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1.  Introduction:  
Vendor selection is the process of choosing a partner or supplier to work with on 

the process that will be outsourced. It is possibly the most critical part of the entire road 

to outsourcing because, after months of planning, you have taken the decision to go ahead 

with the project and that plan must work. Vendor selection problem (VSP) is an area of 

tremendous importance in the effective management of a supply chain. This is due to the 

compelling need to evolve strategic alliances with the vendors. The material and 

equipment supplied from the vendors play an important role in the management of a 

supply chain. Many issues in the supply chain are influenced by the proper selection of 

vendors. In the logistics decisions of a firm, the location of vendors has a great influence 

on the supply chain design in terms of transportation and distribution planning. Hence, it 

is important to select the potential vendors so that different objectives of the supply chain 

are achieved. Similarly, reliable vendors may lead to less number of vendors in a supply 

chain, whereas the selection of a large number of vendors may be done to minimize the 

risk associated with the purchase, the associated costs increase with this approach. Hence, 

the optimization of vendor-base is needed to identify better performing vendors in a 

supply chain.  

Dickson [5] offered a profound study of vendor selection. This work was based on 

a survey of purchasing managers and he ranked, in order of importance, 23 criteria for 

vendor selection. Weber et al. [23,24,25] offers a comprehensive review of the vendor 

selection criteria. Buffa and Jackson [4] formulated a goal program. However, they were 

unable to make order quantity allocations. Talluri [20] proposed a buyer–seller game 

model for purchasing and the negotiation of bids. This model effectively evaluates 

alternative bids based on the ideal targets set by the evaluates alternative bids based on 

the ideal targets set by the buyer. Mathematical programming approaches have been 

extensively used for the VSP. They include linear programming, mixed integer 

programming and goal programming etc. Moore and Fearon [13] described the possible 

use of the linear programming (LP) but did not present the mathematical formulation. Pan 

[14] developed a single item LP model to allocate order quantities of suppliers with the 

objective to minimize aggregate price on the constraints of quality, service level and lead-

time. Turner [21] described the LP for the multiple item problem of British coal. Hong 
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and Hayya [9] structured the VSP as a non-linear programming problem. Ghodsypour 

and O’Brien [8] developed a mixed integer non-linear programming model to solve a 

multiple sourcing problem, which considers total cost of logistics with constraints on 

budget, quality, service, etc. Gao and Tang [7] suggested a multi-objective model for the 

problem. It established a multi-objective linear programming model (MOLP) for the 

special issues of purchasing these raw materials, and indicates selecting items, selecting 

vendors and deciding ordering quantity as the key issues in optimizing purchasing 

policies. Generally speaking, both of these models are application-specific and thus not 

readily transferable, or are limited in terms of the scope of their assumptions and the set 

of selection criteria. 

The maximum-entropy principle initiated by Jaynes’[10] is a powerful 

optimization technique of determining the distribution of random system in the case of 

partial or incomplete information or data available about the system. This principle has 

now been broadened and extended and has found wide applications in different fields of 

science and technology (Wilson [26]; Templeman and Li [19]; Kapur [11],[12] ). 

Samanta et. al.[17] developed entropy based Transportation problem using geometric 

programming method. Tsao et. al. [22] introduced a linear programming with inequality 

constraints via entropic perturbation. 

 In conventional mathematical programming, the coefficient or parameters of 

mathematical models are assumed to be deterministic and fixed. But, there are many 

situations where they may not be exactly known i.e., they may be somewhat uncertain in 

nature. Thus the decision-making methods under uncertainty are needed. The fuzzy 

programmings have been proposed from this viewpoint. In decision-making process, first 

Bellman and Zadeh [1] introduced fuzzy set theory. Tanaka et al. [18] applied the 

concepts of fuzzy sets to decisions making problems by considering the objectives as 

fuzzy goals and Zimmermann [28] showed the classical algorithms could be used to solve 

multi-objective fuzzy linear programming problems. The non-linear optimization 

problems have been solved by various non-linear optimization techniques. Among those 

techniques, geometric programming (GP) is an efficient and effective method to solve a 

particular type of non-linear problems. Duffin,Peterson and Zener [6] , Braighter and 
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Philips[3] developed geometric programming to solve a class of  problems called 

Posynomial problems. 

         This paper deals with a dual convex programming approach to solve a multi-

objective VSP model with inequality constraints through entropic perturbation. Using t-

norm based fuzzy mathematical programming technique and by applying duality theory 

the given multi objective model is solved by solving the geometric dual of the VSP 

model.  

2. Mathematical Model 
        A multi-objective Vendor Selection Problem is considered under the following 

assumptions and notations: 

           n = total number of Vendors compelling for selection, 

           xj = number of order quantity given to the vendor  j,                       

           D = Aggregate demand of the item over a fixed planning period, 

           P = Least total purchasing value that a vendor can have, 

          Pj = Price of a unit item of the ordered quantity xj to the vendor j, 

           rj = Percentage of the rejected units delivered by the vendor j, 

          lj = Percentage of the late delivered units by the vendor j, 

          uj = Upper limit of the quantity available for vendor j, 

          vj =  Vendor rating value for vendor j , 

         bj= Budget constraint allocated to each vendor, 

A multi-objective Vendor selection problem with minimization of the net cost for 

ordering the aggregate demand, minimization of the rejected items of the vendors, 

minimizes the late delivered items of the vendors and at the same time maximally 

unbiased about the information (i.e. maximum entropy objective function) under the 

restrictions due to the aggregate demand , maximum capacity of the vendors, total item 

purchasing value constraint and budget amount allocated to the vendors for supplying the 

items can be stated as: 

Minimize N(x) = ∑
=

n

j
jj xp

1

          (Net cost for ordering the aggregate demand objective)                                  

Minimize R(x) = ∑
=

n

j
jj xr

1

                        (Rejected items objective)                                                             
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Minimize L(x) = ∑
=

n

j
jj xl

1

                   (Late delivered items of the vendors objective)                                       

Maximize E(x)= ∑
=

−
n

j
jj xx

1
ln                      (Entropy objective) 

              subject to     =∑
=

n

j
jx

1

 D                   ( Investment restrictions) 

   jj ux ≤   , j =1,2,......,n.  (Maximum capacity restrictions) 

                                                     Pxv
n

j
jj ≥∑

=1
,    (Total item purchasing value constraint) 

                                           jjj bxp ≤   , j =1,2,......,n. ( Budget Constraint) 
                                         0≥jx ,    j =1,2,......,n. 
3. Basic Definitions  
      Fuzzy sets first introduced by Zadeh [27] in 1965 as a mathematical way of 

representing impreciseness or vagueness in everyday life. 

   Fuzzy Set: A fuzzy set Ã in a universe of discourse X is defined as the following set of 

pairs Ã = {(x, μ Ã (x)): x ∈ X}. Here μ Ã : X → [0, 1] is a mapping called the membership 

function of the fuzzy set Ã and μ Ã (x) is called the membership value or degree of 

membership of x∈ X in the fuzzy set Ã. The larger μ Ã (x) is the stronger the grade of 

membership form in Ã. 

   Convex Fuzzy Set: A fuzzy set Ã of the universe of discourse X is convex if and only 

if for all x1, x2 in X, 

μ Ã (λx1 + (1 – λ )x2) ≥ min (μ Ã (x1), μ Ã (x2)) when 0 ≤ λ ≤ 1. 

  Aggregation operators: 

         When the rules in the decision support system contains more than one antecedent, 

the degrees of strength of the antecedents need to be combined to determine the overall 

strength of the rule consequent. In the language of fuzzy sets, the membership values of 

the linguistic variables in the rule antecedents have to be combined using an aggregation 

operator. Formally, a general aggregation operator is a real function   ]1,0[]1,0[: →nT , 

non-decreasing in all arguments, with the properties T(0) = 0 and T(1)=1. 

General aggregation operators display the whole range of behavior, disjunctive, 

conjunctive, averaging, mixed, commutative, mutually reinforcing or otherwise, and 
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correspond to vague and loosely defined “and” and “or” connectives etc. Triangular 

norms and conorms and averaging operators are well known examples of the aggregation 

operators.  Different classes of aggregation operators display substantially different 

behavior, it is not logical to use any particular class to provide generic representation of 

aggregation. Therefore, we will use general aggregation operators to model aggregation 

of rule antecedents in decision support systems. They will provide the highest degree of 

adaptability and excellent empirical fit. However, if there are strong reasons to restrict the 

selection to a particular family of operators, we will impose the relevant constraints. 

Consider general aggregation operator. The function can have a simple algebraic form, 

such as 

        }.,,.........,min{),.......,,(T 2121 nn xxxxxx =  
or  

).,,.........,( 21 nxxxT = ∏
=

=
n

i
in xxxx

1
21 .........  

     or   ).,,.........,( 21 nxxxT = },1min{
1
∑
=

n

i
ix  

       or   ).,,.........,( 21 nxxxT =
n

x
n

i
i∑

=1  

The degrees of importance of rule antecedents (vector a) can be easily incorporated into 

aggregation operators in a variety of ways. For example 

     },min{}.........,min{},min{),.,,.........,;,( 22112211 nnnn axaxaxaxaxaxT ××=   

or }1,.........min{);.,,.........,;,( 22112211 nnnn axaxaxaxaxaxT ++=     

In this article, decision making method used by the (weighted) bounded sum operator 

(member of Yager family of triangular conorms). 

 
4. Fuzzy programming technique to solve MONLP problem 
 
A Multi-Objective Non-Linear Programming (MONLP) or a Vector Minimization 

Problem (VMP) may be taken in the following form: 

 Minimize  f(x)  =  [ f1(x), f2(x),……, fk(x) ]T                                              (4.1) 

            subject to x εX  = { x εRn : gj (x)  ≤ or = or ≥  bj for j = 1, …, m  ;  x  ≥ 0 }. 

         and  li ≤ xi ≤ ui  (i=1,2,..,n). 
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   Zimmermann [28] showed that fuzzy programming technique could be used nicely to 

solve the multi-objective programming problem.  

To solve the MONLP (4.1) problem, following steps are used: 

Step 1: Solve the MONLP (4.1) as a single objective non-linear programming problem 

using only one objective at a time and ignoring the others. These solutions are known as 

ideal solutions. 

Step 2: From the results of step 1, determine the corresponding values for every objective 

at each solution derived. With the values of all objectives at each ideal solution, pay-off 

matrix can be formulated as follows: 

                                      f1 (x)        f2 (x)       ....      fk(x) 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)(......)()(

.................................
)(.....)()(

)(....)()(

...

21

22
2

2
1

11
2

1
1

2

1

k
k

kk

k

k

k xfxfxf

xfxfxf

xfxfxf

x

x

x

                               

Here x1, x2, …, xk  are the ideal solutions of the objectives f1(x), f2(x), …, fk(x) 

respectively. So Ur  = max { fr(x1 ), fr (x2), …, fr(xk ) }                                          (4.2) 

                  and   Lr  = min { fr(x1 ), fr (x2), …, fr(xk ) }                                           (4.3) 

[ Lr and Ur  are lower and upper bounds of the rth objective function fr(x) for r = 1,…,k  ]. 

Step 3: Using aspiration levels of each objective of the MONLP (4.1) may be written as 

follows: 

    Find x so as to satisfy  

 fr (x)  
~
≤   Lr   ( r  =  1, 2, …, k)                       (4.4) 

 x ∈ X 

Here objective functions of (4.1) are considered as fuzzy constraints. This type of fuzzy 

constraints can be quantified by eliciting a corresponding membership function 

( )( ) ( )

( )
⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

≤≤∈∈

≤

<<

≥

  .L-U0 and +L=L  where

  Lxf   if                     =                  

 U(x)fL  if        (x) =                  

f  if                   0 = f 

rrrrr
1
r

1
rrr

rr
1
r

1
rr

rrr
r

ω

μω

μω
rUxx

 (r =1, 2,…., k)                          (4.5) 
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Here )(1 xrμ  is a strictly monotonic decreasing function with respect to fr(x). 

Having elicited the membership functions (as in (4.5)) r
r
ωμ (fr(x)) for r =1,2,..,k, a general 

aggregation function 

    )(~ x
D

ωμ = ( )))(()),.....,(()),(( 2211
21 xfxfxfF kk

kωωω μμμ  is introduced.  

So a fuzzy multi-objective decision making problem can be defined as     

             )(~ xMaximize
DXx
ωμ

∈
                                                                                    (4.6)  

    Fuzzy decision making method used by the (weighted) bounded sum operator (member 

of Yager family of triangular conorms), the problem (4.6) is reduced to 

 Maximize  ( ) ( )( )∑
=

=
k

r
rrr

D
xfwwx r

1
;~

ωω μμ             (4.7) 

subject to  

                    x∈X 

                   0 ≤ ( )( ) rrr wxfr ≤ωμ   for  r  =  1, 2, …, k  . 

where 0≥rw  for all r=1,2,...,k , 1
1

=∑
=

k

r
rw . 

Step 4: Solve (4.7) to get Pareto optimal solution. 

 

Some basic definitions and three theorems on Pareto optimal solutions are introduced 

below. 

Definition  :(Complete Optimal Solution) 
 
  x* is said to be a complete optimal solution to the MONLP (4.1) if and only if 

there exists x* εX such that fr(x* )  ≤ fr(x),  for r =  1, 2, …, k and for all x ε X. 

However, when the objective functions of the MONLP conflict with each other, a 

complete optimal solution does not always exist and hence the Pareto Optimality Concept 

arises and it is defined as follows. 

Definition : (Pareto Optimal Solution) 
       x* is said to be a Pareto optimal solution to the MONLP (4.1) if and only if there does 

not exist another x ε X such that fr (x* )  ≤ fr(x) for all r =1, 2, …, k and fj(x ) ≠ fj(x* )  for 

at least one j, j∈{1,2,..,k}.  
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5. Fuzzy programming technique in Multi-Objective VSP Model. 
          

To solve above multi-objective rural development model, step-1of 4 is used.  

After that according to step-2 pay-off matrix is formulated as follows: 

                   N(x)      R(x)      L(x)      E(x)  

       

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )⎥⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

4444

3333

2222

1111

4

3

2

1

xExLxRxN
xExLxRxN
xExLxRxN
xExLxRxN

x
x
x
x

 

 Now U1, L1; 2U , 2L ; U3, L3 ;U4, L4  (where L1 ≤  N(x) ≤ U1, L2 ≤ R(x) ≤ U2, L3 ≤ L(x) ≤ 

U3 and L4  ≤ E(x) ≤ U4) are identified. 

Here, for simplicity linear membership functions ))(( xNNμ , ))(( xRRμ , ))(( xLLμ and 

))(( xEEμ  for the objective functions N(x), R(x), L(x) and E(x) respectively are defined as 

follows: 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

<<′
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′−

−

′≤

=

1

11
11

1
1

11

)(0

)()(
)(

))((1

UxNfor

UxNLfor
LU

xNU
LxNfor

xNN ω

ω

μω            

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

<<′
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′−

−

′≤

=

2

22
22

2
2

22

)(0

)()(
)(

))((2

UxRfor

UxRLfor
LU

xRU
LxRfor

xRR ω

ω

μω  

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

<<′
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′−

−

′≤

=

3

33
44

4
3

33

)(0

)()(

)(

))((3

UxLfor

UxLLfor
LU

xLU

LxLfor

xLL ω

ω

μω  

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

<<′
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
′−

′−

′≤

=

44

44
44

4
4

4

)(

)()(

)(0

))((4

UxEfor

UxELfor
LU

LxE

LxEfor

xEE

ω

ωμω                                  

where )4,3,2,1( =+=′ iLL iii ε , εi ∈ ( 0 , Ui-Li ) is a real number. 
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Rough sketches of ))(( xNNμ , ))(( xRRμ and ))(( xLLμ are shown in Figure 1 

         ))(( xNNμ  
               or 
        ))(( xRRμ  
                or     1 
        ))(( xLLμ  
                          
 
 
                          
                         O                             Li                   Ui                N(x) or  R(x) or L(x) 

Figure - 1: Membership function for N(x) or  R(x) or L(x) (i =1, 2,3) 
 
Similarly rough sketch of ))(( xEEμ  is shown below 

))(( xEEμ   
 
                     1 
 
 
 
 
                    
                     O           Li                  Ui                                                       E(x) 
                Figure - 2: Membership function for E(x) ( i = 4) 
 

  According to step-3, having elicited the above membership functions crisp non-linear 

programming problem is formulated as follows: 

 Maximize F= ( ) ( ) ( ) ( ))()()()( 4321
4321 xEwxLwxRwxNw ELRN

ωωωω μμμμ +++               (5.1) 

subject to 

             ( ) ,
)(

)(
11

1
1

1
~ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

−
=

LU

xNU
xN

N
ωμω  

              ( ) ,
)(

)(
22

2
2

2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

−
=

LU

xRU
xRR ωμω  

             ( ) ,
)(

)(
33

3
3

3
~ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

−
=

LU

xLU
xL

L
ωμω    



 289

              ( ) ,
)(

)(
44

4
4

4
~ ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

′−
=

LU

LxE
xE

E
ωμω  

   =∑
=

n

j
jx

1

 D                  

      jj ux ≤   , j =1,2,......,n.   

                      Pxv
n

j
jj ≥∑

=1
,     

                       jjj bxp ≤   , j =1,2,......,n.  
               
                     ( ) ,)(0 1

1
~ wxN
N

≤≤ ωμ                

              ( ) ,)(0 2
2

~ wxR
R

≤≤ ωμ    

              ( ) ,)(0 3
3 wxLL ≤≤ ωμ     

              ( ) ,)(0 4
4

~ wxE
E

≤≤ ωμ                                                      

                 0≥jx ,    j =1,2,......,n. 
The problem (5.1) can be written as 

 Maximize 

=F
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

−

11

1
11

)(

LU

xNUwω +
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

−

22

2
22

)(

LU

xRUwω +
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

−

33

3
33

)(

LU

xLU
wω +

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

′−

′−

44

4
44

)(

LU

LxEwω  

                                                                                                                                    (5.2) 

subject to 

   =∑
=

n

j
jx

1

 D                  

      jj ux ≤   , j =1,2,......,n.   

                      Pxv
n

j
jj ≥∑

=1
,     

                       jjj bxp ≤   , j =1,2,......,n.  
                0≥jx ,    j =1,2,......,n. 
               where ]1,0(∈iω  and wi ∈[0, 1] for i = 1,2,3,4. 

Which is equivalent to 
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Maximize ∑∑∑∑
====

−−−−=′
n

j
jjj

n

j
jj

n

j
jj

n

j
j xxxlxrxpF

1
4

1
3

1
2

1
1 lnαααα                   (5.3) 

subject to the same constraints as in (5.2). 

where, ′−
=

ii

ii
i

LU

wω
α  for i = 1,2,3 ,4 

 and ′−

′
−′−

+′−
+′−

+′=
44

444

33

333

22

222

11

111

LU

Lw

LU

Uw

LU

Uw

LU

UwFF ωωωω . 

Minimize ∑∑
==

+=′
n

j
jjj

n

j
j xxxkF

1
4

1
lnα ,                                                                 (5.4) 

subject to  

   =∑
=

n

j
jx

1

 D                  

      jj ux ≤   , j =1,2,......,n.   

                      Pxv
n

j
jj ≥∑

=1
,     

                       jjj bxp ≤   , j =1,2,......,n.  
                0≥jx ,    j =1,2,......,n. 
               where ]1,0(∈iω  and wi ∈[0, 1] for i = 1,2,3,4 and jjjj lrpk 321 ααα ++=  for 

j =1,2,......,n. 

6.  Dual Program with Entropic Perturbation: 

Consider the following linear Programming problem: 

Problem 1:     Minimize  ∑
=

n

i
ii xc

1

 

                       subject to k

m

i
i

k
i vxu ≤∑

=1
, k = 1,2,…………,m. 

                                        0≥ix , i =1,2,...,n. 

The dual of the above problem 1 is  
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Problem 2:     Maximize  ∑
=

m

k
kk yv

1

 

                        subject to i

m

k
k

k
i cyu ≤∑

=1
,   i =1,2,...,n. 

                                        0≤ky , k = 1,2,…………,m, 

Now for any given scalar α > 0, consider entropic perturbed problem instead of problem 

1 is as follows: 

Problem 3:     Minimize   ∑
=

n

i
ii xc

1
∑
=

+
n

i
ii xx

1
lnα  

                       subject to k

m

i
i

k
i vxu ≤∑

=1
, k = 1,2,…………,m. 

                                        0≥ix , i =1,2,.…….,n. 

[ Note: entropy function ijij xx ln  is strictly convex function on [0, ∞) with the convention 

0 ln 0 =0]  

To derive the geometric dual of Problem 3, consider the following inequality: 

               1  zln −≤ z  for z > 0.       (6.1)  

This inequality becomes equality if and only if z = 1.Now for any α > 0, yk  (k = 

1,2,…………,m) are real numbers and 0>ix  ( i =1,2,...,n.), we define 

i

cyu

i x
ez

m

k
ik

k
i∑

=
=

−−
1

1]/)([ α

  for i =1,2,...,n. Now if 0>ix  implies 0>iz so by above 

inequality, 

    1ln1]/)[(
1

1]/)([

1
−

∑
≤−−−

=

−−

=
∑

i

cyu

i

m

k
ik

k
i x

excyu

m

k
ik

k
j α

α    (6.2) 

[ This inequality is valid even if ix = 0 under the definition of  "0 ln(0)”= 0] 

Multiplying both sides of (6.2) by 0>ix , we get 

∑
≤−− =

−−

=
∑

m

k
ik

k
i cyu

ii

m

k
ik

k
ii exxcyux 1

1]/)([

1
ln]/)[(

α
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ii
cyum

k
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k
ii xxecyux

m
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i

ln)( 1
1]/)([
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αα

α
≤

∑
−−⇒ =
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=
∑  

iiii
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k
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k
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Now summing over i and j of (6.3) for  i =1,2,...,n  
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In problem 3 , 0≥ix ,( i =1,2,...,n .) satisfies k
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 So inequality (6.4) implies 

∑∑∑∑
===

−−

=
+≤

∑
− =

n

i
ii

n

i
ii

n

i

cyum

k
kk xxxceyv

m

k
ik

k
i

111

1]/)([

1
ln1 αα

α
   (6.6) 

Right hand side of (6.6) is exactly the objective function of Problem 3. Now define the 

following dual problem of Problem 3: 

Problem 4:     Maximize αD = ∑∑
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                       Subject to  

                                        0≤ky , k = 1,2,…………,m. 

Here Problem 4 is a convex programming problem with non-positivity constraints. 

Problem 4 can be also derived by Lagrangian method. In Lagrangian  method derivation , 

a change of sign in a primal constraint results in a change of range of the corresponding 

dual variables, this casual relationship is not apparent in the geometric programming 

derivation. Also the above dual problem differs from the one obtained for standard form 
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of linear programming problem only in the extra non-positivity requirements and this 

derivation different from as usual geometric programming with equality and inequality 

constraints.  

To use duality theory, inequality (6.1) becomes an equality if and only if z = 1. Hence 

from (6.2),    
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ix  primal feasible solution then 
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Hence the solution of the given model are 
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 for i = 1,2,….,n.  

 

7.   Conclusion 

This study presented a dual convex programming approach to solve multi-objective 

VSP model, which still remains uncertain. Using t-norm based fuzzy mathematical 

programming method; this model with entropy objectives has been reduced to a single 

objective primal geometric programming problem. The theory of duality is applied to 

solve the given model by solving the geometric dual of the perturbed rural development 

model. The application of this paper is widely used  multi-objective entropy optimization 

models with linear inequality and / or equality constraints. Multi-objective Entropy model 

based on t-norm optimization method may be used in various fields of engineering and 

sciences. 
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