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ABSTRACT To obtain a control function which puts the wave equation in an unknown min-

imum time into a stationary regime is considered is considered. Using an embedding method, the

problem of finding the time optimal control is reduced to one consisting of minimizing a linear form

over a set of positive measures. The resulting problem can be approximated by a finite dimensional

linear programming (LP) problem. The nearly optimal control is constructed from the solution of

the final LP problem. To find the lower bound of the optimal time a search algorithm is proposed.

Some examples demonstrate the effectiveness of the method.
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1. Introduction

Let us consider the following problem:

Ptt(x, t) = Pxx(x, t) + u(t)b(x), (x, t) ∈ ω × [0, T ], (1)

P (x, 0) = Q0(x), x ∈ ω, (2)

Pt(x, 0) = Q1(x), x ∈ ω, (3)

P (x, t) = 0, (x, t) ∈ ∂ω × [0, T ], (4)

where ω = (0, L1) is a bounded open subset of Eucleadian space IR with boundary ∂ω, , T

is an unknown positive number, u(·) is a control in the space L2([0, T ]), c is a constant, and
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the functions b(x), Q0(x) and Q1(x) are given in L2(ω).

Definition 1.1 The control function u(·) is called admissible if it is a Lebesgue measur-

able function and u(t) ∈ [−K, K], almost everywhere for t ∈ [0, T ] and some suitable K > 0.

Furthermore this control puts the system (1)-(4) in final minimum time T into a stationary

regime, i.e.

P (x, T ) = F (x), x ∈ ω, (5)

Pt(x, T ) = G(x), x ∈ ω, (6)

where the known functions F (·) ∈ L2(ω) and G(·) ∈ L2(ω) are called the desired final state

and the desired final velocity , respectively. We denote the set of all admissible controls by

Uad and assume it is nonempty.

Optimal control of distributed parameter systems governed by a system of hyperbolic

equations is of special importance for the active control of structural systems for which the

equations of motion are generally expressed by hyperbolic differential equations. The field of

structural control has been an active research area for a number of years. However, most of

the studies in this area considered specific structures such as wings [21], beams [17] and plates

[3]. Even though these studies provided solutions for many particular cases, the theoretical

foundations of the subject aimed specifically at problems arising in structural mechanics

have not received much attention. Theoretical studies such as the ones in [2],[9] considered

the optimal control problems in abstract settings leaving a gap between the theory and

applications. In particular, optimal control studies relating the theory directly to the solution

method have been scarce. However, one such application is given in [4] for a structural

vibration problem governed by a single hyperbolic equation. Another application is given

herein for a vibration problem governed by a system of hyperbolic equations. The developed

maximum principle [5] was used to construct explicit solutions for an optimal control problem

involving a distributed parameter structure governed by a system of hyperbolic differential

equations.

Motivated by the above discussions, in this paper, we present the optimization technique

for solving problems (1)-(6) based on the measure theory method [19]. We may encounter

some aspects of the proposed method in comparison with other numerical methods for

solving the time optimal control of the wave equation. The method is not iterative, it is self-

starting, and it is not restricted to differentiable cost functions. Because of these features,

this approach has been successfully used to solve a variety of control, optimization and shape

design problems [6,7,8,12,13,14,15,16].
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2. Moment problem

The problem (1)-(6) can be reduced to a problem of moments. We consider the solution of

the problem (1)-(4) in the sense of [1]:



P (x, t)

Pt(x, t)


 = (7)




∑∞
n=1[Q0n cos(λnt) + 1

λn
Q1n sin(λnt) + bn

λn

∫ t

0
sin(λn(t− τ))u(τ)dτ ]en(x)

∑∞
n=1[−λnQ0n sin(λnt) + Q1n cos(λnt) + bn

∫ t

0
cos(λn(t− τ))u(τ)dτ ]en(x)


 ,

where the expansion of the functions b(·), Q0(·), Q1(·), F (·) and G(·), in terms of eigenfunc-

tions are 



b(x) =
∑∞

n=1 bnen(x),

Q0(x) =
∑∞

n=1 Q0nen(x),

Q1(x) =
∑∞

n=1 Q1nen(x),

F (x) =
∑∞

n=1 Fnen(x),

G(x) =
∑∞

n=1 Gnen(x).

From (5)-(7) and the above Fourier series we have




Q0n cos(λnT ) + 1
λn

Q1n sin(λnT ) + bn

λn

∫ T

0
sin(λn(T − t))u(t)dt = Fn,

−λnQ0n sin(λnT ) + Q1n cos(λnT ) + bn

∫ T

0
cos(λn(T − t))u(t)dt = Gn,

for n = 1, 2, · · · . Thus, to solve the problem (1)-(6) is equivalent to solve the problem of the

following moment problems




∫ T

0
sin(λnt)u(t)dt = 1

bn
[Gn sin(λnT )− λnFn cos(λnT ) + λnQ0n],

∫ T

0
cos(λnt)u(t)dt = 1

bn
[Gn cos(λnT ) + λnFn sin(λnT )−Q1n].

For simplicity, denote




cn = 1
bn

[Gn sin(λnT )− λnFn cos(λnT ) + λnQ0n],

dn = 1
bn

[Gn cos(λnT ) + λnFn sin(λnT )−Q1n].

and put

an =





ck, if n = 2k − 1,

dk, if n = 2k,
ϕn(t, u(t)) =





sin(λkt)u(t), if n = 2k − 1,

cos(λkt)u(t), if n = 2k.
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Hence minimum time control problem is reduced to finding a pair (u(·), T ) satisfying:

minimize T =
∫ T

0

dt

(8)

subject to ∫ T

0

ϕn(t, u(t))dt = an, n = 1, 2, · · · . (9)

In the next section, we proceed to enlarge the set Uad.

3. Metamorphosis

In general, it may be difficult to characterize the optimal trajectory in Uad; necessary con-

ditions are not always helpful because the information that they give may be impossible to

interpret. It appears that these situations may become more favorable if the set Uad could

somehow be made larger. In the following we use a transformation to enlarge the set Uad.

Let Ω = [0, T ]× [−K, K] and C(Ω) be the space of all real-valued continuous functions

on Ω. For each admissible control u(·) ∈ Uad, we correspond a linear continuous functional

Λ as follows:

Λ : F −→
∫ T

0

F(t, u(t))dt, ∀F ∈ C(Ω). (10)

Some aspects of this mapping are useful; it is well defined and positive.

Proposition 3.1 Transformation u → Λ of an admissible control in Uad into the linear

mapping Λ defined in (10) is an injection.

Proof. Similar to Proposition 4.1 in [7]. 2

Thus, solving (8)-(9) can be equivalently reformulated as find Λ in functional space

C∗(Ω), (C∗ is the dual space), such that

minimize Λ(1), (11)

subject to

Λ(ϕn) = an, n = 1, 2, · · · . (12)

By Riesz representation theorem [20], there exists a unique positive Radon representing

the measure µ on Ω such that

Λ(F ) =
∫

Ω

Fdµ ≡ µ(F ), ∀F ∈ C(Ω). (13)
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These measures µ are required to have certain properties which are abstracted from the

definition of admissible controls. First, from (13)

|µ(F )| ≤ T sup
Ω
|F (t, u(t)|,

hence

µ(1) ≤ T.

From (12) and (13), we see that the measures µ satisfy

µ(ϕn) = an, n = 1, 2, · · · .

Next, suppose that θ ∈ C(Ω) does not depend on u, i.e.

θ(t, u1) = θ(t, u2),

for all t ∈ [0, T ] and u1, u2 ∈ [−K, K], where u1 6= u2. Then the measures µ must satisfy

∫

Ω

θdµ =
∫ T

0

θ(t, u)dt = αθ,

where u is an arbitrary number in the set [−K, K], and αθ is the Lebesgue integral of θ(·, u)

over [0, T ].

Let M+(Ω) be the set of all positive Radon measures on Ω. We topologize the space

M+(Ω) by the weak*-topology and define the set Q as a subset of M+(Ω) as follows

Q = S1 ∩ S2 ∩ S3,

where

S1 = {µ ∈ M+(Ω) : µ(1) ≤ T},
S2 = {µ ∈ M+(Ω) : µ(ϕn) = an, n = 1, 2, . . .},
S3 = {µ ∈ M+(Ω) : µ(θ) = αθ, θ ∈ C(Ω) independent of u}.

So one may change the optimization problem (11)-(12) in functional space to the following

optimization problem in measure space:

minimize I(µ) =
∫

Ω

dµ ≡ µ(1) (14)

subject to

µ ∈ Q. (15)

Theorem 3.2 The set Q is compact in M+(Ω).
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Proof. The set S1 is compact and the set S2 can be written as

S2 =
∞⋂

n=1

{µ ∈M+(Ω) : µ(ϕn) = an} =
∞⋂

n=1

Mn,

where each Mn = {µ ∈M+(Ω) : µ(ϕn) = an} is closed, because it is the inverse image of a

closed set on the real line, the set {an}, under a continuous map. By a similar argument, it

is easy to show that S3 is closed. Thus Q is a closed subset of the compact set S1, and then

Q is compact. 2

Proposition 3.3 The measure-theoretical control problem (14)-(15) attains its mini-

mum at a measure µ∗ ∈ Q.

Proof. The proof is clear; since µ is a continuous linear functional and Q is a compact set.

2

4. Approximation of the optimal control by a piecewise-

constant control

Let Q1 be the space of all Radon measures in Ω corresponding to a piecewise constant

admissible control u(·). By a theorem of Ghoulia-Houri [11], Q1 is dense in S1 ∩S2. A basis

of closed neighborhoods in the weak*-topology is given by sets of the form:

{µ : |µ(Hn)| ≤ ε, n = 1, 2, ..., 2k + 1},

where where k is an integer, ε ≥ 0 and Hn ∈ C(Ω), n = 1, 2, ..., 2k + 1. It is therefor

possible that to find a measure µu, corresponding to a piecewise control u, in any weak*-

neighborhood of µ∗ (the minimizing measure of Proposition 3.3). In particular, if we choose

H1 = 1,H2 = ϕ1, H3 = ϕ2, ..., H2k+1 = ϕ2k;

a piecewise constant control uk(·) can be found such that

|
∫ T

0

dt− µ∗(1)| ≤ ε,

|
∫ T

0

ϕn(t, uk)dt− an| ≤ ε, n = 1, 2, ..., 2k.

Therefor, by using the piecewise constant control uk(·), we can get within ε of the minimum

value µ∗(1).

Let Pk(x, T ) and Ptk
(x, T ) be the final sate and its derivative attained by the control

uk(·). We can show that if ε is chosen small enough, and k large enough, then ||Pk(x, T )−
F (x)||22 and ||Ptk

(x, T )−G(x)||22 can be made as small as desired.
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Proposition 4.1 Given δ ≥ 0, we may choose ε > 0 and k = k(ε, δ) such that
∫

ω

(Pk(x, T )− F (x))2 dx ≤ δ,

∫

ω

(Ptk
(x, T )−G(x))2 dx ≤ δ.

Proof. Similar to Proposition VIII.2 in [19]. 2

In the next sections, we shall establish a method for estimating numerically trajectories

which approximate the action of the optimal measures.

5. Approximation to the optimal measure

In this section, we obtain an approximation to the optimal measure µ∗ satisfying in (14)-(15).

It is clear that the measure theoretical problem (14)-(15), can be written in the following

form

minimize I(µ) =
∫

Ω

dµ ≡ µ(1) (16)

subject to :




µ(ϕn) = an, n = 1, 2, . . . ,

µ(1) ≤ T,

µ(θ) = αθ, θ ∈ C(Ω) independent of u.

(17)

The minimizing problem of (16)-(17) is an infinite-dimensional LP problem and we are

mainly interested in approximating it. It is possible to approximate the nearly piecewise

constant optimal control function of the problem (16)-(17) by the solution of a finite dimen-

sional LP of sufficiently large dimension.

First we consider the minimization of (16) not only over the set Q, but also over a subset

of it defined by requiring that only a finite number of constraints (17) be satisfied. This will

be achieved by choosing countable sets of functions whose linear combinations are dense in

the appropriate spaces, and then selecting a finite number of them.

Proposition 5.1 Let Q(M1,M2) be a subset of M+(Ω) consisting of all measures which

satisfy 



µ(ϕn) = an, n = 1, 2, . . . , M1

µ(1) ≤ T,

µ(θk) = αθk
, k = 1, 2, . . . ,M2.

As M1 and M2 tend to infinity, T (M1,M2) = infQ(M1,M2) µ(1) tends to T = infQ µ(1).

Proof. The proof is similar to Proposition 2 in [8]. 2
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This is the first stage of the approximation. As the second stage, from the Theorem (A.5)

of [19], we can characterize a measure, say µ∗, in the set Q(M1,M2) at which the function

µ → µ(1) attains its minimum. Proposition 5.2 follows from a result of Rosenbloom [18].

Proposition 5.2 The measure µ∗ in the set Q(M1,M2) at which the function µ → µ(1)

attains its minimum has the following form

µ∗ =
M1+M2∑

j=1

β∗j δ(z∗j ) (18)

with z∗j ∈ Ω and βj ≥ 0, j=1,2,· · · ,M1 + M2. Here δΩ(z∗) is unitary atomic measure

concentrated at z∗ ∈ Ω, characterized by δ(z∗)(F ) = F (z∗), where F ∈ C(Ω).

Based on (18), the measure theoretical optimization problem (16)-(17) is equivalent to

the following nonlinear optimization problem:

minimize
M1+M2∑

j=1

β∗j (19)

subject to
M1+M2∑

j=1

β∗j ϕn(z∗j ) = an, n = 1, · · · ,M1, (20)

M1+M2∑

j=1

β∗j θk(z∗j ) = αθk
, k = 1, · · · ,M2, (21)

M1+M2∑

j=1

β∗j ≤ T. (22)

β∗j ≥ 0, j = 1, 2, . . . , M1 + M2, (23)

where the unknowns are the coefficients β∗j , supports z∗j , j = 1, 2, . . . , N, and T. It would be

computationally convenient if we could minimize the function µ → µ(1) only with respect

to the coefficients β∗j , j = 1, 2, . . . , N, and T, which leads to a finite-dimensional nonlinear

programming problem. However, we do not know the supports of the optimal measure. The

answer lies in a meaningful approximation of this support, by introducing a dense subset in

Ω.

Proposition 5.3 Let σ be a countable dense subset of Ω. Given ε > 0, a measure µ̄ ∈
M+(Ω) can be found such that

|(µ∗ − µ̄)(1)| ≤ ε,

|(µ∗ − µ̄)(ϕn)| ≤ ε, (n = 1, 2, . . . , M1),

|(µ∗ − µ̄)(θk)| ≤ ε, (k = 1, 2, . . . , M2),
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the measure µ̄ has the form

µ̄ =
M1+M2∑

j=1

β∗j δ(zj), (24)

where the coefficients of β∗j are the same as in the optimal measure (18) and zj ∈ σ.

Proof. See the proof of Proposition III.3 in [19]. 2

Finally, the above results enable us to approximate the problem via the finite dimensional

nonlinear programming problem:

minimize
N∑

j=1

βj (25)

subject to

N∑

j=1

βjϕn(zj) = an, n = 1, · · · ,M1, (26)

N∑

j=1

βjθk(zj) = αθk
, k = 1, · · · ,M2, (27)

N+1∑

j=1

βj = T. (28)

βj ≥ 0, j = 1, 2, . . . , N + 1, (29)

where N >> M1 + M2 and zj , j = 1, ...N are fixed in σ. It is to be noted that we added a

slack variable βN+1 for obtaining equality in (22). In the problem (25)-(29), Ω is partitioned

into N subregions Ω1, Ω2, ..., ΩN where Ω =
⋃N

j=1 Ωj and zj is chosen in Ωj . To this means,

assume that [0, T ] is divided to m1 portion and U = [−K, K] to m2 portion, that is N =

m1m2. As the end part of [0, T ] is unknown, we divide [0, T1] into m1−1 portion and [T1, T ]

is the rest partition. On the other hand, functions sin(λkT ) and cos(λkT ) appearing the

right-hand side in (26) can be approximated by the Taylor series in a neighborhood of T−T1

as follows:

sin(λkT ) = sin(λk(T − T1 + T1)) =

sin(λk(T − T1)) cos(λkT1) + cos(λk(T − T1)) sin(λkT1) =
(
λk(T − T1) + O (T − T1)

3
)

cos(λkT1) + cos(λk(T − T1)) sin(λkT1),

and

cos(λkT ) = cos(λk(T − T1 + T1)) =

(
1 + O(T − T1)2

)
cos(λkT1)− sin(λk(T − T1)) sin(λkT1),
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where |T − T1| ≈ 0. Then

sin(λkT ) ≈ λk(T − T1) cos(λkT1) + sin(λkT1),

cos(λkT ) ≈ cos(λkT1)− λk(T − T1) sin(λkT1).

In application, the functions θk in (27) are chosen as piecewise constant. Let us define

θk(t, u) =





1 if t ∈ Jk,

0 otherwise,
(30)

where

Jk = [
(k − 1)T1

m1 − 1
,

kT1

m1 − 1
], k = 1, 2, . . . , m1 − 1,

Jm1 = [T1, T ].

In the right-hand side of (27), αθk
is the integral of θk(t, u) on [0, T ]; so by (30) we have

αθk
=





T1
m1−1 s = 1, ..., m1 − 1,

T − T1 s = m1.

From the above relations and expanding (27), we have

m2∑

j=1

βj =
T1

m1 − 1
,

2m2∑

j=m2+1

βj =
T1

m1 − 1
,

.

.

.
(m1−1)m2∑

j=(m1−2)m2+1

βj =
T1

m1 − 1
,

m1m2∑

j=(m1−1)m2+1

βj = T − T1.

Adding the above equalities leads to

N∑

j=1

βj = T. (31)

Comparing (28) and (31) guarantees that βN+1 = 0.

From the above analysis, the nonlinear programming problem (25)-(29) can be converted
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to the following LP problem





minimize
∑N

j=1 βj

subject to
∑N

j=0 βj sin(λktj)uj − λk

bk
(λkFk sin(λkT1) + Gk cos(λkT1))T =

1
bk

(−λk[Fk + T1Gk] cos(λkT1) + [Gk − λ2
kT1Fk] sin(λkT1) + λkQ0k

)

k = 1, · · · , M1
2 ,

∑N
j=0 βj cos(λktj)uj − λk

bk
(λkFk cos(λkT1)−Gk sin(λkT1)) T =

1
bk

(
λk[Fk + T1Gk] sin(λkT1) + [Gk − λ2

kT1Fk] cos(λkT1)−Q1k

)

k = 1, · · · , M1
2 ,

∑im2
j=(i−1)m2+1 βj = T1

m1−1 , i = 1, 2, · · · ,m1 − 1,

∑N
j=(m1−1)m2+1 βj − T = −T1,

T > 0, βj ≥ 0, j = 1, 2, · · · , N,

(32)

where m1 = M2.

In the next section we show how to construct the piecewise-constant optimal control u(.)

and the optimal time T by using the problem (25)-(29).

6. Calculating the approximated optimal pair (u(.), T )

In this section, a combined algorithm is derived to find the best lower bound for optimal

time T, then a piecewise-constant control related to T is constructed such that the numerical

errors




E1 = ‖P (x, T )− F (x)‖22 =
∫ L1

0
(P (x, T )− F (x))2 dx, x ∈ ω,

E2 = ‖Pt(x, T )−G(x)‖22 =
∫ L1

0
(Pt(x, T )−G(x))2 dx, x ∈ ω,

(33)

tend to zero.

To solve the problem of choosing the lower bound T1 in LP (32), we use a search al-

gorithm which is an iterative method to find the best choice for this lower bound and is

proposed in [13]. In this algorithm we follow a routine golden section method [10], where

the function evaluation T1 → T (T1) is done.

Algorithm 6.1

First let I = [T1, T2] where T1 = 0 and T2 is an upper bound for T. Choose a penalty

M >> T2.
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Step 1: Let T 1 = T1 + 0.382(T2 − T1) and T 2 = T1 + 0.618(T2 − T1) and solve the

corresponding LP to find T (T 1) and T (T 2). The penalty M is assigned to T (T 1) or T (T 2)

if no feasible solution there exists for the corresponding LP problem.

Step 2: If T (T 1) > T (T 2); then set T1 = T 1 and T2 = T2; else if T (T 1) < T (T 2) set

T1 = T1 and T2 = T 2.

Step 3: If the length of the interval I = [T1, T2] is small enough, then stop with T1+T2
2

as the minimum value for T1; else go to Step 1.

Now we explain construction of a nearly optimal control from the LP solution. By using

of a manner which is given in [13], a piecewise-constant optimal control function can be

constructed by considering

tk =
∑

j≤k

βj ,

such that

u(t) ≈ uk, t ∈ Ik = [tk−1, tk), (34)

where [0, T ] =
⋃M1+M2

k=1 Ik. It is clear that the optimal control u(.) in (34) can be written as

u(t) =
M1+M2∑

j=1

ujχIj (t),

where χIj is the characteristic function of the set Ij . Thus the solution of the problem
(1)-(4) in the final minimum time T can be written in the following form:

P (x, T )

=
∞∑

n=1

(
Q0n cos(λnt) +

1

λn
Q1n sin(λnt) +

bn

λn

∫ T

0
sin(λn(t− τ))u(τ)dτ

)
en(x)

=
∞∑

n=1


Q0n cos(λnT ) +

1

λn
Q1n sin(λnT ) +

bn

λn

∫ T

0
sin(λn(T − τ))

M1+M2∑

j=1

ujχIj
(τ)dτ


 en(x)

=
∞∑

n=1


Q0n cos(λnT ) +

1

λn
Q1n sin(λnT ) +

bn

λn

M1+M2∑

j=1

uj

∫ τj

τj−1

sin(λn(T − τ))dτ


 en(x)

=
∞∑

n=1


Q0n cos(λnT ) +

1

λn
Q1n sin(λnT ) +

bn

λ2
n

M1+M2∑

j=1

uj cos(λn(T − τj))− cos(λn(T − τj−1))


 en(x).

Furthermore

Pt(x, T )

=
∞∑

n=1

(
−λnQ0n sin(λnT ) + Q1n cos(λnT ) + bn

∫ T

0
cos(λn(T − t))u(t)dt

)
en(x)

=
∞∑

n=1


−λnQ0n sin(λnT ) + Q1n cos(λnT ) + bn

∫ T

0
cos(λn(T − τ))

M1+M2∑

j=1

ujχIj
(τ)dτ


 en(x)

=
∞∑

n=1


−λnQ0n sin(λnT ) + Q1n cos(λnT ) + bn

M1+M2∑

j=1

uj

∫ τj

τj−1

cos(λn(T − τ))dτ


 en(x)

=
∞∑

n=1


−λnQ0n sin(λnT ) + Q1n cos(λnT )− bn

λn

M1+M2∑

j=1

uj(sin(λn(T − τj))− sin(λn(T − τj−1))


 en(x).
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7. Time optimal control problem of the two-dimensional

wave equation

In this section we consider the following control problem:

Ptt(x, y, t) = c2(Pxx(x, y, t) + Pyy(x, y, t)) + u(t)b(x, y), (x, y, t) ∈ ω × [0, T ], (35)

P (x, y, 0) = Q0(x, y), (x, y) ∈ ω, (36)

Pt(x, y, 0) = Q1(x, y), (x, y) ∈ ω, (37)

P (x, y, t) = 0, (x, y, t) ∈ ∂ω × [0, T ], (38)

where ω = (0, L1) × (0, L2), is a bounded open subset of Eucleadian space IR2 with

boundary ∂ω. Minimum time control problem is to find a control function u(t) ∈ [−K,K],

almost everywhere for t ∈ [0, T ] and some suitable K > 0, such that puts the system

(35)-(38) in minimum time T into a stationary regime, i.e.

P (x, y, T ) = F (x, y), (x, y) ∈ ω, (39)

Pt(x, y, T ) = G(x, y), (x, y) ∈ ω, (40)

where the functions b(x, y), Q0(x, y), Q1(x, y), F (x, y) and G(x, y) are known in L2(ω).

Let assume {emn(x, y) = sin(mπx
L ) sin(nπy

H ), m, n = 1, 2, · · · } be a sequence of nor-

malized eigenfunctions corresponding to the sequence of eigenvalues {λmn = c[(mπ
L )2 +

(nπ
H )2]

1
2 , m, n = 1, 2, · · · }. Moreover, let the expansion of the functions b(·, ·), Q0(·, ·),

Q1(·, ·), F (·, ·) and G(·, ·) in terms of eigenfunctions be:





b(x, y) =
∑∞

m=1

∑∞
n=1 bmnemn(x, y),

Q0(x, y) =
∑∞

m=1

∑∞
n=1 Q0mnemn(x, y), Q1(x, y) =

∑∞
m=1

∑∞
n=1 Q1mnemn(x, y),

F (x, y) =
∑∞

m=1

∑∞
n=1 Fmnemn(x, y), G(x, y) =

∑∞
m=1

∑∞
n=1 Gmnemn(x, y).




P (x, y, t)

Pt(x, y, t)


 =




∑∞
m=1

∑∞
n=1[Q0mn cos(λmnt) + 1

λmn
Q1mn sin(λmnt)

+ bmn

λmn

∫ t

0
sin(λmn(t− τ))u(τ)dτ ]emn

∑∞
m=1

∑∞
n=1[−λmnQ0mn sin(λmnt) + Q1mn cos(λmnt)

+bmn

∫ t

0
cos(λmn(t− τ))u(τ)dτ ]emn




.
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Similarly the one dimensional case, the problem is transformed to find an optimal pair

(u(·), T ) satisfying:




∫ T

0
sin(λmn(T − τ))u(τ)dτ = λmn

bmn
[Fmn −Q0mn cos(λmnT )− 1

λmn
Q1mn sin(λmnT )],

∫ T

0
cos(λmn(T − τ))u(τ)dτ = 1

bmn
[Gmn + λmnQ0mn sin(λmnT )−Q1mn cos(λmnT )],m, n = 1, 2, · · · ,

and the numerical errors




E3 = ‖P (x, y, T )− F (x, y)‖22 =
∫ L1

0

∫ L2

0
(P (x, y, T )− F (x, y))2 dxdy, (x, y) ∈ ω,

E4 = ‖Pt(x, y, T )−G(x, y)‖22 =
∫ L1

0

∫ L2

0
(Pt(x, y, T )−G(x, y))2 dxdy, (x, y) ∈ ω,

tend to zero.

8. Simulation results

Example 8.1. Consider the wave equation with an internal control

Ptt(x, t) = Pxx(x, t) + 8xu(t), (x, t) ∈ (0, 1)× [0, T ],

P (x, 0) = x− x3, x ∈ (0, 1),

Pt(x, 0) = 0, x ∈ (0, 1),

P (0, t) = P (1, t) = 0, t ∈ [0, T ],

P (x, T ) = 0, x ∈ (0, 1),

Pt(x, T ) = 0, x ∈ (0, 1).

We choose M1 = 10,M2 = 20, m1 = m2 = 20 and K = 1. Thus Ω = [0, T ] × [−1, 1] is

divided to N = 400 equal subintervals. We select zp = (tp, up), p = 1, 2, ..., 400, as

p = i + m2(k − 1), (i, k = 1, 2, · · · , 20)





tp = T1
19 (k − 1) + 0.05,

up = −1 + 0.1(20− i).

We solve the problem (32) by Algorithm 6.1 with T2 = 15 as initial upper bound. The

best lower bound is found T1 = 1.382 and the nearly optimal time is T = 1.4749. The

optimal control function is represented in Figure 1.

We attain

P (x, 1.4749) = −0.0007 sin(πx) + 0.0008 sin(2πx)− 0.0001 sin(3πx) +

0.0002 sin(4πx) + 0.0001 sin(5πx),

Pt(x, 1.4749) = −0.0055 sin(πx)− 0.0027 sin(2πx) + 0.0017 sin(3πx)

−0.0002 sin(4πx) + +0.0021 sin(5πx).

The corresponding error functions are also given E1 = ‖P (x, 1.4749)− F (x)‖22 = 5.7978×
10−7 and E2 = ‖Pt(x, 1.4749) − G(x)‖22 = 2.2585 × 10−5. The diagram of the actual
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Figure 1: The piecewise-constant optimal control on t ∈ [0, 1.4749].
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Figure 2: (a) The broken line represents the initial state Q0(x) = x − x3, and the solid line

represents the desired final state P (x, 1.4749). (b) The desired final velocity Pt(x, 1.4749).

initial state Q0(x) and the approximating final state P (x, 1.4749) and the final velocity

Pt(x, 1.4749) are shown in Figure 2, respectively.

Example 8.2. Let in the problem (1)-(6), c = 1, ω = (0, π), Q0(x) = 0, Q1(x) = 0,

b(x) = π − x, F (x) = 1.5e1(x), G(x) = 1.6e1(x), where en(x) = sin(nx), n = 1, 2, · · · ,

and λn = n. In LP problem (32), we choose M1 = 2, M2 = 20, K = 2 and N = 400.

Implementing the corresponding LP model, the best lower bound and the optimal capture

time have been found (T1, T ) = (0.9, 0.9691). We have

P (x, 0.9691) = 1.5461 sin(x), E1 = 0.0033,

Pt(x, 0.9691) = 1.5657 sin(x), E2 = 0.0018.

The graph of control function u(.) is shown in Figures 3. The functions P (x, 0.9691), F (x),

Pt(x, 0.9691) and G(x) are also shown in Figure 4.
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Figure 3: The piecewise-constant optimal control on t ∈ [0, 0.9691].
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Figure 4: (a) The solid line represents the desired final state P (x, 0.9691), and the broken line repre-

sents the actual final state F (x). (b) The solid line represents the desired final velocity Pt(x, 0.9691),

and the broken line represents the actual final velocity G(x).

Example 8.3. Consider the two-dimensional inhomogeneous wave equation

Ptt(x, y, t) = Pxx(x, y, t) + Pyy(x, y, t) +
√

2xyu(t), (x, y, t) ∈ ω × [0, T ],

P (x, y, 0) = 0.2 sin(x) sin(y), (x, y) ∈ ω = (0, π)× (0, π),

Pt(x, y, 0) = 0, (x, y) ∈ ω,

P (x, y, t) = 0, (x, y, t) ∈ ∂ω × [0, T ],

P (x, y, T ) = Pt(x, y, T ) = 0, (x, y) ∈ ω.

In this example, we choose M1 = 4,M2 = 20, m1 = m2 = 20 and K = 1. So Ω = [0, T ]×
[−1, 1] is divided to N = 400 equal subintervals. We select zp = (tp, up), p = 1, 2, ..., 400, as

p = i + m2(k − 1), (i, k = 1, 2, · · · , 20)





tp = T1
19 (k − 1) + 0.05,

up = −1 + 2
19 (20− i).

T1 = 1.2324 is found as the best lower bound and T = 1.2867 as the optimal capture time.
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Figure 5: (a) The piecewise-constant optimal control on t ∈ [0, 1.2867]. (b) The desired final

velocity Pt(x, y, 1.2867).
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Figure 6: (a) The initial state Q0(x, y); (b) the desired final state P (x, y, 1.2867).

We get

P (x, y, 1.2867) = 0.0092 sin(x) sin(y) + 0.0005 sin(x) sin(2y),

Pt(x, y, 1.2867) = −0.0126 sin(x) sin(y) + 0.0077 sin(x) sin(2y).

The error functions are achieved E3 = 2.0971× 10−4 and E4 = 5.4149× 10−4. The optimal

control function and the approximating final velocity Pt(x, y, 1.2867) are shown in Figure

5. The initial state Q0(x, y) = 0.2 sin(x) sin(y) and the final state P (x, y, 1.2867) are also

represented in Figure 6.

Example 8.4. Let in the problem (35)-(40), c = 1, ω = (0, π) × (0, π), Q0(x, y) =

0, Q1(x, y) = 0, F (x, y) = 1.5e11(x, y), G(x, y) = 3.2e11(x, y), b(x, y) = 2xy, λmn =√
m2 + n2 m, n = 1, 2, · · · and emn(x, y) = sin(mx) sin(ny). We choose M1 = 2, M2 = 20,

K = 2, N = 400.

Performing the corresponding LP model, the optimal time is realized T = 0.5025. We
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Figure 7: The piecewise-constant optimal control on t ∈ [0, 0.5025].
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Figure 8: (a) The desired final state P (x, y, 0.5025). (b) The actual final state F (x, y).

attain

P (x, y, 0.5025) = 1.5527 sin(x) sin(y), E3 = 0.0068,

Pt(x, y, 0.5025) = 3.2532 sin(x) sin(y), E4 = 0.007.

The optimal control function u(·), P (x, y, 0.5025), F (x, y), Pt(x, y, 0.5025) and G(x, y) are

shown in Figures 7-9, respectively.

9. Conclusion

A numerical method for solving minimum-time optimal control problem of the inhomoge-

neous wave equation has been presented. The used approach in this problem is based on

some principles of measure theory, functional analysis and linear programming. In compar-

ison to the other methods, our approach has some facilities. For example, this method is

not iterative and it is self-starting. Furthermore, in this approach, the nonlinearity of the

constraints and objective function has not serious effects on the solution.
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Figure 9: (a) The desired final velocity Pt(x, y, 0.5025); (b) the actual final velocity G(x, y).
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