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ABSTRACT 
The design of the advanced control strategies is usually based on a discrete time model of the 
plant. The usual approach is to use the shift operator q, but this gives numerical difficulties 
with the small sampling periods. This paper provides a formulation for a linear, time-invariant 
single-input single-output continuous-time plant model in the δ domain for two fast sampled systems 
with non-minimum phase zeros. This type of systems is critically unstable and requires 
special control strategies. The δ domain approach improves the numerical properties of 
structure detection, leads to a parsimonious description and provides a model that is closed 
linked to its continuous counterpart for fast sampling systems. The δ discrete linear model is 
derived in order to be of interest in control design.  
 
KEY WORDS: modeling fast systems, δ operator, critical unstable system, synchronous 
generator excitation system. 

1.  Introduction 
  

The δ domain models provide several advantages compared to q domain representations in 
system modeling, especially at fast sampled systems. Middleton and Goodwin [1] have 
renewed interest in the use of a δ operator to parametrize the models of systems that are fast-
sampled. This leads to an improvement on the numerical ill-conditioning problems found when 
using shift operator q [2]. The interest for the δ operator in the academic community has been 
renewed in the last years and therefore has been widely investigated in problems in the areas of 
signal processing [3], systems modeling [4-7] and control [8-10].  

An advantage of modeling linear systems in δ domain consists in the fact that it provides an 
exact discrete-time representation of the system [7], [11]; the identified model has structural 
similarity to the continuous-time differential equation describing system dynamics. Moreover, 
the parameters of the identified model approach the continuous time values as the sampling 
time tends to zero. It has been concluded that the utilization of the δ operator has the advantage 
to overcome the problem of numerical similarity especially in conditions of fast-sampling. It 
has been demonstrated that the model description in δ domain directly results in the 
improvement of the numerical properties of structure detection. Where digital control is to be 
applied, it is desirable to develop a discrete-time model for analysis purposes. 1 
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The stability of a digital system may be lost due to the finite word length effects at practical 
implementation of digital control or filter algorithms [11]. In 2007, Wills and the collaborators 
[12] have design a software package for the estimation of dynamic systems in the delta 
domain. The toolbox implements several new approaches as Expectation Maximisation 
algorithm for computation of Maximum Likelihood estimates, the use of an adaptive Jacobian 
rank algorithm and the use of a delta operator model. The toolbox is able to perform 
identification from either time domain or frequency domain data. 

In the context of the power plant systems there have been investigated the numerical 
properties and round off noise effects caused by finite word length in [11], [13]. An alternative 
for classical q discrete operator, the δ discrete model has been obtained for the synchronous 
generator excitation system in [14]. The other advantage of delta operator utilization for the 
model parametrization consists in fact that it offers substantial numerical advantages in 
implementation of discrete-time models due to the convenience in choosing a small value for 
the sampling period.  

The goal of this study is to analyze and develop a δ discrete model justified by the fact that 
the δ operator offers high performance even with low precision representation of the model 
coefficients. To demonstrate that implementing a discrete-time system by the delta model has 
distinct advantages over the commonly adopted approach of the shift model, we propose two 
examples. The first one is an empirical system and the second example refers to a turbine 
generator connected to an infinite bus-bar. This plant has a very fast dynamic, involving very 
short sampling and therefore we propose an accurate model especially when short sampling 
periods are to be used.  
 The paper is organized as follows: the second part of the paper introduces the concepts of 
the delta operator. The next section deals with two case studies: an empirical system and a 
simplified dynamic model for the Synchronous Machine Infinite Bus subsystem. In order to 
elucidate some aspects of δ operator, the properties are investigated through the two examples 
with regard to convergence of the discrete-time model representation to the continuous–time 
system. Section 3 gives the delta discrete time linear model and examines the pole-zero 
location for different sampling periods. Finally the main results of the paper are summarized in 
Section 4. 
 

2. Delta operator 
 

The discrete δ operator facilitates the expression of discrete time approximations of nth -order 
derivative information contained within sampled data, where δ is defined as: 

 1q
T

δ −
=  (1) 

Although there is a linear transformation between the two discrete domains, the two operators 
have distinct conceptual roles [5]: 
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where T is the sampling period and q is the usual forward-shift operator.  
The δ discrete state space model can be written: 
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The deterministic case of single input single output state space form in the classical 
representation in q discrete domain is: 
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where the link between the two discrete models [8] is given by: 
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Although the matrices obtained in (5) are mathematically correct, the usage of it is not 
recommended due to the poor numerical properties in q domain representation. Therefore, 
Middleton and Goodwin have proposed a procedure for obtaining delta state space model 
directly from the continuous model [1]. Thus, they suggest the following relations for 
conversion from s-domain model into the δ-domain one:  
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where , , ,c c c cA B C D are continuous-time state space model matrices  and:  

 

1

0

2 2

1 1 ( )

  .......
2! 3!

c c

T
T

c

c c

e d e I
T T

T TI

τ τ −= = −

= + + +

∫ A AΩ A

A A
 (7) 

The correspondence between the two domains is emphasized in the limit case: 
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It is easy to notice that for the limit case 0T → , there is no equivalence between the matrices 
obtained in the q discrete time domain and s –domain as one would expect: 
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The input-output form in δ-domain can be calculated as: 

 1( ) ( )nG δ δ δ δδ δ −= − +C I A B D , (10) 

and 

 1( ) ( ) | q TG G q δδ = +=  (11) 

An advantage of modeling linear systems in δ domain consists in the fact that it provides 
an exact discrete-time representation of the system. Moreover, the parameters of the identified 
model approach the continuous time values as the sampling time tends to zero. It is to be 
mentioned that small period results usually from the demands concerning the quality of 
control. 
 
 
3.  Case studies 
 

This section demonstrates the performance of the δ domain parametrization via 
simulations for two systems with respect to sampling period. The first system used in this 
study is an empirical model and was previously utilized in [14] and [9] in order to 
demonstrate the advantages of the delta operator. The second system represents a simplified 
dynamic model for the Single Machine Infinite Bus subsystem (SMIB). Note that the above 
systems are non-minimum phase and the first case study incorporates an integrator. 

 
3.1  Illustrative example 
 
The proposed continuous-time domain state-space matrices are given by:   
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The associated transfer function is: 

 
16 2

3
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+
. (13) 

The poles and zeros of the system are: 

 1 2,3
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= − ⋅ =
 (14) 

The poles and zeros placement of the system is illustrated in Fig. 1. 
When using very fast sampling it has been proved that the non-minimum phase zeros will 

appear as sampling period decrease, even though all zeros of the continuous time system are 
located in the strictly left complex plane.  
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Fig. 1 The poles (x)-zeros (○) location of the continuous time transfer function 
 

For the shift operator model, considering the sample rate 1000f Hz= , the transfer function 
is obtained: 
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The poles and zeros of the discretized system are: 
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The Fig. 2 visualizes the influence of the sampling period on the location of the poles and 
zeros for q-model. The sample time of the discretized model was set 
to 0.1 ,  0.01  and 0.001s s s . 
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Fig. 2 The poles (x)-zeros (○) location of the q-discrete time transfer function 
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The sampling period influences the numerical sensitivity such that a short sampling period 
requires a high precision in the coefficients. This aspect is related to the increased clustering 
of the poles and zeros around the point (1, 0) in the q - plane [11]. This drawback can be 
overcame by replacing the shift model by the one based on the δ operator:  

 
5 2
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G δ δδ
δ δ δ
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=

+ +
. (17) 

The poles and zeros of the δ domain transfer function are: 
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In the case of δ operator as sampling period decreases, all poles from δ domain tend to the 
continuous time poles, as is seen in the Fig. 3.  

The lack of connection between the q-domain and continuous time poles is reinforced by 
the clustering of the dynamic information to the point (1, 0) in the z plane, when the sampling 
interval becomes very small. 
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Fig. 3 The poles (x)-zeros (○)location of the δ domain model transfer function 

 
3.2  The Mathematical Model of a Single Machine Infinite Bus  

 
In this paragraph is presented a simplified dynamic model for the Single Machine Infinite 

Bus subsystem (SMIB). This system consists in a single synchronous generator connected 
through a parallel transmission line to a very large network approximated by an infinite bus. 
Synchronous generator excitation control is one of the most important measures to enhance 
power system stability and to guarantee the quality of electrical power.  
 

3.2.1 Process description 
 

The main components in a steam turbine driven alternator, feeding a main bus-bar, are 
shown in the Fig. 4. 
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Fig. 4 Power System with steam turbine and alternator 

 
 As is shown in the Fig. 4, the most important regulation loops are the voltage control and 
the primary turbine speed control. The voltage control of the generator system is realized by 
the Automatic Voltage Regulator. The speed control system adjusts the steam flow into the 
turbines in response to changes in shaft speed [17]. The necessary mechanical power, Pm is 
provided to meet the demanded electrical load. In the Fig. 4, V means the alternator output 
voltage, Vf the excitation voltage, Pe electrical power and Vs the bus-bar voltage. In reality, a 
power station involves a number of four alternator/turbine connected to a bus-bar and the 
wider electrical transmission and distribution system. Each alternator has its own individual 
Automatic Voltage Regulator. In Fig 4, the generator must remain synchronized to the grid 
that provides the interconnection to other power stations and distribution centers. The 
synchronized torque results from the magnetic fields, which provide damping torque [18]. The 
mechanical power input (from the steam turbine) and the field excitation voltage can be 
considered to be the system inputs and the output voltage and frequency must be controlled. 
This multivariable system involves the control of very fast dynamic and light damped modes. 
It has been assumed that this type of energetic system have a very small time constant. The 
application of digital techniques for controlling this type of fast system has expanded in recent 
years with the introduction of low cost digital controller hardware. The advanced control 
strategies which have been proposed require discrete time models.  One common way of 
describing discrete-time models is to use the forward shift operator. Discrete time system 
study is usually done using q forward shift operator and associated discrete frequency variable 
z. Despite its wide use in digital control, it is apparent that the rational transfer function which 
is obtained using the shift operator is not all like the transfer function obtained in the s-
domain. To obtain a better correspondence to its continuous time counterpart model, the delta 
discrete time operator must be use. 

 

3.2.2 The mathematical model 
 

The dynamic model of the power system is based on the mechanical equations and the 
electrical generator dynamics [18]. In this paper only the liniarized model for a single machine 
to infinite bus plant is illustrated since a delta discrete model representation is of interest. For 
the sake of brevity and simplicity, the monovariable state space model of the SMIB is 
considered: 
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C
 (19) 

where the state vector  x is defined as: 

 [ ]x Eα ω= ∆ ∆ ∆  (20) 

α∆  represents the power angle of the generator for a nominal point, ω∆ - the rotor speed of 
the generator and E∆ - transient EMF in the quadratic axis of the generator. 
The excitation control input fu V= ∆  is referred as input signal and the output y V= ∆ . More 
information about the state space model (19) can be found in [18]. The matrices Ac, Bc and Cc 
are as follows: 
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The associated transfer function is: 
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The relative degree of the system is one and transfer function pole-zero location is shown in 
the Fig. 5. 
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Fig. 5 The poles (x)-zeros (○) location of the continuous time transfer function 
The poles and zeros of the system are: 
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The single machine infinite bus plant is an unstable system with one zero in the right half 
plane of s domain.  

In the following we intend to compare the models obtained in the two discrete time 
domains. The selection of the sampling period is normally based on Shannon’s reconstruction 
theorem.  It has been proved that sampling at a rate less than ten times the bandwidth involves 
a loss of information regarding inter-sample behavior. Accordingly, sampling rates up to 50 
times the closed loop bandwidth are sometimes chosen in fast, high precision digital control 
system as is illustrated in the power system application [11]. 

The system bandwidth is found from the 3 db points to be 0 590 / secradω = , suggesting a 
sampling rate in the range of 939.01 4695.07f≤ ≤ . Therefore a suggestion for the choice of 
sampling period is given by the range: 4 32.12 10 1.06 10T− −⋅ ≤ ≤ ⋅ . 

For the shift operator model, considering the interval between samples, 42.12 10T −= ⋅ , the 
transfer function is obtained: 

 
3 2 3 3
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z zG z
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 The poles and zeros of the discrete transfer function are: 

 1 2 3

1 2

1.20, 0.93,  p 0.88
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p p
z

= = =
= − = −

 (25) 

Unfortunately, the discrete domains are unconnected with the continuous domain, this is 
because the underlying continuous domain description cannot be obtained by setting the 
sample time T=0. 

Fig. 6 shows the influence of the sampling period on the location of the poles and zeros 
for q-model. 
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Fig. 6 The poles (x)-zeros (○)variation of shift operator model 

 with respect to sampling period 
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 Another convenient feature of the δ operator is that the poles and zeros approach those of 
the continuous time representation as T tends to zero. 
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In the case of δ operator model, the poles and zeros of the discrete transfer function are: 
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By δ domain modeling, the zeros introduced by discretization process migrate to negative 
infinity as the sampling time tends to zero. 
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Fig. 7 The poles (x)-zeros (○) variation of the δ domain model 

 with respect to sampling period 
 

There is a close connection between continuous time result and δ - representation. In fact 
δ domain description converges to the continuous time counterpart when the sampling period 
tends to zero. It is of interest to compare the poles and zeros based on the δ and q discrete time 
single input single output system. If we compare the poles and zeros obtained in the δ discrete 
domain (27) with the poles and zeros in s domain (23) is observed that the values are close 
related. The simulation results shows the consistency of the delta model poles and zeros which 
correspond one-for-one with the continuous poles and zeros and converge to them as the 
sampling time decrease to zero.  

The stability region in the δ domain depends on the sampling period, i.e. the stability 

region is a circle of radius  1
T

 and center 1
T

− . Thus for T=0 the stability domain covers all 

negative left half plane from s domain.  
 

 
4. Conclusion 
 
 This paper illustrates an alternative discrete time model representation for fast sampled 
systems, using the delta operator. The usual approach is use the shift operator q, but this 
involves numerical difficulties with small sampling periods, especially for fast sampled 
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systems. Unfortunately, high sampling rate can have adverse effect on algorithms when used 
with the q operator. In the shift form as the sampling rate increases, the poles and zeros cluster 
around the point (1, 0), but by δ domain modeling, the zeros migrate to negative infinity. This 
paper deals with the effects of the sampling time variation and illustrates two single input 
single outputs systems expressed in both q- and δ-model. A discrete time representation of a 
synchronous generator with excitation system has been derived in order to be of interest in 
control design. The simulation results demonstrate that δ domain approach improves the 
numerical properties of structure detection, leads to a parsimonious description and provides a 
model that is closed linked to its continuous counterpart for fast sampling systems. A turbine 
generator connected to an infinite bus-bar has a very fast dynamic and an accurate model must 
be elaborate especially when short sampling periods are involved. The paper emphasizes that 
implementing a discrete-time system by the delta model has distinct advantages over the 
commonly adopted approach of the shift model for short sampling intervals. 
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