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A different view on using measure theoretical approach

for a class of optimal control problems
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Abstract

In this article we try to make some changes on the procedure of using mea-
sure theoretical approach for overcoming some problems that may occur when
using this approach to solve a class of optimal control problems. Since the
measure theoretical approach based on the deformation problem to a linear
programming, our changes decrease the number of variables of deformed prob-
lem. Numerical examples show the effect of changes on the performance of the
approach.
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1 Introduction

L. C. Young [27] unique ideas for finding generalized solution in the calculus of
variations formed the starting point for using some concepts of measure theory for
solving a wide range of problems in applied mathematics. Specially this idea per-
suaded Rubio to extend it to solve classical nonlinear optimal control problems [26].
Because of its flexibility, this method has been extended and improved by many
researches for solving a variety of problems; Miscellaneous problems in optimal con-
trol area [6, 7, 8, 20, 17], optimal control governed by distributed parameter systems
(2, 15, 18, 19, 16], optimal shape designing problems [13, 14, 11, 12, 21, 22, 23, 24],

optimal path planning problems [3] and even solving some problems in numerical
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computations [1, 4, 5, 9, 10].

The most important problem in implementing of the approach is related to the num-
ber of state and control variables. The approach based on the linear treatment of
nonlinear systems where by a metamorphosis in optimal control problem near opti-
mal solution can be obtained from a linear programming problem and the technology
and cost coefficients of this linear programming can be extracted from partitioning
of the sets, where the control and state functions take their values in them. For
clarify the discussed problem and proposing a appropriate approach we concentrate
on a linear control system as

n

a;(1)9 () = f(t,u), (1)

1=0

where f(-,-) is an arbitrary nonlinear function, with initial and final conditions as
2O (tg) = a3y, 2(ty) =2y, i=0,1,---,n—1, (2)

where a;(-), ¢ = 0,1,--- ,n are infinitely differentiable functions on time interval
T = [to,t¢] and

(i) u(-) is the control function which is a measurable function and takes its values
within the set U, a compact subset of R.

(i7) x(-) is the state function which is n times differentiable function and takes its

values within the compact set X C R.

We call the pair p = (z(-),u(-)), admissible pair if its components satisfy in the
above conditions (i) and (i7) and the equation (1). Let P be the set of all admissible
pairs and this set is not empty. For applying a measure theoretical approach to
obtain approximate optimal trajectory and control with cost function

ty
) Jo(t, (1), u(t))dt, (3)
governed by (1)-(2), where f, is continuous function on @ = 7 x X X U, we need

to convert the linear differential equation (1) to a first order linear system, thus by

defining the following functions
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we substitute the n order linear system (1) by the following first order linear system

with n equations and n 4+ 1 unknown functions as

zi(t) =z (t), i=1,2,--- ,n—1, n
z (t) = f(t,u) —ao(t)z1(t) — + — an—1()zn(t),

with boundary conditions

zi(to) = z;, xi(ty) = ol i= 1, ,n, (5)

70

and if we suppose that each state function z;(t) i =1,--- ,n, takes its values in the
bounded set X; ¢ =1,--- ,n, and the control function takes its values in the bounded
set U then the procedure of approach necessitate us to choose v;, i =1,2,--- ,n and
v nodes from the sets X; 7 = 1,--- ,n, and U, respectively, and finally, we must
solve a linear programming with 7yII?"_,; variables, where 7 is the number of nodes
in the time interval. We tend to make some changes in applying measure theory for

decreasing the number of variables in the linear programming.

2 Metamorphosis

We consider an equivalent weak form of equation (1) by multiplying this equation

by the test function ¢ as
> ¢t)aj(t)zV) () = p(8)f (t,u), Yo € C(T),
j=0
and by integrating the bilateral of the above equation on the interval T

> [T eiwa e = [ owrewa
j=0"to

to

where ¢;(t) := ¢(t)a;(t). Now integration by parts on the above equality concludes
that

—_

n oIz ) o ty o t
ST (=1)iel? ()20 D (@) + / {10 (adt = [ $() £t wt,
j=0i=0 to =0 to

and by rearrangment of the terms in the latest equality we obtain
ty
Gy(t,z,u)dt = oy, Y € C"(T), (6)

to
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where

and _
n j—1

g = (—1) (Y (t1) 20~V (t5) — o (t0)2 0= (1y)).
0

=0 i=
For each admissible pair p, we define the linear functional
tf
Ap: F — F(t,z(t),u(t))dt, F e C(Q), (7)
to
where this functional has some useful properties: It is well-defined, linear, positive,

and easily it can be shown that it is uniformly continuous.

Proposition 1 The transformation p — A, of an admissible pair p in P into the

linear mappings Ap defined by (7) is an injection.

Proof: See [26]. O
Whereas based on Riesz’s representation theorem, there exists a unique positive

Radon measure p on 2 such that
A (F) = /Q Fdu, VF e C(Q), (8)
therefore, minimizing functional (3) over P is equivalent to the minimization of
I = p(fo),

I(u) = /Q foddps = p(fs), (9)

over the set of measures p corresponding to the admissible pairs p, which satisfies

1(Gy) = ag. (10)

and we call this set as ). Since all the functions in (10) are linear with respect to the
measure (, this minimization problem is an infinite-dimensional linear programming
problem, where the required measure p is positive. We call the set of all positive
Radon measures on 2 as M1 () , and it can be shown that when the space M™(Q)
be topologized by the weak*-topology, @ is compact. Thus, the functional 7 : Q — R
defined by (9) is a linear continuous functional on the compact set @, and takes its

minimum value on ). It means that the measure-theoretical problem, which seeks
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minimum of the functional (9) over the subset M™({2), possesses a solution p*
in @ and, therefore, to find solution of the infinite-dimensional linear programming
problem (9)-(10) one can take an alternative way and construct a piecewise constant
function u(-) corresponds to the optimal measure p*.

But, firstly it is required to show that approximation of the solution of the prob-
lem (9)-(10) by a solution from a finite-dimensional linear program of sufficiently
large dimension is possible. For this purpose, we begin with considering the min-
imization problem (9) not over the whole compact set ) yet over a subset of it,
requiring that only a finite number of constraints in (10) be satisfied and suppose

that the set of test functions {¢,,, m € N} is as a basis of space C"(T).

Proposition 2 Let Q(M) be a subset of M () consists of all measures satisfying
(10), and
1(Goy,,) = g, m=1,2,---, M. (11)

If n(M) = infoary p(fo), and n = infg u(fs), then n(M) — n as M — oo.

Proof: The proof can be readily obtained from the proof of Proposition 2 in [3] by

a simple restriction.O

From the Theorem A.5 in [26], one can characterize a measure, say p*, in the set
Q(M) at which the function p — pu(fs) takes its minimum; It follows from a result
in [25] that says:

Proposition 3 The measure p* in the set Q(M) at which the function p — p(fs)

attains its minimum has the form

M
W= o), (12)
k=1

with z; € Q, and the coefficients o, > 0,k =1,2,--- , M.
Note that 6(z) is a unitary atomic measure, characterized by 6(z)(H) = H(z), where

H e CYQ) and z € Q.

So far, the measure theoretical optimization problem has been transformed into an
equivalent nonlinear optimization problem, in which the unknowns are coefficients o},
and supports {2}, k =1,2,--- , M. Solving this problem would become more con-

venient if we could minimize function p — p(fo) only with respect to the coefficients

313



A.H. Borzabadi

oy, k=1,2,--- M in (12), which is a linear programming problem. Therefore, as
the support of the optimal measure is not known yet, if we approximate this support

by introducing a dense set in €2, it would be a right step.

Proposition 4 Let w be a countable dense subset of Q. Given ¢ > 0, a measure

A € MT(Q) can be found such that

[(n" =N (fo)l <,

and

|(:u>k - A)(G¢m)| < €, M= 1a2a e aM'
The measure X has the form

M
A=) 0pd(z),
k=1

where the coefficients o, are the same as those of the optimal measure (12) and

2L € Ww.

Proof: Trivially, for each m =1,2,--- , M it can be deduced that,

M
(1" = NG| =1 6o, () — Gy, ()]
k=1

M
< max |Gy, (%) = G (2)] Y 0
s k=1

and for f(z) =

M M
(F) =D ks =0)(H) =) ok
k=1 k=1

Now since
ty
w(5) = [ gt = [t =y~ o),
Q to
thus
(" = NGy, | < (ty —to) max |Gy, (24) — G, (2k)]-
Since Gy,, € C1(Q), m =1,2,--- ,M and z;’s are in w, which is a dense set in ,

by choosing z;’s sufficiently near to z;’s such that

€

max |Gy (2;) — Gy, (2k)] < ————,
mk | ¢m( k) ¢m( k)| (tf — )

314



A different view on using measure theoretical approach

the second inequality in the proposition will be achieved. In a similar manner, the
other inequalities can be deduced as well and the proof would be complete.O

Yet, we showed that the infinite-dimensional linear programming (9) with restric-
tions (10) can be approximated by a finite-dimensional linear programming provided
that z;,7 =1,2,--- , M belong to w. For constructing set w as a dense subset of €2,
one can cover the set 2 with a grid defined by taking all points in Q as z; = (¢;, z;, u;)
and number them sequentially from 1 to M.

Following this manner and using the results derived from propositions 3-4, we

re-formulate the problem (9)-(10) as linear programming

M
Minimize Y opfo(2k), (13)
k=1

over the set o > 0,k =1,2,--- , M subject to:

M
ZQquﬁm(Zk) = oz¢,m, m = 1,2,- . ,M. (14)
k=1

The procedure of constructing piecewise constant control functions from the solu-
tion of linear programming problem (13)-(14) which approximate the action of the
optimal measure (12) is based on the analysis given in Chap.5 of [26]. Through this
method, it is only required to construct approximate control vector function u(-),
since the trajectory vector function can then be simply approximated numerically
corresponding to the solution of initial value problem (1)-(2). Subsequently, test
functions in the constraints (14) can be chosen following the approach described in
[3]. Now, we have to solve a linear programming problem with M = 7yv numbers
of variables where 7, v and v are the number of nodes in time interval, X and U,

respectively.

3 Numerical results

In this section by some examples we show the efficiency of performed changes.

Example 1. Consider the linear optimal control problem which is minimizing the

1 1
- / u?(t)dt,
2 Jo
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Figure 1: Exact and approximate optimal control and state functions in Example 1.

governed by the second order linear differential equation
7" + 1z =u, (15)

and boundary conditions

Usual implementation of measure theoretical approach needs to convert the above

linear differential equation to the first order linear system

) (t) = w2 (t),
zy(t) = —w2(t) + u(t),

and the boundary conditions
151(0) = :EQ(O) = 1, (L‘l(l) = :EQ(I) =0.

Choosing 20 nodes from the subsets of R, that the time variable, state functions
21(+) and z2(-) and control function u(-) take their values in them, give rise to a
linear programming with 16 x 10* variables. By multiplying test functions ¢(-) in

(15) and integration by parts we obtain an integral form equation as

1
/0 (¢"(t) — p(1))(t) + p(t)u(t))dt = $(0) — ¢'(0), Vo € C*([0,1]).

Now if we choose 20 nodes from the subsets of R that time variable, state and control
functions take their values in them, a linear programming with 8 x 10% variables as

(13)-(14) concludes the approximate optimal control and trajectory which have been
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Figure 2: Exact and approximate optimal control and state functions in Example 2.

shown in Fig.1 and compared to exact solutions.

Example 2. In this example we consider the problem of minimizing the functional
1
|ttty ey
0
with the linear differential equation
tz" + (1 —2t)z' +tx = (2+t)u?, 0<t<1, (16)

and the boundary conditions

The optimal state and control function for this problem are z°(t) = €?* and u°(t) =
e!, respectively. A linear programming with 8 x 10? variables as (13)-(14) gives
rise to the approximate optimal control and trajectory which have been shown and
compared to exact solutions in Fig.2.

Example 3. For better showing the efficiency of the given method we consider the

problem of minimizing the functional
1
/ (w(t) — sin)? + (u(t) — t)2dt
0
governed by the linear differential equation
2 + 2@ 422 = u?sint, (17)

and the boundary conditions
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Figure 3: Exact and approximate optimal control and state functions in Example 3.

z(1) =sinl, /(1) = cos1, 2P (1) = —sinl, z®(1) = —cos1

The exact optimal state and control functions for this problem are z°(t) = sint¢ and
u®(t) = t, respectively. Applying the usual measure theoretical approach needs to
covert the differential equation (17) to a linear system with four state functions.
Thus, choosing 20 nodes from the intervals of time, state and control functions give
rise to a linear programming with 20% variables. The discussed approach which is to
consider a metamorphosis on the problem of minimizing the above functional with
the equivalent integral form of equation (17) that can be obtained by multiplying

the test functions in (17) and integration by parts as

/ 1((¢<4> + ¢ + 2¢)z — pusint)dt = ag, Ve € C*([0,1])
0

where oy, = —26(1) cos 142¢(0) — ) (1) cos 1 — 2 (0) — () (1) sin 1, give rise to the
approximate optimal control and state functions that can be concluded from solving
a linear programming with 20% variables. The comparison of exact and approximate

control and state functions can be seen in Fig.3.

4 Conclusion

This article presents a different implementation of measure theoretical approach
for finding approximate solutions in a class of optimal control problems. By some
changes the number of variables in the linear programming which is obtained from
metamorphosis and successive approximations is decreased dramatically. Of course
there are many important issues that remain to be studied and which will be dealt

with in a sequel to the present paper.
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