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Abstract

This paper is concerned with an inverse problem involving an N -
dimensional heat equation having a non-constant thermal conductivity.
Using a unique continuation result due to Saut and Scheurer we prove a
uniqueness result.
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1 Introduction

Inverse problems arise have numerous applications in science and engineering.
This paper is concerned with an inverse heat conduction problem, where the un-
known thermal action on part of the boundary of the object is to be found based
on observations (measurements) of the temperature in the interior. Therefore,
the problem is classified as a boundary inverse problem. The heat equation con-
sidered describes the evolution of temperature in a medium Ω where the thermal
conductivity p is a function of spatial variables and time. More precisely, we
assume the domain of interest is divided into three regions Ω1, N(Γ, Γs) and
Ω2. The region N(Γ, Γs) is confined between two parallel hypersurfaces Γ and
Γs where the heat has been measured by sensors at each point only at one time.
The datum in this region is represented by a function g which satisfies a techni-
cal condition given by (12). In addition, we assume that the heat measurement
on the outer part of the boundary of Ω1 is known and that of Ω2 is unknown.
This paper is not concerned with the determination of the unknown boundary
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datum but rather with the uniqueness. The main tool in our the analysis is
a unique continuation theorem, recalled in Theorem 2 below, due to Saut and
Scheurer [6]. This unique continuation result, applicable to time-dependent
parabolic equations with variable coefficients which are not necessarily smooth,
generalizes work of Mizohata [4]. The paper is organized as follows. In section
two we give a precise description of the inverse problem and state the main
result of the paper, Theorem 1 . In section three we present some preliminary
lemmas. Finally in the last section we give the proof of Theorem 1.

2 Description of the inverse problem

In this section we give the description of the inverse problem.

2.1 Function spaces and the parabolic domain

Throughout the paper p > N , where N ∈ N denotes the dimension of the
spatial variables. This technical condition makes the continuous embedding
W 2,p(O) ↪→ C1,α(O), where O is a bounded smooth domain in RN , hold.
Suppose for an interval (a, b), X(a, b) denotes a function space consisting of
real valued functions defined on (a, b). Similarly, for a bounded domain O in
RN , Y (O) is defined. The space X(a, b;Y (O)) denotes the set of functions
u(x, t) such that u(·, t) ∈ Y (O) and u(x, ·) ∈ X(a, b). For x ∈ RN , we write
x = (x′, xN ) ∈ RN−1 × R, where x′ = (x1 · ··, xN−1). Let U be an open and
bounded domain in RN−1. Let Γ denote a smooth hypersurface defined on U ;
that is, Γ is the graph of a smooth function γ : U → R. For s > 0, let Γs denote
the hypersurface formed be translating Γ in the negative xN -direction, so

Γs = {(x′, γ(x′)− s) : x′ ∈ U}.

The space confined between Γ and Γs is designated by N(Γ, Γs), called the
sensor location. In other words

N(Γ, Γs) = {x ∈ RN : x′ ∈ U, xN ∈ [γ(x′)− s, γ(x′)]}.

Suppose that Ωj , j = 1, 2, are two smooth bounded and open domains in RN ;
that is, Ωj are smooth N -dimensional compact submanifolds in RN . We assume
the following conditions are satisfied:
(ω1) Ω1 ∩N(Γ, Γs) = Γ.
(ω2) Ω2 ∩N(Γ, Γs) = Γs.
Here overline denotes the closure. We set Ω = int(Ω1 ∪ Ω2 ∪ N(Γ, Γs)), where
int(·) denotes the interior of a set. Given T > 0, we set ΩT = Ω × (0, T ), the
parabolic domain. Next we consider a smooth function g : N(Γ,Γs) → [0, T ]
which satisfies the following conditions:
(g1) g−1(0) = Γ and g−1(T ) = Γs.
(g2) The graph of g has no flat sections; that is, sets of the form g−1(c), where
c ∈ [0, T ], have N -dimensional Lebesgue measure zero.
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(g3) For any t ∈ [0, T ], the weak divergence theorem is applicable on the sets
int(Ω1 ∪ g−1[0, t]) and int(Ω2 ∪ g−1[t, T ]).
(g4) For every t ∈ [0, T ), g−1[0, t] is connected.
(g5) The distribution function of g, denoted λg, is continuously differentiable.
Here

λg(β) = µN ({x ∈ N(Γ,Γs) : g(x) ≥ β}),

where µN denotes the N -dimensional Lebesgue measure.
(g6) g satisfies the inequality (12), see the section 3.

2.2 The inverse problem

The notation introduced in the previous subsection are valid here as well.
Let us begin by considering a function p ∈ C1(ΩT ) satisfying

0 < pm ≤ p ≤ pM < ∞, (1)

where pm and pM are constants. We denote by L(·) the heat operator ∂
∂t (·) −

∇ · (p(x, t)∇(·)).

Definition. We say u ∈ H1(0, T ;W 2,p(Ω)) is a solution of Lw = 0, in S ⊆ ΩT ,
provided Lu = 0, almost everywhere in S.

We are now in position to state the inverse problem. Let us consider the
following problem denoted (IP ):





Lw = 0, in ΩT

w(x, 0) = f(x), x ∈ Ω
w|g(N(Γ,Γs)) = h1(x, t), (x, t) ∈ graph(g)
w(x, t) = h2(x, t), (x, t) ∈ (∂(Ω1 ∪N(Γ, Γs)) \ Γs)× [0, T )
w(x, t) = ψ(x, t), (x, t) ∈ ∂Ω2 \ Γ× [0, T ),

wheref and hj , j = 1, 2, are given smooth functions; however u and ψ are un-
known. Therefore (IP ) is an inverse problem. In the following definition we
present the precise meaning of a solution to (IP ).

Definition. The pair (u, ψ) ∈ H1(0, T ; W 2,p(Ω)) × C(∂Ω2 \ Γs × (0, T )) is
said to be a solution of (IP ) provided
(H1) u is a solution of Lw = 0, in ΩT .
(H2) (u, ψ) satisfies the remaining equations in (IP ) in the sense of traces.

We are now in position to state the main result of the paper.

Theorem 1 The inverse problem (IP ) has at most one solution.
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3 Preliminaries

In this section we state and prove lemmas that are needed to obtain the main
result. We begin by a function u ∈ H1(0, T ; W 2,p(Ω)) and set

η(t) =
∫

Ω1∪g−1([0,t])

u2(x, t) dx.

We assume u is a solution to Lu = 0, in Ω1
T . In addition we suppose

u(x, 0) = 0, for every x ∈ Ω1, and u(x, t) = 0, whenever (x, t) ∈ ∂Ω1
T . We claim

that under certain technical condition, to be given later, it follows that u ≡ 0,
in Ω1

T . To prove this result we proceed as follows. Since u ∈ H1(0, T ; W 2,p(Ω)),
we infer, using standard embedding theorems that u(., t) ∈ C1,ν(Ω), for every
t ∈ [0, T ]; also, u(x, .) ∈ C[0, T ], for every x ∈ Ω. Therefore it follows that η is
a continuous function on [0, T ]. Denote the upper right derivative of η by D+η;
that is,

D+η(t) = lim sup
h→0+

η(t + h)− η(t)
h

.

Suppose for the moment that

D+η(t) ≤ 0. (2)

Thus since η is continuous, it is a standard result that η is non-increasing on
[0, T ]. This in particular implies that η(t) ≤ η(0) = 0. So since η is non-
negative it follows that η ≡ 0, hence u ≡ 0, as claimed. Now we focus on
proving (2). Let us write η = η1 + η2, where η1(t) =

∫
Ω1

u2(x, t) dx and
η2(t) =

∫
g−1[0,t]

u2(x, t) dx. Note that D+η(t) ≤ D+η1(t) + D+η2(t); moreover,
D+η1(t) = η′1(t) = 2

∫
Ω1

uut dx. We now find a suitable upper bound for D+η2

. Fix h > 0. Then
η2(t+h)−η2(t)

h = 1
h

∫
g−1[0,t+h]

(u2(x, t + h)− u2(x, t)) dx

+ 1
h

∫
g−1(t,t+h]

u2(x, t) dx
(3)

The second term on the RHS of (3) can be estimated as follows

1
h

∫

g−1(t,t+h]

u2(x, t) dx ≤ ‖u(., t)‖2L∞(g−1(t,t+h])

µN (g−1(t, t + h])
h

. (4)

Note that
‖u(., t)‖2L∞(g−1(t,t+h]) ≤ C ‖∇u(., t)‖2L2(g−1(t,t+h]) , (5)

where C is a constant independent of t. Observe that

µN (g−1(t, t + h]) = λg(t)− λg(t + h). (6)

Therefore incorporating (5) and (6) into (4) we derive

1
h

∫

g−1(t,t+h]

u2(x, t) dx ≤ C
λg(t)− λg(t + h)

h
‖∇u(., t)‖2L2(g−1(t,t+h]) . (7)
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Therefore (7) and (3) yield

η2(t+h)−η2(t)
h ≤ 1

h

∫
g−1[0,t+h]

(u2(x, t + h)− u2(x, t)) dx

+ C
λg(t)−λg(t+h)

h ‖∇u(., t)‖2L2(g−1(t,t+h])

(8)

Hence

D+η2(t) ≤ 2
∫

g−1[0,t]

uut dx− Cλ′g(t) ‖∇u(., t)‖2L2(g−1[0,t]) .

Thus

D+η(t) ≤ 2
∫

Ω1∪g−1[0,t]

uut dx− Cλ′g(t) ‖∇u(., t)‖2L2(g−1[0,t]) . (9)

On the other hand multiplying the differential equation by u and integrating
over the set Ω1 ∪ g−1[0, t] yields

∫

Ω1∪g−1[0,t]

uut dx =
∫

Ω1∪g−1[0,t]

u∇.(p∇u) dx. (10)

Hence by applying the weak divergence theorem, see for example [1], to the
right hand side of (10) we will get

∫

Ω1∪g−1[0,t]

uut dx = −
∫

Ω1∪g−1[0,t]

p |∇u|2 dx. (11)

Thus from (11) and (9) we find

D+η(t) ≤ −2
∫

Ω1∪g−1[0,t]

p |∇u|2 dx− Cλ′g(t) ‖∇u(., t)‖2L2(g−1[0,t]) .

Now recalling the condition p ≥ pm, it follows that

D+η(t) ≤ (−2pm − Cλ′g(t)) ‖∇u(., t)‖2L2(Ω1∪g−1[0,t]) .

Therefore if we assume
−Cλ′g(t) ≤ 2pm, (12)

then D+η(t) ≤ 0, as desired. We can now gather the above discussion into the
following

Lemma 1 Suppose u ∈ H1(0, T ; W 2,p(Ω)) is a solution of the following problem

Lu = 0, in Ω1
T

u(x, 0) = 0, x ∈ Ω1

u(x, t) = 0, (x, t) ∈ ∂Ω1
T .

In addition, suppose condition (12) holds. Then u ≡ 0, in Ω1
T .
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For the next lemma we use the notation Ω̃ = int(Ω2 ∪N(Γ, Γs)).

Lemma 2 Let T > 0 and u ∈ H1(0, T ; W 2,p(Ω)) is a solution of

Lu = 0, in Ω2
T . (13)

Suppose also that
u(x, 0) = 0, x ∈ Ω̃ (14)

and
u(x, g(x)) = 0,

∂u

∂ν
(x, g(x)) = 0, x ∈ N(Γ, Γs), (15)

where for x ∈ N(Γ,Γs), ν(x) denotes the unit normal to the graph of g at the
point (x, g(x)) pointing inside Ω1

T . Set

w(x, t) =
{

u(x, t), (x, t) ∈ Ω2
T

0, (x, t) ∈ Ω̃× (−T, T ) \ Ω2
T .

Then w is a distributional solution of Lw = 0, in Ω̃× (−T, T ); that is, for every
ξ ∈ C∞0 (Ω̃× (−T, T )) the following integral equation holds

∫

Ω̃×(−T,T )

w(ξt +∇ · (p∇ξ))dxdt = 0. (16)

Proof. From the definition of w it is clear that in order to show (16) we need
only to show ∫

Ω2
T

u(ξt +∇ · (p∇ξ))dxdt = 0. (17)

Let us first consider
∫
Ω2

T
uξtdxdt. From the Cavalieri’s principle we have

∫

Ω2
T

uξtdxdt =
∫

Ω2∪g−1[0,t]

∫ T

0

uξtdtdx.

From (14) and the fact that ξ has compact support it follows that
∫ T

0
uξtdt =

− ∫ T

0
utξdt. Therefore

∫

Ω2
T

uξtdxdt = −
∫

Ω2
T

utξdxdt. (18)

Next we consider
∫
Ω2

T
u∇·(p∇ξ)dxdt. Writing this integral as

∫ T

0

∫
Ω2∪g−1[0,t]

u∇·
(p∇ξ)dxdt, we proceed by applying the weak divergence theorem to the inner
integral. Thus we fix t ∈ (0, T ), hence
∫

Ω2∪g−1[0,t]

u∇ · (p∇ξ)dx =
∫

∂(Ω2∪g−1[0,t])

pu
∂ξ

∂ν
dσ(x)−

∫

Ω2∪g−1[0,t]

p∇u · ∇ξdx.

(19)
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From (15) we infer that the first integral in the RHS of (19) vanishes. Once
again an application of the weak divergence theorem yields
∫

Ω2∪g−1[0,t]

p∇u · ∇ξdx =
∫

∂(Ω2∪g−1[0,t])

pξ
∂u

∂ν
dσ(x)−

∫

Ω2∪g−1[0,t]

ξ∇ · (p∇u)dx.

Therefore from the boundary condition (15) and (19) we derive
∫

Ω2∪g−1[0,t]

u∇ · (p∇ξ)dx =
∫

Ω2∪g−1[0,t]

ξ∇ · (p∇u)dx.

Whence ∫

Ω2
T

u∇ · (p∇ξ)dxdt =
∫

Ω2
T

ξ∇ · (p∇u)dxdt. (20)

We obtain (17) from (18) and (20). ♦
The main tool in proving Theorem 1 is a unique continuation theorem, ap-

plied to a second order parabolic equation, due to Saut and Scheurer [6, Theo-
rem 1.1]. The proof of Theorem 1.1 in [6], which is based on the derivation of a
Carleman estimate which is reminiscent of the classical Carleman estimates for
second order elliptic operators [4], is rather long so the reader is referred to the
original paper for details. To state this result we need to give the definition of
the horizontal component of an open set following Nirenberg [5].

Definition. Let O denote a connected open set in RN × R. Suppose that
O1 is an open set contained in O. Then the horizontal component of O1, de-
noted hor(O1), is the union of all open segments t = constant in O which contain
a point of O1, hence

{hor(O1) = {(x, t) ∈ O : ∃x1, (x1, t) ∈ O1}.
We now state the unique continuation theorem in the framework of the present
paper.

Theorem 2 Let Q be a connected open set in RN and QT = Q× (−T, T ). Let
u ∈ L2(−T, T ;H2

loc(Q)) be a solution of Lw = 0. In addition, we assume that
u vanishes in an open set Q1 ⊆ Q. Then u vanishes in hor(Q1).

4 Proof of Theorem 1

To prove Theorem 1, let us assume (u1, ψ1) and (u2, ψ2) are solutions of (IP ).
Setting u = u1 − u2, we find that





Lu = 0, in Ω1
T

u(x, 0) = 0, x ∈ Ω1

u(x, t) = 0, (x, t) ∈ ∂Ω1
T .

Therefore, by Lemma 1, it follows that u ≡ 0, in Ω1
T . Note that u(·, t) ∈

W 2,p(Ω), so thanks to the embedding W 2,p(Ω) ↪→ C1,α(Ω), it follows that
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u(·, t) ∈ C1,α(Ω). Hence ∂u
∂ν (x, g(x)), x ∈ N(Ω,Ωs), where ν(x) is as in

Lemma 2, can be calculated in the ordinary sense. On the other hand since
u(x, g(x)) = 0, x ∈ N(Γ, Γs), we find that ∂u

∂ν (x, g(x)) = 0, x ∈ N(Γ, Γs). Thus
we can now apply Lemma 2 to deduce that w, as defined in Lemma 2, satisfies
Lw = 0, in Ω̃ × (−T, T ), in the sense of distributions. Whence by a standard
regularity theory, see for example [2], it follows that w ∈ H1(−T, T ;H2

loc(Ω)).
Finally, by applying the unique continuation, Theorem 2, we deduce w ≡ 0, in
Ω̃ × (0, T ). Hence u ≡ 0, in Ω2

T . This obviously completes the proof of the
theorem.
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