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Abstract

Our paper analyzes some new lines to advance on metric concepts, as
can be the so-called Information Distance, on sets, graphs and networks in
general. It will be very necessary to analyze the inner relationships with
some other fuzzy measures, giving place to very interesting applications.
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1 Introduction

Many aspects of Information Theory [3] are quickly evolving, and very inter-
esting new open problems appear. One of them is to provide our theoretical
construct with an e¢ cient distance measure, to be applied in di¤erent �elds of
Computer Science; in particular, when working on current research lines of Arti-
�cial Intelligence. As Joel Ratsaby recalls in its recent paper [13], this would be
essential in some �elds, such as Pattern Recognition, to �nd a numerical value
that represents the distance (or dissimilarity) between any two input patterns
of the domain. Ratsaby also insists in the necessity of a consistent distance,
which requires good information about the domain.
He introduces [13-15], after to a preliminary review on fundamental concepts,

such as Kolmogorov Complexity, Entropy and so on, a de�nition of distance:
for A and B sets,

� (A;B) = log10 (j(A [B) nAj jAj)

where j:j represents the cardinality of the corresponding set, which we prefer to
denote as card, or simply as c. Other more awkward symbols might be used,
like ].
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Note that we use base two logarithm, because it is more adequate for the
binary codi�cation. But in this case, it appears as decimal logarithm, modify-
ing the results according to the well known formula for transforming between
di¤erent logarithmic bases.
And the cardinality is applied on the set of elements of the union, A [ B;

not included in A; i.e. B \Ac:
Joel Ratsaby [13-15] comments that the value j(A [B) nAj measures the

additional description length (in bits) of an element in B; given knowledge of
the set A: He also says that A acts as �a partial dictionary", and that the part
of B that is not included in A requires log (j(A [B) nAj) bits of description.
From here, the aforementioned author propose as a new distance measure

the so-called set-information distance,

d (A; B) = max f� (A; B) ; � (B; A) ; 0g

But because the cardinality (A [B) n A and A will be a natural number,
supposing that they are non empty sets, it holds

log10 (j(A [B) nAj jAj) � log 1 = 0

This makes for us unnecessary to include a comparative zero de�ning the
precedent

d (A; B)

in the sense of Ratsaby paper.

Also we see that according the previous de�nitions, it may be

� (A; B) < 0

or

� (B; A) < 0

Is it really possible? For instance, we have

log10 (c (A \Bc) c (A)) = 10, c (A \Bc) c (A) = 10

and

log10 (c (A \Bc) c (A)) = 0, c (A \Bc) c (A) = 1

where both will be of the same cardinality, equal to one.

But

log10 (c (A \Bc) c (A)) < 0; for some A and B?
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Being impossible to take negative values for the function

y = log10 x

because its graph is asymptotical respect to the straight line y = 0, never
crossing the abscissa axis.
At most, it can take values that belongs to the real closed unit interval, [0; 1].
As e.g.

log10 (c (A \Bc) c (A)) = 1
n ; with n 2 N

i.e.

c (A \Bc) c (A) = 10 1
n > 0

In the limit, when n!1; it holds

log10 (c (A \Bc) c (A))! 0+

For these reasons, the null option in the bracket is unnecessary, when we
de�ne the �nal set-information distance.
And furthermore, it is more coherent and usual to suppose a logarithmic

base equal to 2, because the binary strings are codi�ed by sequences of 0�s and
1�s.

2 A new distance

Being interesting the introduction of such new measure proposed by Ratsaby
[13], we consider the possible change of some essential aspects. So, it appears
as convenient to introduce the following new distance measure.

Let A and B be two fuzzy sets. Then, the function de�ned by

�� (A; B) = log2 (c [A4B] c [A \B])

or

�� (B; A) = log2 (c [B4A] c [B \A])

But note that is will be equivalent to

�� (A; B) = log2 fc [(A nB) [ (B nA)] c [A \B]g =
= log2 f[c (A nB) + c (B nA)] c [A \B]g

Because the sets A n B and B n A are mutually disjoint, or if instead are
considered as events, they will be incompatible.

It is clear that the � function in the sense of Ratsaby is not symmetric, i.e.
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� (A; B) 6= � (B; A)

But this does not not occur in our case, in which

�� (A; B) = �� (B; A)

To show the precedent character non symmetric, we propose the following
example

Here, we have

c (A \Bc) = 2
c (A) = 4

which implies

� (A; B) = log2 8

Whereas

c (B \A) = 2
c (B) = 5

Thus,

� (B; A) = log2 10

Therefore, in general, � is a non symmetrical function

� (A; B) 6= � (B; A)
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Note that the symmetric di¤erence is indeed symmetrical,

A4B = B4A

and so

c (A4B) = c (B4A)

But in our de�nition �� (A; B) and �� (B; A) does not di¤ers in the last
factor, because

c (B \A) = c (A \B)

For these reasons, it will be reasonable to introduce the new distance as

d (A; B) = max f�� (A; B) ; �� (B; A)g = �� (A; B)

The following theorem holds:
Theorem. The function �� acting on a pair of sets, A and B; holds the

triangle inequality over the space of sets whose cardinality is at least two.
Previously to prove this theorem, we see an example.

Let A, B, C be sets such that

We have

c (A nB) = 3
c (B nA) = 5
c (A n C) = 3
c (C nA) = 6
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c (B n C) = 4
c (C nB) = 5
c (A \B) = 2
c (A \ C) = 2
c (B \ C) = 3

c (A \B \ C) = 1

So, we have

log2 (f3 + 6g 2) = log2 18 � log (f4 + 5g 3) + log2 (f3 + 5g 2) =
= log2 27 + log2 16

Proof.
As we know,

c [(A n C)] � c [(A nB)] + c [(B n C)]

And so,

c [(A n C) [ (C nA)] � c [(A nB) [ (B nA)] + c [(B n C) [ (C nB)]

Hence,

c [(A n C) [ (C nA)] c [A \ C] �
� fc [(A nB) [ (B nA)] c [A \B]g fc [(B n C) [ (C nB)] c [B \ C]g

Therefore,

max f�� (A; C) ; �� (C; A)g � max f�� (A; B) ; �� (B; A)g
+max f�� (B; C) ; �� (C; B)g

based in which

�� (A; C) � �� (A; B) + �� (B; C)

for every triple of sets, A, B and C.

Theorem. The aforementioned function, d, is a metric over the space of the
sets of cardinality at least two.

Proof.

Symmetry.

d (A;B) = max f�� (A; B) ; �� (B; A)g = max f�� (B; A) ; �� (A; B)g =
d (B; A)

Non-negativity.
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�� (A; B) � 0
and

�� (B; A) � 0

implies that

d (A; B) � 0

In particular,

d (A; B) = 0, A = B

When A 6= B; it holds

A4B 6= ?

and being disjoint sets, or incompatible events,

A \B 6= ?

Thus, either

�� (A; B) > 0

or equivalently,

�� (B; A) > 0

From either case, we obtain

d (A; B) > 0

I is very easy to show that the triangle inequality holds, in a similar way to
[8], with minor modi�cations.

3 Another di¤erent �distance" measure

Alternatively, if we de�ne the function through an expression as

�0 (A;B) � log2 (c [A4B] c [A])

and

�0 (B;A) � log2 (c [B4A] c [B])

both will be very di¤erent between them,

199



A. Garrido

�0 (B;A)

Note that in many cases, as they have distinct cardinality

c (A) 6= c (B)

the precedent values will be also di¤erent.
And not necessarily must consider non coincident sets to holds such equality.
Because taking two equipotent sets gives the same value for �0through both

ways; in this case,

�0 (B;A)

But in general,

�0 (B;A)

giving that �0 is not a metric.

It is not the case for the previously de�ned distances, as ��; or instead d:

4 Kolmogorov Complexity

This concept, of Kolmogorov Complexity (KC, in acronym), is also called Tur-
ing Complexity, Kolmogorov-Chaitin Complexity, or Algorithmic Complexity,
among other names [9].
It was introduced and developed with di¤erent motivation, and indepen-

dently, by Ray Solomono¤ [11, 12], Andrei N. Kolmogorov [8], and also by
Gregory Chaitin [4, 5].

Let s be a �nite binary string of arbitrary length, i.e. an element of the set
f0; 1g� : I.e. the function

K : f0; 1g� ! N

s 7! K (s)

is de�ned on objects represented by binary strings. The subsequent de�nition
will be extended to di¤erent types of objects, such as sets, numbers, functions
or distributions.
We denote the Kolmogorov Complexity of s by

K (s)
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It will be de�ned as the length of the shortest computer program that can
produce this string on the Universal Turing Machine (UTM), and then halt. Or
equivalently, it will be de�ned as the number of bits needed to encode s: Such
UTM is not a real computer, but an imaginary reference machine. But because
every Turing Machine may be implemented on every other one, the minimal
length of the program only depends of an additive constant, being independent
of the string considered.
An important result is that KC is not computable, because we cannot com-

pute the output of every program. And it is due to the impossibility to create
an algorithm which permits us predict of every program, if it will ever halt.
The KC can be also de�ned as the length of the string�s shortest description

in some �xed universal description language. It is equivalent to the previous
interpretation. I.e. the KC will be thought as the length of the shortest program
that print s, and then halts. This program may be in Java, LISP, or any other
di¤erent universalprogramming language. The Invariance Theorem indicates
that it does not matter which program we pick.

Therefore, the KC of any string cannot be too much larger than the length
of the string itself.

Another trascendental result says that among algorithms that decode strings
from their descriptions, there exists an optimal one.

5 Interpretation of such measures

Some distances are de�ned with the purpose to reach a measure of the dissimilar-
ity between any two strings, s and s0. We shown two of them. Both measures are
based on the Conditional Kolmogorov Complexity, K (s=s0), which to amount
to the length of the minimum size program that is needed to describe s; given
s0. And they are also based on Algorithmic Complexity.

Joel Ratsaby also developed a distance between strings based on Combina-
torial Complexity [13]. So, in the �rst place, we have

E (s; s0) = max fK (s=s0) ; K (s0=s)g

and in second place, a normalized version, by

D
�
s; s�0

�
= max

�
K
�
s=s�0; K

�
s�0
��
; K (s0=s; K (s))

	
As observed in [13-15], �the quality of clustering of data using the normalized

compression distance depends on certain heuristic choices". It would be a very
interesting remark to advance on the future research in the case of algoritmic
information distance.

About another aspect of our distance, we will consider that as it is based on
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A4B � (A�B) [ (B�A) = (A \Bc) [ (B \Ac) =
= (A [B)� (A \B)

So, it may be interpreted as set-conditional entropy of A given B, and alter-
natively, of B given A. Hence,

log2 (A�B) = log2 (A \Bc)
and

log2 (B�A) = log2 (B \Ac)

represents the additional description length (measured in bits) of an element in
B given knowledge of the set A; and the same respective concept in A given
the knowledge of B:

By a vision from an Information theoretical perspective, A will acts, in the
former case, as a "partial dictionary".
The part of B that is not included in A requires

log2 (A�B)

bits of description, whereas the second value

log2 (B�A)

re�ects the number of bits needed to descript the part of A not included in B:

Finally,we can conclude that two alternative de�nitions of information mea-
sure distincts are possible.
More concretely,

d (A; B) = max [log2 (c [A4B] c [A]) ; log2 (c [B4A] c [B])] =

= max [log2 (c [A4B]) + log2(c [A]) ; log2 (c [B4A]) + log2 c [B])]

and

d (A; B) = min [log2 (c [A4B] c [A]) ; log2 (c [B4A] c [B])] =

= min [log2 (c [A4B]) + log2(c [A]) ; log2 (c [B4A]) + log2 c [B])]

may be interesting to be explored from a theoretical viewpoint.
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6 Conclusions

Expressing by adequate formulae Information and Complexity in terms of pro-
gram size will be currently a very useful idea. In fact, the applications extend
to many di¤erent and promising �elds, as may be Logic, Probability Theory,
Physics, Theoretical Computer Science, and so on.
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