristic. The corresponding

pivoting operation is performed, yielding the initial solution for the node (sub-

problem) i+1. The variable xv is fixed at 0 to get the sub-problem i+1. Next,

the tabu pivoting heuristic is applied to the sub-problem i+1.

In situation 2, the algorithm backtracks by generating the right child (node)

of the most recent node for which the second child had not been created. Two

examples of this case are illustrated in figure 2.

Figure 2: Second branch (right child)

The initial basic solution for the right child i+2 is also obtained from the

final solution of its parent if such operation is possible. If xv is the violating

variable fixed at 0 in the left child of node i, then its complementary variable x̄v

is the selected variable to be fixed at 0 in the right child of node i. This variable

leaves the basis by exchanging with a free nonbasic variable (chosen according

to the rules of the tabu pivoting heuristic), producing the initial solution for the

right node. The constraint x̄v=0 is imposed upon this problem and the tabu

pivoting heuristic is applied to the resulting sub-problem.

Note that a pivoting operation between a violating basic variable and a

free nonbasic variable may not be possible because of the number of variables

that are fixed in the node. In this case, the heuristic starts by computing a

basic feasible solution (if it exists) to the sub-problem, and the tabu vector is

reinitialized rather than being inherited from the parent node.

An additional test of infeasibility has been further included in the BTP algo-

rithm, which aims at accelerating the identification of infeasible sub-problems.
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Basically, if the initial solution to the current sub-problem is infeasible and

the tabu pivoting heuristic operates with infeasible solutions all through the

iterations, then the linear programming solver is applied to that sub-problem

(considering the current basis as initial basis) to check if this sub-problem is

infeasible.

6 Computational experiments

In this section we report some computational experiments with the Branch and

Tabu Pivoting (BTP) algorithm discussed in the previous section, which was

implemented in Delphi for Windows. The experiments were performed on a

computer Core 2 CPU 6700, 2.66GHz with 2GB of RAM.

The BTP algorithm was first tested (experiment 1 ) on a set of randomly

generated problems belonging to different types. This experiment has considered

the optimization problem (P1) to compute the initial solution and has tested

different values for the parameters of the algorithm. Although the problems

used in experiment 1 have been generated according to the rules used in other

tests published in the literature, the problems involve the generation of random

numbers, thus leading to different instances. Therefore, the results cannot be

directly compared with the results of experiments of other authors.

A second experiment has been carried out (experiment 2 ) using a set of

LCPs associated with subset sum problems that have already been tested with

other algorithms. We present some comparison results for this set of problems.

Finally, a third experiment (experiment 3 ) has been performed using the

problems of the previous experiments, 1 and 2, in order to analyse the impact

of different initial solutions on the efficiency of the algorithm. The starting

procedures presented in section 4 are tested in this experiment.

We start by describing the test problems.

6.1 Test problems

• LCPs associated with subset sum problems

Given a positive real number b and a positive vector a ∈Rη, the subset sum

problem (a special case of the knaspack problem) can be defined as the prob-

lem of determining a vector x ∈ Rη such that aTx = b and xi ∈{0,1} for all

i=1,...,η. Three different formulations of this problem as an LCP are presented

by [Fernandes et al., 2001], [Júdice et al., 2002] and [Kojima et al., 1991] among

other references. We use two of them, which we denote by Form1 and Form2,

adopting the terminology used by [Júdice et al., 2002] (these are called prob5

and prob6 in [Fernandes et al., 2001]). In the two formulations considered
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herein, a subset sum problem of dimension η is equivalent to a LCP of dimen-

sion n = η+2.

Form1 – the LCP problem is defined by

q =







e

−b

b






, M =







−Iη 0 0

aT −α 0

−aT 0 −β






∈ R(η+2)×(η+2)

where e ∈Rη is a vector of ones, Iη is the identity matrix of order η and α and

β are two positive real numbers that can be chosen such that the matrix M is

negative semi-definite (NSD) or indefinite (IND).

Form1-nsd: α and β satisfy

α > θ
aTa

4
, β > θα

aTa

4α− aTa

Form1-ind: α and β satisfy

α > θ
aTa

4
, β >

α

θ

aT a

4α− aTa

with θ > 1 a fixed number.

Notice that we can consider q =







e

−b+ ε

b+ ε






with ε a small positive con-

stant, which does not change the result to the subset sum problem and avoids

degenerate feasible solutions. This perturbation has been considered in the

computational tests.

Form2 – the LCP problem is defined by

q =







a

−b

b






, M =







−Iη e −e

eT −2η 0

−eT 0 −2η






∈ R(η+2)×(η+2)

In this case the matrix M is symmetric NSD.

Several test problems have been generated following the same rules as in

[Júdice et al., 2002]: all the components ai of the vector a ∈Rη have been

randomly generated in the interval [1, 50] and b =
∑

i∈I

ai ,where I is a sub-set

of {1,...,η} corresponding to the variables xi that are equal to 1 in a solution

of the subset sum problem. Three different cardinalities of the set I have been

considered, corresponding to a percentage of variables equal to one of 25%, 50%

and 75%, respectively.

The problems Form1-ind have not been tested in the first experiment,

although they have been considered in the second experiment. Experiment 1

has used the problems Form1-nsd 50%, Form1-nsd 25%, Form1-nsd 75%

and Form2 50%. Five different problems have been generated for each type
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and for each value of η =20, 50 and 100. The Form2 50% problems correspond

to the same subset sum problems as Form1-nsd 50%.

These problem instance parameter values (i.e. cardinality of I and values of

η) are the ones used in [Júdice et al., 2002], [Ribeiro, 2004] and [Júdice et al.,

2006].

• Prob 8, Prob 9 [Fernandes et al., 2001]

These LCPs are formulations of non-zero bimatrix games:

Prob8 : q =

[

−em

−er

]

, M =

[

0 A

B 0

]

Prob9 : q =

[

−em

er

]

, M =

[

0 A

−B 0

]

where ej is a vector of ones of order j and A and B are positive matrices.

The elements of the matrices A and B have been randomly generated in the

interval [1, 50]. We have also considered m = r in all problems.

• Sherali-ND, Sherali-IND [Sherali et al. 1998]

These LCP problems have been proposed by [Sherali et al., 1998] and are called

“Problem Set 1” therein. Two types of matrices M are considered. In the first

case M is negative-definite (Sherali-ND) and M is indefinite (Sherali-IND)

in the second. The procedure for generating the test problems is the following

[Sherali et al., 1998]:

(a) A complementary solution (z̃, w̃) is first generated by randomly setting

either z̃i or w̃i to zero, while the other variable is selected from the set {0,1,2}

for each i=1,...,n.

(b) A matrix M composed of random integers in the interval [-15, 15] is

generated.

(b.1) For M to be ND, the diagonal entries mii are redefined as

mii = −



















1 + max



































n
∑

k = 1

k 6= i

|mik|,
n
∑

k = 1

k 6= i

|mki|





















































, ∀i = 1, ..., n

(b.2) For M to be IND, a full row of M is made negative.

(c) Finally, q is computed by q = w̃ −Mz̃.
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6.2 Experiment 1

The Branch and Tabu Pivoting (BTP) algorithm has been tested on the above

problems considering different values for the parameters MaxIter root (maxi-

mum number of iterations for the heuristic in node 0), MaxIter child (maximum

number of iterations for the heuristic in the other nodes of the search tree) and

the tabu tenure TT (the maximum tabu status and also the number of iterations

that a variable has a positive penalty).

Preliminary tests indicated that a better overall performance is obtained

with high values of the tabu tenure TT. Thus, for the Experiment 1 reported in

Table 1 we considered TT=50 in all problems. In addition, MaxIter root was

set to 50 and two different values for MaxIter child were used: 10 and 30. These

search parameter values have been selected after some initial experiences with

a wider range of values. However, we did not seek to tailor search parameters

for each type of problem separately. A brief note on the performance of the

algorithm with other parameter values is given afterwards.

Table 1 indicates the number of nodes required by the algorithm (Nd) and

the total number of iterations (Nit), i.e. the number of pivot operations. This

number includes extra iterations eventually performed in the additional test of

infeasibility but excludes the iterations required in Step 0 to obtain a first basic

solution for node 0. The dimension of the LCP is denoted by n.

Table 1 shows that the algorithm has been able to find a solution to the

LCP formulations of the subset sum problems (Form1 and Form2) in a few

iterations for most cases. Three atypical cases can be observed, where a large

number of nodes and iterations (>1000) has been required. On average, the

algorithm has shown a better performance using MaxIter child =30 than using

MaxIter child =10 in this set of problems. The running times have been quite

small for all the test problems.

The algorithm has shown a poor performance on problems Prob8, Prob9

and Sherali. It has generally required the exploration of many nodes and

a large number of iterations. In these problems, the algorithm has shown an

average performance with MaxIter child =10 better than with MaxIter child

=30.

We have carried out further tests considering different values of the parame-

ters. We have experimented with MaxIter root/ MaxIter child equal to 100/10

and 100/30, keeping TT=50. The results for 100/10 have shown an overall

superiority in relation to 100/30. Different values of the tabu tenure have been

further tried, in particular TT=2n. The algorithm has shown an average per-

formance similar to that of considering TT=50.

As a final conclusion, the results do not show the superiority of a set of

parameter values in relation to the others in all circumstances. According to

this study and regardless of the parameter values, the algorithm seems to be
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efficient for the problems form1 and form2 and has revealed a much poorer

performance in problems prob8, prob9 and Sherali. Next, we include some

observations that may explain the differences on the performance of the algo-

rithm.

In problems Form1 and Form2, the noncomplementary solutions obtained

throughout the algorithm have only one violating pair. Furthermore, it is easy to

restore feasibility when the solutions are infeasible. Therefore, the tabu pivoting

heuristic works with low values of NoFeasib and NoCompl and, in most cases,

only one of these measures is strictly positive.

On the contrary, feasible solutions of the Prob8, Prob9 and Sherali often

have several violating pairs. The algorithm may require high levels of infeasi-

bility to achieve complementarity and vice-versa. Therefore, the tabu pivoting

heuristic works with values of NoFeasib and NoCompl significantly higher than

in the previous problems. Furthermore, problems Prob8 and Prob9 give an

additional difficulty to the heuristic. Due to their structure, a negative basic

variable can never exchange with its complementary variable when the latter is

nonbasic, because the respective entry in the pivot row is always zero.

Table 1: Numerical results of the BTP algorithm in Experiment 1

Problems n Instance

BTP algorithm (initial solution given by P1)

MaxIter child =10 MaxIter child =30

Nd Nit Nd Nit

22

K0 n20 1 7 120 3 118

K0 n20 2 12 184 5 192

Form1-nsd K0 n20 3 9 142 3 123

50% K0 n20 4 0 36 0 36

K0 n20 5 26 282 2 98

52

K0 n50 1 2 72 1 72

K0 n50 2 0 24 0 24

K0 n50 3 0 45 0 45

K0 n50 4 6 119 3 117

K0 n50 5 0 44 0 44

102

K0 n100 1 0 38 0 38

K0 n100 2 8 140 5 201

K0 n100 3 0 14 0 14

K0 n100 4 0 16 0 16

K0 n100 5 3 78 3 129

22

K1 n20 1 2 68 3 129

K1 n20 2 3 82 3 137

Form1-nsd K1 n20 3 121 840 4 160

25% K1 n20 4 0 39 0 39

K1 n20 5 1 58 1 58
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Table 1: Numerical results of the BTP algorithm in Experiment 1

Problems n Instance

BTP algorithm (initial solution given by P1)

MaxIter child =10 MaxIter child =30

Nd Nit Nd Nit

52

K1 n50 1 0 47 0 47

K1 n50 2 0 44 0 44

K1 n50 3 0 38 0 38

K1 n50 4 6 109 2 112

K1 n50 5 23 281 3 124

102

K1 n100 1 0 27 0 27

K1 n100 2 0 11 0 11

K1 n100 3 1 61 1 61

K1 n100 4 0 38 0 38

K1 n100 5 0 18 0 18

22

K2 n20 1 0 17 0 17

Form1-nsd K2 n20 2 6 112 2 98

75% K2 n20 3 0 21 0 21

K2 n20 4 336 2246 6 216

K2 n20 5 320 2143 3 121

52

K2 n50 1 0 5 0 5

K2 n50 2 0 33 0 33

K2 n50 3 0 48 0 48

K2 n50 4 0 42 0 42

K2 n50 5 5 108 2 108

102

K2 n100 1 0 28 0 28

K2 n100 2 0 12 0 12

K2 n100 3 0 39 0 39

K2 n100 4 3 78 2 89

K2 n100 5 0 22 0 22

22

KK n20 1 2 70 1 70

Form2 KK n20 2 10 155 4 156

50% KK n20 3 0 37 0 37

KK n20 4 391 2606 3 121

KK n20 5 9 151 2 85

52

KK n50 1 0 14 0 14

KK n50 2 5 104 3 117

KK n50 3 6 120 5 190

KK n50 4 0 0 0 0

KK n50 5 0 6 0 6

102

KK n100 1 2 70 1 70

KK n100 2 1 58 1 58

KK n100 3 2 68 4 160

KK n100 4 0 41 0 41
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Table 1: Numerical results of the BTP algorithm in Experiment 1

Problems n Instance

BTP algorithm (initial solution given by P1)

MaxIter child =10 MaxIter child =30

Nd Nit Nd Nit

KK n100 5 14 210 2 84

FORM1,2 average values 22 196 1 74

20

Prob8 n20 1 153 1482 120 2849

Prob8 Prob8 n20 2 151 1699 217 5287

Prob8 n20 3 156 1657 379 7818

Prob8 n20 4 866 8732 503 11090

Prob8 n20 5 1 51 1 51

20

Prob9 n20 1 521 5414 1758 39779

Prob9 Prob9 n20 2 571 5831 235 4722

Prob9 n20 3 0 12 0 12

Prob9 n20 4 435 4365 263 5948

Prob9 n20 5 168 1659 5 211

PROB 8, 9 average values 302 3090 348 7777

25

SND n25 1 52 898 17 657

Sherali-nd SND n25 2 129 1465 10 471

SND n25 3 0 1 0 1

SND n25 4 0 5 0 5

SND n25 5 6 134 7 289

25

SI n25 1 164 2055 4 156

Sherali-ind SI n25 2 16 376 514 13665

SI n25 3 0 40 0 40

SI n25 4 4 116 3959 94461

SI n25 5 8155 98921 9943 250849

SHERALI average values 853 10401 1445 36059

6.3 Experiment 2

The second experiment has consisted of applying the BTP algorithm to a set of

36 LCPs associated with subset sum problems that have already been tested in

other studies. These instances have formulations of types Form1-nsd, Form1-

ind and Form2 (75%, 50% and 25%, respectively for instances identified with

A, B and C in Table 2). The results of the BTP algorithm on these instances are

provided for comparison with the results of other enumerative methods. The

three enumerative algorithms EAset, EMRG and EMPEC discussed in Section

1 have been used for this comparison.

As before, we have also considered the initial solution obtained by the opti-

mization of the problem (P1). Table 2 shows the results of the BTP algorithm
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using MaxIter root=50, MaxIter child=30 and TT=50 and the results of the

other enumerative algorithms mentioned before. The best performance values

for each instance are in bold type.

As in the previous experiment, the BTP algorithm appears to perform well

for LCPs associated with subset sum problems. In this case the results assume

more significance as they can be compared with results of previous studies. As

can be seen in Table 2, the average number of nodes and of iterations over

this set of problems are lower with the BTP algorithm than with the other

enumerative algorithms.

Table 2: Experiment 2 - Comparison of BTP with other enumerative

algorithms

Prob. n Instance
BTP EAset EMRG EMPEC

Nd Nit Nd Nit Nd Nit Nd Nit

22 1NA1 5 191 75 168 31 140 2 66

52 1NA2 2 106 10 71 14 98 280 11894

102 1NA3 0 40 2 57 66 272 2 206

152 1NA4 0 10 25 171 156 570 2 528

Form1 22 1NB1 3 124 78 167 5 21 18 304

-nsd 52 1NB2 0 35 31 113 35 150 2 72

102 1NB3 1 60 4 34 16 104 2 415

152 1NB4 0 38 2 48 32 174 2 205

22 1NC1 3 119 5 12 5 17 6 163

52 1NC2 3 136 17 57 55 237 2 217

102 1NC3 1 53 24 108 4 38 2 208

152 1NC4 0 37 12 62 23 113 2 162

22 1IA1 5 191 75 168 31 140 2 66

52 1IA2 2 106 10 71 14 98 280 11886

102 1IA3 0 40 2 57 66 272 2 206

152 1IA4 0 10 25 171 156 570 2 528

Form1 22 1IB1 3 124 78 167 5 21 18 304

-ind 52 1IB2 0 35 31 113 35 150 2 72

102 1IB3 1 60 4 34 16 104 2 415

152 1IB4 0 38 2 48 32 174 2 205

22 1IC1 3 119 5 12 5 17 6 163

52 1IC2 3 136 17 57 55 237 2 217

102 1IC3 1 53 24 108 4 38 2 208

152 1IC4 0 37 12 62 23 113 2 162

22 2A1 4 121 12 75 2 23 2 191

52 2A2 3 125 6 60 3 58 2 443

102 2A3 0 19 13 142 1 81 2 974

152 2A4 0 13 1 113 2 117 2 593

22 2B1 0 5 2 11 46 343 46 1357
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Table 2: Experiment 2 - Comparison of BTP with other enumerative

algorithms

Prob. n Instance
BTP EAset EMRG EMPEC

Nd Nit Nd Nit Nd Nit Nd Nit

Form2 52 2B2 4 147 6 44 8 78 2 638

102 2B3 0 5 1 55 1 51 2 256

152 2B4 0 42 10 115 1 83 2 682

22 2C1 2 107 16 70 5 35 2 29

52 2C2 0 46 2 20 5 39 22 1126

102 2C3 0 46 4 47 2 37 2 1269

152 2C4 2 94 7 71 2 56 2 733

Average values: 1 74 18 82 27 135 20 1032

6.4 Experiment 3

Experiment 3 was intended to test different procedures for computing the initial

basic feasible solution and to analyse the performance of the BTP algorithm

after applying these procedures. This experiment has been carried out using

the problems already considered in the previous experiments. Four procedures

presented in Section 4 are considered to obtain the initial solution:

a) minimizing the sum of the variables wi over the feasible region,

i.e., solving (P1) (this has been used in experiments 1 and 2);

b) minimizing the sum of the variables zi over the feasible region,

i.e., solving (P2);

c) applying a modified reduced-gradient (MRG) algorithm;

d) using Lemke’s algorithm and a post-processing phase to reach

feasibility of the LCP when Lemke’s algorithm cannot solve the LCP.

Table 3 shows the results of the BTP algorithm using these procedures. The

parameter values are TT=50, MaxIter root =50 and MaxIter child=30 for the

LCPs associated with subset sum problems and MaxIter child=10 for the other

problems. Note that the alternative procedures are used only to compute the

initial basic feasible solution for the first time the tabu pivoting heuristic is

applied, that is, in the root of the search tree. The notation “—” is used in

Table 3 whenever the initial procedure yields a solution to the LCP. These cases

are ignored in the computation of the average values shown in this table.

As can be seen in Table 3, the MRG method was able to find a solution

to the LCP in 72 out of 115 problems. On the other hand, Lemke’s algorithm

could solve the LCPs of type Prob9 and terminated in an unbounded ray in
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the other problems. In all these problems, except in Sherali-IND, Lemke’s

algorithm only required one iteration to terminate in a ray.

This experiment has shown that the initial solution has a significant impact

on the computation of a solution to a LCP. The MRG and Lemke’s algorithms

are useful procedures to start with, because they are able to achieve a solution to

the LCP in several cases without requiring any further computations. However,

in the other cases, there is no guarantee that a solution to the LCP is found

more easily if the algorithm BTP starts with a basic solution given by one of

these more advanced techniques. We have observed that the initial solutions

obtained by MRG for the problems Prob8, Prob9 and Sherali have less

violating pairs than the corresponding solutions obtained by solving (P1), but

this does not ensure a better performance of the algorithm. Nevertheless, those

starting procedures are powerful tools because they can provide different starting

solutions that can be used to initiate several runs of the algorithm. Using a

multi-start approach, the BTP algorithm has a good change of finding a solution

to the LCP in a few iterations. This is supported by the experiment reported

in Table 3, as all but two problems were solved in less than 130 iterations of the

BTP algorithm in at least one run (from a to d).

We have also tested a different implementation of the enumerative algorithm

in which the MRG is applied before the tabu pivoting heuristic in each node

of the search tree. The results are not encouraging as a larger total number of

iterations has been mostly required.

As in experiment 1, further tests with different parameters values have been

also carried out. We have considered some combinations of MaxIter root = 50

or 100, MaxIter child = 10 or 30 and TT = 50 or 2n. A comparison of these

tests suggests that the combination MaxIter root = 100, MaxIter child = 10

and TT = 50 seems to be a good compromise parameter setting within the set

of the tested problems. In this set of 115 problems, 114 were solved in less than

220 iterations (113 of them solved in less than 120 iterations), by at least one

run of the BTP algorithm (from a to d). The remaining problem (Prob8 n20 3)

required 3214 iterations.

Table 3: Experiment 3 - BTP algorithm with different initial solutions

BTP algorithm with initial solution given by:

a)(P1) b)(P2) c) MRG d) Lemke

Prob. type Instance Nd Nit Nd Nit Nd Nit Nd Nit

1NA1 5 191 10 335 — 3 131

1NA2 2 106 0 37 — 1 65

1NA3 0 40 0 15 — 0 17

1NA4 0 10 0 5 — 1 66

Group 1 : 1NB1 3 124 1 59 4 145 147 2612
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Table 3: Experiment 3 - BTP algorithm with different initial solutions

BTP algorithm with initial solution given by:

a)(P1) b)(P2) c) MRG d) Lemke

Prob. type Instance Nd Nit Nd Nit Nd Nit Nd Nit

LCPs 1NB2 0 35 0 37 — 0 37

associated 1NB3 1 60 0 31 — 0 16

with 1NB4 0 38 0 25 — 0 48

subset sum 1NC1 3 119 12 396 1 70 0 1

problems 1NC2 3 136 5 179 2 104 5 187

1NC3 1 53 1 70 — 1 70

1NC4 0 37 1 81 — 0 18

1IA1 5 191 10 335 — 3 131

1IA2 2 106 0 37 — 1 65

1IA3 0 40 0 15 — 0 17

1IA4 0 10 0 5 — 1 66

1IB1 3 124 1 59 4 145 147 2612

1IB2 0 35 0 37 — 0 37

1IB3 1 60 0 31 — 0 16

1IB4 0 38 0 25 — 0 48

1IC1 3 119 12 396 5 197 0 1

1IC2 3 136 5 179 2 104 5 187

1IC3 1 53 1 70 — 1 70

1IC4 0 37 1 81 — 0 18

2A1 4 121 4 121 5 176 0 11

2A2 3 125 0 10 0 45 0 50

2A3 0 19 0 19 — 0 0

2A4 0 13 3 132 — 5 185

2B1 0 5 0 5 — 0 40

2B2 4 147 2 87 — 0 0

2B3 0 5 0 5 — 2 105

2B4 0 42 1 53 — 1 74

2C1 2 107 0 49 — 2 98

2C2 0 46 0 38 — 8 300

2C3 0 46 2 108 2 87 2 98

2C4 2 94 0 16 — 3 141

K0 n20 1 3 118 2 86 — 5 200

K0 n20 2 5 192 0 37 0 7 0 37

K0 n20 3 3 123 0 22 — 0 37

K0 n20 4 0 36 0 1 3 116 0 1

K0 n20 5 2 98 1 63 — 0 43

K0 n50 1 1 72 1 65 — 0 22

K0 n50 2 0 24 0 18 — 1 68

K0 n50 3 0 45 4 158 — 1 61

K0 n50 4 3 117 3 136 1 57 1 63
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Table 3: Experiment 3 - BTP algorithm with different initial solutions

BTP algorithm with initial solution given by:

a)(P1) b)(P2) c) MRG d) Lemke

Prob. type Instance Nd Nit Nd Nit Nd Nit Nd Nit

K0 n50 5 0 44 0 16 — 0 39

K0 n100 1 0 38 1 68 — 0 19

K0 n100 2 5 201 0 47 — 1 53

K0 n100 3 0 14 0 29 — 0 26

K0 n100 4 0 16 0 48 — 0 24

K0 n100 5 3 129 2 108 — 2 108

K1 n20 1 3 129 97 1719 4 150 6 228

K1 n20 2 3 137 2 105 121 2141 2 105

K1 n20 3 4 160 0 13 116 2020 0 31

K1 n20 4 0 39 0 11 — 0 25

K1 n20 5 1 58 0 49 1 58 1 69

K1 n50 1 0 47 0 22 — 0 39

K1 n50 2 0 44 5 187 — 0 31

K1 n50 3 0 38 0 16 0 22 3 130

K1 n50 4 2 112 0 14 — 6 215

K1 n50 5 3 124 0 42 3 123 0 1

K1 n100 1 0 27 0 24 — 0 19

K1 n100 2 0 11 0 34 0 5 0 26

K1 n100 3 1 61 0 45 — 0 1

K1 n100 4 0 38 5 184 — 1 72

K1 n100 5 0 18 0 36 — 1 77

K2 n20 1 0 17 0 5 — 0 5

K2 n20 2 2 98 0 39 0 7 0 1

K2 n20 3 0 21 2 104 — 2 104

K2 n20 4 6 216 6 216 3 128 118 2149

K2 n20 5 3 121 9 329 3 121 1 55

K2 n50 1 0 5 1 77 — 0 5

K2 n50 2 0 33 3 121 — 0 31

K2 n50 3 0 48 1 68 0 11 1 71

K2 n50 4 0 42 0 28 — 0 33

K2 n50 5 2 108 0 18 0 14 0 18

K2 n100 1 0 28 0 19 — 1 71

K2 n100 2 0 12 2 97 0 11 1 78

K2 n100 3 0 39 0 36 — 0 20

K2 n100 4 2 89 0 19 2 90 0 38

K2 n100 5 0 22 0 16 — 0 5

KK n20 1 1 70 1 70 0 30 4 147

KK n20 2 4 156 4 156 — 1 75

KK n20 3 0 37 715 11956 0 33 7 244

KK n20 4 3 121 0 5 0 27 0 0
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Table 3: Experiment 3 - BTP algorithm with different initial solutions

BTP algorithm with initial solution given by:

a)(P1) b)(P2) c) MRG d) Lemke

Prob. type Instance Nd Nit Nd Nit Nd Nit Nd Nit

KK n20 5 2 85 0 42 0 40 0 4

KK n50 1 0 14 0 14 — 1 73

KK n50 2 3 117 3 117 — 0 11

KK n50 3 5 190 0 29 — 0 45

KK n50 4 0 0 0 5 — 0 20

KK n50 5 0 6 0 20 — 1 56

KK n100 1 1 70 0 3 — 5 201

KK n100 2 1 58 4 161 — 3 132

KK n100 3 4 160 0 0 — 4 161

KK n100 4 0 41 0 43 — 0 42

KK n100 5 2 84 2 84 — 3 144

Group 1 average values 1 74 10 213 9 209 5 141

Prob8 n20 1 153 1482 76 858 483 4794 4 100

Prob8 n20 2 151 1699 51 596 253 2675 1 61

Group 2 : Prob8 n20 3 156 1657 724 7159 1282 12516 1048 10378

Prob8 Prob8 n20 4 866 8732 1033 10494 236 2404 0 11

and Prob8 n20 5 1 51 513 5269 2 78 0 41

Prob9 Prob9 n20 1 521 5414 0 4 68 809 —

Prob9 n20 2 571 5831 395 3972 1069 10846 —

Prob9 n20 3 0 12 481 5222 9 175 —

Prob9 n20 4 435 4365 0 24 — —

Prob9 n20 5 168 1659 382 4211 203 2158 —

Group 2 average values 302 3090 366 3781 401 4051 211 2118

SND n25 1 52 898 278 3995 332 3993 0 41

SND n25 2 129 1465 0 39 34 643 1161 13894

SND n25 3 0 1 0 5 — 0 3

Group 3 : SND n25 4 0 5 2 100 0 3 2 100

Sherali SND n25 5 6 134 0 5 — 454 4326

SI n25 1 164 2055 3383 44793 — 105 1542

SI n25 2 16 376 437 6060 — 1221 15924

SI n25 3 0 40 3 108 4 112 517 6301

SI n25 4 4 116 13064165435 — 1593 19297

SI n25 5 8155 98921 176 2322 12451149328 9198 115838

Group 3 average values 853 10401 1734 22286 2564 30816 1425 17727
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7 Concluding Remarks

In this paper we have proposed an algorithm for solving the linear complemen-

tarity problem, which results from the integration of a tabu pivoting heuristic

into an enumerative framework. The heuristic uses the tabu search principle by

imposing tabu restrictions on pivot operations in order to avoid inversions or

repetitions of recent moves.

Computational experiments with this Branch and Tabu Pivoting (BTP) al-

gorithm have shown that for some types of NP-hard LCPs the algorithm is able

to find a solution in a few iterations. However, for other LCPs the algorithm

may require to visit many nodes of the search tree and to perform a large number

of iterations.

We believe that the good performance revealed in many cases makes the

BTP algorithm a promising technique for using together with some other tech-

niques usually employed in enumerative algorithms. In addition, simple iterative

procedures as the MRG and Lemke’s algorithms may be useful tools to start

with because either they find a solution to the LCP or provide different starting

solutions that can be used to initialize several runs of the BTP algorithm. In

fact, considering only one parameter setting of the algorithm, 113 out of 115

problems could be solved in less than 130 iterations by the BTP algorithm with

one of the four starting procedures.
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