
AMO-Advanced Modeling and Optimization, Volume 12, Number 2, 2010

A Lagrangian Dual Spectral Projected Gradient Method for
Nonconvex Constrained Optimization 1

Jinhong Yua, Zhensheng Yub

a. College of Foreign Language, University of Shanghai for Science and
Technology, Shanghai, 200093, P.R.China

b. College of Science, University of Shanghai for Science and Technology,
Shanghai, 200093, P.R.China

Abstract. Motivated by the dual problem and the spectral projected gradient
method, we develop a Lagrangian dual spectral projected gradient method for
nonconvex constrained nonlinear programming problem. The equivalent between
the KKT point of the original problem and the projected gradient of the dual
problem is considered. At each iteration, we only need to make a projected
computation on a nonnegative constraint. Under certain conditions, the global
convergence is obtained and numerical tests are also given to show the efficiency
of the proposed method.
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1. Introduction

The spectral gradient method was originally proposed by Barzilai and Bor-
wein [4] and further analyzed by Raydan [18] for quadratic function. Since the
method requires little computational work and greatly speeds up the conver-
gence of gradient methods, hence it had attracted many researchers’ attention.
In 1997, Raydan [19] extended the spectral gradient method to unconstrained
optimization and proved its global convergence.

In 2000, by combining the projected gradient method and the nonmonotone
line search technique, Birgin, Mart́ınez and Raydan [6] extended the spectral
gradient method to convex constrained optimization. Since then, the method has
been intensively used to many kinds of convex constrained optimization include
bound constrained optimization, linear constrained optimization [1, 2, 3, 5, 7,
11, 20, 23, 25]. It has also been extended for solving non-differentiable convex
constrained problem by Crema, Loreto and Raydan [9] although no convergence
property was discussed. More recently, by combining the augmented lagrangian,
Ehrhardt, Ruggiero, Mart́ınez and Santos [13] extended the spectral projected
gradient method to partly convex constrained optimization in the form:

min f(x) s.t. ℎ(x) = 0, x ∈ Ω,

1 This work was supported by Innovation Program of Shanghai Municipal Education Com-

mission(No.10YZ99) and Shanghai Leading Discipline Project (No. S30501)
∗AMO-Advanced Modeling and Optimization. ISSN: 1841-4311

273



274 Jinhong Yu, Zhensheng Yu

where f(x) : Rn → R and ℎ : Rn → Rm, ℎ(x) = (ℎ1(x), ℎ2(x), ⋅ ⋅ ⋅ , ℎm(x))T

have continuous first derivative and the set Ω is convex. More detailed applica-
tions of the spectral gradient method can be found in the survey paper [8] and
references therein.

The aim of this paper is to extend the spectral gradient method to nonconvex
constrained optimization. For convenience, we only consider the problem with
inequality constraint in the form:

min f(x) s.t. ℎ(x) ≤ 0. (1)

Motivated by the work of Han and Mangasarian [16](see also[24]), we consider
the dual exact differentiable penalty function(a nonnegative constrained maxi-
mum problem) and develop a spectral projected gradient method for the dual
problem. The equivalent between the KKT point of the original problem and
the projected gradient of the dual problem is considered. At each iteration, we
only need to make a projected computation on a nonnegative constraints.

As mentioned in [6, 8, 12, 14, 23, 25], the spectral(projected) gradient direc-
tion may not be a descent direction, hence one often employ the nonmonotone
line search to obtain the iteration sequence. Moreover, the nonmonotone schemes
can improve convergence, in particular in the presence of a narrow curve valley,
and encouraging results have been reported with nonmonotone based algorithms
in [10, 15, 21, 22]. In a recent work, Zhang and Hager [26] have proposed a new
nonmonotone scheme which have been shown to eliminate some of the inher-
ent drawback of the traditional nonmonotone schemes and also computationally
more economic. Based on this reason, in this paper, we consider combining the
idea of by Zhang and Hager [26] with the spectral projected gradient method for
solving the constrained optimization (1). Throughout this paper, we use ⟨⋅, ⋅⟩ to
denote the inner product of two vectors.

The paper is organized as follows: In Section 2, we consider the dual problem
of problem (1) and establish the equivalent relationship between the KKT point
of problem (1) and the projected gradient of the dual problem. In Section 3, we
describe the algorithm and analyze its global convergence. The numerical tests
are given in Section 4 and we conclude the paper in Section 5.

2. Dual problem and Projected gradient

In this section, we consider the dual problem of (1) and establish the equiva-
lent relationship between the KKT point of problem (1) and the projected gra-
dient of the dual problem. Throughout this paper, we assume that the objective
function f(x) and the constraint functions ℎi(x) are twice continuously differ-
entiable and the feasible region ℱ = {§ ∈ ℛ∖∣⟨⟩(§) ≤ ′, ⟩ =∞,∈, ⋅ ⋅ ⋅ ,⇕} ∕= ∅.

Denote the lagrangian function of (1) by

L(x, u) = f(x) + ⟨u, ℎ(x)⟩, (2)

where u ∈ Rm is the lagrangian multiplier vector. By Wolfe dual theory, the
dual problem of (1) can be written as [24]:

min
x,u

F (x, u, �) = −L(x, u) +
1

2
�∥∇xL(x, u)∥2, s.t. u ≥ 0. (3)

where � > 0 is a penalty parameter, ∥ ⋅ ∥ is the Euclidean norm and ∇xL(x, u)
denotes the gradient of L(x, u) with respect to x, i.e.,

∇xL(x, u) = ∇f(x) +∇ℎ(x)u.

where ∇ℎ(x) ∈ Rn×m is the Jacobian matrix of ℎ(x).
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To study the relationship between problem (1) and (3), we first introduce the
definition of the projection. Denote Ω = Rn × Rm+ , for any z = (xT , uT )T ∈ Ω,

we define PΩ(z) as the orthogonal projection on Ω. i.e. PΩ(z) = (xT , uT+)T ,

where u+ = (max(0, u1),max(0, u2), ⋅ ⋅ ⋅ ,max(0, um))T . For convenience, we
write (x, u) = (xT , uT )T for any x ∈ Rn and u ∈ Rm.

The following lemma gives the Lipschitz continuity property of the projection
mapping:

Lemma 1. For any z1, z2 ∈ Ω, we have

∥PΩ(z1)− PΩ(z2)∥ ≤ ∥z1 − z2∥.

Suppose that at the ktℎ iteration, (xk, uk) is a KKT point of problem (1),
i.e., (xk, uk) satisfies:

{
∇xL(xk, uk) = ∇f(xk) +∇ℎ(xk)uk = 0,
ℎ(xk) ≤ 0. uk ≥ 0, ⟨uk, ℎ(xk)⟩ = 0.

we compute the following vectors:

yk = ∇xF (xk, uk, �k) = −(I − �k∇2
xxL(xk, uk))∇xL(xk, uk) (4)

wk = ∇uF (xk, �k, �k) = −ℎ(x) + �k∇ℎ(x)T∇xL(xk, uk) (5)

Furthermore, we denote F (zk, �k) = F (xk, uk, �k), Fk = F (zk, �k) and the
gradient of F (x, u, �) by g(zk) = (yk, wk).

The following Theorem gives the relationship between the projected gradient
and the KKT point of problem (1).

Theorem 1. If �k < 1/∥∇2
xxL(zk)∥, then PΩ(zk − gk)− zk = 0 implies that zk

is a KKT point of problem (1).

Proof. By (4)(5) and the definition of the projection, PΩ(zk − gk) − zk = 0
means yk = 0 and (uk − wk)+ − uk = 0. Since �k < 1/∥∇2

xxL(zk)∥, so yk = 0
implies

∇xL(xk, uk) = ∇f(xk) +∇ℎ(xk)uk = 0. (6)

Hence (5) means wk = −ℎ(xk) and therefore we have

(uk + ℎ(xk))+ − uk = 0. (7)

By the definition of projection, if uik+ℎi(xk) ≥ 0, then (7) means ℎi(xk) = 0 and
uik ≥ 0. Otherwise, if uik + ℎi(xk) < 0, then (7) means uik = 0 and ℎi(xk) < 0.
Hence (7) implies that

ℎ(xk) ≤ 0, uk ≥ 0 and ⟨uk, ℎ(xk)⟩ = 0. (8)

By (6) and (8), we obtain the desired result. □
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3. Algorithm and Global Convergence

In this section, we first introduce the spectral gradient method [19] for un-
constrained minimization problem:

min f(x), x ∈ ℝ⋉

where f : ℝ⋉ → ℝ is continuously differentiable and its gradient ∇f(x) is
available. Spectral gradient method is defined by

xk+1 = xk − �k∇f(xk),

where the scalar �k is given by

�k =
⟨sk−1, sk−1⟩
⟨sk−1, �k−1⟩

,

where sk−1 = xk − xk−1, �k−1 = ∇f(xk)−∇f(xk−1).
In what follows, we describe our nonmonotone dual lagrangian spectral pro-

jected gradient algorithm detailed:

Algorithm 1

Step 0. Given z0 = (x0, u0) ∈ Rn ×Rm+ , choose 0 < �min < �max,
0 < �min < �max < 1,  ∈ (0, 1), �0 > 0, set C0 = F (z0, �0), Q0 = 1,
�0 ∈ [�min, �max], k := 0.

Step 1. Compute yk and wk by (4) and (5), if ∥yk∥ ≥ 1
2∥∇xL(zk)∥ go to

Step 2, otherwise, set �k := 1
2�k, repeat Step 1.

Step 2. If ∥P (zk − gk)− zk∥ = 0, then stop.

Step 3. Compute dk = P (zk − �kgk)− zk, set �k = 1.

Step 4. Set z+ = zk + �kdk.

Step 5. If
F (z+, �k) ≤ Ck + �k⟨dk, gk⟩, (9)

then define zk+1 = z+, �k+1 = �k, sk = zk+1 − zk, �k = gk+1 − gk, and
go to Step 6.

If (9) does not hold, define �new ∈ [0.1�k, 0.9�k], set �k = �new, and
go to Step 4.

Step 6. Compute bk = ⟨sk, �k⟩, If bk ≤ 0, set �k+1 = �max, else, compute
ak = ⟨sk, sk⟩ and

�k+1 = min{�max,max{�min, ak/bk}}.
Choose �k ∈ [�min, �max] and set

Qk+1 = �kQk + 1, Ck+1 = (�kQkCk + F (zk+1, �k+1))/Qk+1,

k := k + 1 go to Step 1.

In what follows, we analyze the global convergence properties of Algorithm
1. To this end, we introduce some basic definitions and lemmas.

Define the scaled projected gradient gt(z) as

gt(z) = P [z − tg(z)]− z
for all z ∈ Ω and t > 0. The following lemma gives the properties about the
scaled projected gradient gt(z), which can be found in [6].

Lemma 2. For all z ∈ Ω, t ∈ (0, �max],
(i)

⟨g(z), gt(z)⟩ ≤ −
1

t
∥gt(z)∥22 ≤ −

1

�max
∥gt(z)∥22,
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(ii) The vector gt(z
★) vanishes if z★ is a stationary point of problem (3).

The Lemma 2 (ii) shows that if dk = 0 at ktℎ iteration, then zk is a stationary
point of problem (3). To prove the global convergence of Algorithm 1, we make
the following assumptions:

Assumption H:

(1) The objective function f(x) and the constrained functions ℎi(x) are twice
continuously differentiable for all x ∈ Rn.
(2) The sequence generated by algorithm is contained in an open convex set S
and F (z) is bounded below on S.

(3) The Lagrangian gradient function g(z) is continuity uniformly on S.

The following lemma shows our algorithm is well defined.

Lemma 3. Let zk, dk be generated by Algorithm 1, if dk ∕= 0, then we have
Fk < Ck, moreover, the algorithm is well defined.

Proof. Since dk ∕= 0, by Lemma 2 and the definition of dk, we have ⟨gk, dk⟩ ≤
− 1
�max

∥dk∥2 < 0. Defining Dk : R→ R by

Dk(�) =
�Ck−1 + Fk

� + 1
,

we have

D′k(�) =
Ck−1 − Fk

(� + 1)2
.

Since ⟨gk, dk⟩ < 0, it follows from (9) that Fk < Ck−1, which implies D′k(t) < 0
for all � ≥ 0. Hence Dk(�) is nondecreasing and therefore Fk = Dk(0) < Dk(�)
for all � ≥ 0. Taking � = �k−1Qk−1, we obtain

Fk = Dk(0) < Dk(�k−1Qk−1) = Ck. (10)

In what follows, we want to prove that at the ktℎ iteration, the inner cycle
Step 4-Step 5-Step 4 can be terminated after reduce the values of � many times.
If this is not true, then we have �k → 0 and there exists a positive constant
� ∈ [0.1, 0.9] such that for � := �k/�, (9) does not hold, i.e.,

F (zk + �kdk/�, �k) > Ck + �k/�⟨dk, g(zk)⟩ > Fk + �k/�⟨dk, g(zk)⟩.
which implies that

F (zk + �kdk/�, �k)− Fk
�k/�

> ⟨dk, g(zk)⟩.

Since �k → 0, we have
⟨dk, g(zk)⟩ > ⟨dk, g(zk)⟩.

And therefore, we get
(1− )⟨dk, g(zk)⟩ > 0.

This contradicts to the fact that ⟨dk, g(zk)⟩ < 0, the contradiction shows the
algorithm is well defined. □

Lemma 4. Under assumptions (1)-(3), for each k, the repetition �k = 1
2�k in

Step 1 of Algorithm 1 terminates finitely.

Proof. Similar to Lemma 3.4 in [22]. □

By Lemma 4, without loss of generality, we assume �k = �0 for all k and
write F (xk, uk, �k) = F (xk, uk).

In what follows, we prove our first global convergence result.

Theorem 2. Assume Assumptions (1)-(3) hold, then we have

lim inf
k→∞

∥dk∥ = 0. (11)
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Proof. By contradiction, if (11) does not hold, then for all k, there exists a
positive constant " such that

∥dk∥ ≥ ". (12)

Denote � = /�max, by the line search (9) and Lemma 2 we have

Fk+1 ≤ Ck + �kg
T
k dk

≤ Ck − �k∥dk∥2/�max
= Ck − ��k∥dk∥2.

(13)

Since Qk+1 = �kQk + 1, we have

Ck+1 = (�kQkCk + Fk+1)/Qk+1

≤ (�kQkCk + Ck − ��k∥dk∥2)/Qk+1

= Ck − ��k∥dk∥2/Qk+1

(14)

Since F (z) is bounded below and Fk ≤ Ck, we have Ck is bounded below. It
follows from (14) that

k∑
i=1

��k∥dk∥2

Qk+1
< Ck − Ck+1 (15)

Since

Qk+1 = 1 +

k∑
j=0

j∏
i=0

�k−i ≤ 1 +

k∑
j=1

�j+1
max <

∞∑
j=0

�jmax <
1

1− �max
,

let k →∞, (15) implies that

lim
k→∞

�k∥dk∥2 = 0.

Since ∥dk∥ ≥ " for all k, we therefore have

lim
k→∞

�k = 0 and lim
k→∞

�k∥dk∥ = 0.

which implies for �k = �k/�, the line search (9) does not satisfied, i.e.,

F (zk +
�k
�
dk) > Ck + 

�k
�
⟨gk, dk⟩ ≥ F (zk) + 

�k
�
⟨gk, dk⟩

It follows from mean value theorem that

⟨dk, gk − g(zk + �k
�k
�
dk)⟩ < (1− )⟨gk, dk⟩,

where �k ∈ (0, 1).
By the above inequality, Lemma 2 and (12), we obtain

1−  < ⟨dk, gk − g(zk + �k�kdk/�⟩
⟨gk, dk⟩

≤ �max∥dk∥∥gk − g(zk + �k�kdk/�)∥
∥dk∥2

≤ �max∥gk − g(zk + �k�kdk/�)∥
"

Since �kdk → 0 and g(z) is continuous uniformly, we have 1 −  → 0, which
contradicts the fact that  < 1. Hence (11) hold. □



A Lagrangian Dual Spectral Projected Gradient Method 279

4. Numerical tests

In this section, we give the test result of our algorithm on some typical test
problems, these problems are taken from [17, 20]:

Problem 1. QQR-T1-2 [17].

f(x) = (x1 − 5)2 + x2
2 − 25,

ℎ1(x) = x2
1 − x2,

x0 = [4.9, 0.1]T , u0 = 1, x∗ = [(a− 1

a
)/
√

6, (a2 − 2 + a−2)/6)]T ,

where

a = 7.5
√

6 +
√

338.5, f(x∗) = −8.498464223.

Problem 2. QQR-T1-3 [17].

f(x) = 0.5x2
1 + x2

2 − x1x2 − 7x1 − 7x2,

ℎ1(x) = −25 + 4x2
1 + x2

2,

x0 = [0, 0]T , u0 = 1, x∗ = [2, 3], f(x∗) = −30.

Problem 3. QQR-T1-6 [17].

f(x) = (x1 − 2)2 + (x2 − 1)2,

ℎ1(x) = x1 + x2 − 2,

ℎ2(x) = x2
1 − x2,

x0 = [2, 2]T , u0 = [1, 1]T , x∗ = [1, 1], f(x∗) = 1.

Problem 4. QQR-T1-11 [17].

f(x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4,

ℎ1(x) = −8 + x2
1 + x2

2 + x2
3 + x4

4 + x1 − x2 + x3 − x4,

ℎ2(x) = −10 + x2
1 + 2x2

2 + x2
3 + 2x4

4 − x1 − x4,

ℎ3(x) = −5 + 2x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4,

x0 = [0, 0, 0, 0]T , u0 = [1, 1, 1]T , x∗ = [0, 1, 2,−1], f(x∗) = −44.

Problem 5. QQR-T1-3 [20].

f(x) = (x1 − 2)2 + (x2 − 1)2,

ℎ1(x) = x2
1 − x2,

ℎ2(x) = −x1 + x2
2,

x0 = [0.5, 0.5]T , u0 = [1, 1]T , x∗ = [1, 1], f(x∗) = 1.

For the numerical experiments we set following initial parameters: �min =
10−30, �max = 1030, �min = �max = 0.85,  = 10−4, �0 = 1, �0 = 1. To decide
when to stop the execution of the algorithms declaring convergence we used the
criterion ∥zk − P (zk − gk)∥ ≤ 10−5.

The numerical results are shown in Table 1, where the abbreviations in the
table are the following ones:

No: Number of the test problem.
ET: Execution time in seconds.
NF: Number of objective function evaluations.
NG: Number of restriction function evaluations(each restriction counted).
NDF: Number of gradient evaluations of the objective function.
NDG: Number of gradient evaluations of the constraints
(each restriction counted).
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Table 1. Results for Algorithm 1

No ET NF NG NDF NDG
1 0.040942 88 78 39 165
2 0.058078 234 114 57 347
3 0.043604 71 132 33 272
4 0.249295 774 1830 305 4149
5 0.049099 122 232 58 474

5. Conclusion

In this paper, we extend the spectral projected gradient method the the non-
convex constrained optimization and obtain the global convergence by using a
nonmonotone line search technique. From the numerical tests, we can see our
algorithm is effectiveness. Whether the algorithm is effectiveness for the large
scale test problems deserves further studying.
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