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1 Introduction

Our motivation for the present work is derived from biomolecular sequence
comparison (Allison et al. 1992, Durbin et al. 1998). Given a biomolecular
sequence we first represent it as a string over an alphabet. This problem
can be addressed using finite state machines. Many researchers have used
finite state automata for string matching. Allison and co-workers (Allison et
al. 1992) have proposed the use of finite state models for mutation. D.B.
Searls and K.P. Murphy (Searls and Murphy 1995, Searls 1995, Searls 1999)
proposed an automata theoretic model to compute the relationship between
simple mutational models, edit distance and string alignment in a biologi-
cal context. In this paper, we develop a theory of mathematical machines
— both with and without output — in order to represent and manipulate
biological mutational activities. In Section 2 we give some ideas about biolog-
ical mutation. In Sections 3 and 4 we have developed a theory of finite state
mathematical machines without and with output. In Section 5 we present
a mathematical formulation of biological mutational activities with illustra-
tions. Section 6 of the paper is devoted for a case study with FMR-1 gene
for different species. The paper is briefly concluded in Section 7.

2 Mutation

DNA are polymeric molecules made up of linear, unbranched chains of
monomeric sub-units called nucleotides. Each nucleotide has three parts:
a sugar, a phosphate group and a nitrogenous base. In DNA, the sugar is
2′-deoxyribose and the bases are: adenine (A), thymine (T), cytosine (C) and
guanine (G). Adenine and guanine are purine bases and thymine and cytosine
are pyrimidine bases. The particular order of the bases arranged along the
sugar phosphate backbone is called the DNA sequence; the sequence specifies
the exact genetic instructions required to create a particular organism.

Every organism has an inherent tendency to undergo change from one hered-
itary state to another. Such hereditary change is called mutation. Genomes
are dynamic entities that evolve over time due to the cumulative effects of
small-scale sequence alterations caused by mutation and larger scale rear-
rangements arising from recombination. Mutation is an alteration in the
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Figure 1: The structure of DNA.

nucleotide sequence of a DNA molecule.

Figure 2: Different effects of mutation.

A nonsynonymous or missense mutation is a gene mutation in which a base
pair change in the DNA causes a change in an mRNA codon so that a dif-
ferent amino acid is inserted into the polypeptide. A phenotypic change
may or may not result depending on the amino acid change involved. The
mistaken (missense) amino acid may be: acceptable, partially acceptable or
unacceptable- with regards to the function of protein molecule. A nonsense
mutation is a gene mutation in which a base pair change in the DNA results
in the change of an mRNA codon from one for an amino acid to one for a
stop (nonsense) codon (UAG, UAA and UGA). Readthrough is the change that
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could convert a termination codon into one specifying an amino acid.

Mutagen is a chemical or physical agent that causes mutations. Many chem-
icals that occur naturally in the environment have mutagenic properties and
these have been supplemented in recent years with other chemical mutatgens
that result from human industrial activity. Some important types of physical
mutagens are UV radiation, ionizing radiation, heat.

3 Sequential machine without output

Definition 1. Throughout this paper we shall be concerned with a fixed
non-empty finite set Σk = {σ0, σ1, σ2, ...., σk−1}, called the input alphabet.
The elements σ0, σ1, σ2, · · ·σk−1 will be called input letters or symbols.
An input word or tape is defined to be any finite sequence of input letters.
The set of all possible words will be called the input dictionary and is denoted
by Σ∗

k. The null word is denoted by ε that contains no letter at all. The length
of a word x to be denoted by lg(x) is defined to be the number of letters in
x.
Definition 2. ∆l = {δ0, δ1, · · · , δl−1} is a fixed non-empty finite set called
the output alphabet. The elements δ0, δ1, ...., δl−1 will be called the output
letters or symbols.
Definition 3. Concatenation of any two words x and y is defined to be the
word obtained by writing x followed by y and is denoted by xy. We also
write xx = x2, xxx = x3, .... etc, x0 = ε.
Definition 4. A sequential machine without output is a quadruple S =
〈S, Σk, M, a〉, where S is a non-empty set called the set of internal states, Σk

is the input alphabet, M is a function from S×Σk → S, called the transition
function or the next state function, a is a given element of S, called the initial
state. S is called a finite state machine or a finite machine if the set S is
finite.
For a finite machine S having internal states s0, s1, ...., sn−1, the function
M is usually given by a table called the transition table which shows
M(si, σj); si ∈ S, i = 0, 1, 2, ....n − 1; σj ∈ Σk, j = 0, 1, 2, ...., k − 1. A fi-
nite state machine may be represented by means of a directed graph called
the transition graph or Moore graph in which every state is represented by
a node and node si is joined to node sk by means of a directed edge labeled
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σj if and only if sk = M(si, σj).
Definition 5. The domain of definition of the transition function M of Def-
inition 4 is extended from S × Σk to S × Σ∗

k by the following
(i) (∀s)S M(s, ε) = s;
(ii) (∀s)S (∀σ)Σk

(∀x)Σ∗
k

M(s, xσ) = M(M(s, x), σ).
Theorem 1. The transition function M of Definition 4 is extended from
S × Σk to S × Σ∗

k if and only if the following conditions are satisfied
(i) (∀s)S M(s, ε) = s;
(ii) (∀s)S (∀σ)Σk

(∀x)Σ∗
k

M(s, σx) = M(M(s, σ), x);
Theorem 2. (i) (∀s)S (∀x, y)Σ∗

k
M(s, xy) = M(M(s, x), y).

(ii) (∀s)S(∀x, y, z)Σ∗
k

M(s, x) = M(s, y) ⇒ M(s, xz) = M(s, yz).
Definition 6. The response function of a sequential machine S =
〈S, Σk, M, a〉 is denoted by rpS, a function from Σ∗

k → S, and is defined
by rpS(x) = M(a, x).
Definition 7. The response tree of a sequential machine S = 〈S, Σk, M, a〉
is defined to be a tree over Σk having a root such that the root has outdegree
k and every other vertices has indegree 1 and outdegree k. There are kh

vertices at height h which are numbered 0, 1, 2, ..., kh − 1; where the vertices
are assigned labels rpS(|(h,w)|) where, h is the height and w is the corre-
sponding number of the vertex at that height; |(h,w)| corresponds to a word
‘x’.
Definition 8. A state s of a sequential machine S = 〈S, Σk, M, a〉 is called
accessible if and only if (∃x)Σ∗

k
s = rpS(x).

States which are not accessible are redundant and by omitting these re-
dundant states we obtain a more useful sub-machine, called the connected
sub-machine.
Definition 9. Connected sub-machine of a given sequential machine S =
〈S, Σk, M, a〉 denoted by SC is defined to be the machine SC = 〈SC , Σk, M

′, a〉
where, SC is the set of all accessible states of S i.e., SC = {s ∈ S| (∃x)Σ∗

k
s =

rpS(x)} and M ′ is the restriction of M from S × Σk → S to SC × Σk → SC

given by (∀s)SC (∀σ)Σk
M ′(s, σ) = M(s, σ). Accordingly, a machine S is said

to be connected if and only if S = SC . To check the connectivity we do not
need to search for infinite length words.
Theorem 3. Let S = 〈S, Σk, M, a〉 be a finite machine with n states. Then
(∀s)SC (∃x)Σ∗

k
s = rpS(x) and lg(x) < n.

Definition 10. φ is called a homomorphism from the machine S =
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〈S, Σk, M, a〉 into (onto) another machine T = 〈T, Σk, N, b〉 if and only
if φ is a homomorphism from the equivalent abstract algebra of S into
(onto) the equivalent abstract algebra of T with preservation of initial states
i.e., if and only if φ is a homomorphism from S into (onto) T such that
(∀s)S (∀σ)Σk

φ(M(s, σ)) = N(φ(s), σ) and φ(a) = b.
Theorem 4. If φ is a homomorphism from S = 〈S, Σk, M, a〉 into (onto)
T = 〈T, Σk, N, b〉 then (∀s)S (∀x)Σ∗

k
φ(M(s, x)) = N(φ(s), x).

Theorem 5. If φ is a homomorphism from S into (onto) T then
(∀x)Σ∗

k
φ(rpS(x)) = rpT (x).

Theorem 6. A mapping φ from a connected machine S = 〈S, Σk, M, a〉
into (onto) a machine T = 〈T, Σk, N, b〉 is a homomorphism if and only if
(∀x)Σ∗

k
φ(rpS(x)) = rpT (x).

This result at once proved the validity of testing the existence of a homo-
morphism φ from two given finite connected machines S and T.
Definition 11. R is called a congruence relation on a sequential machine
S = 〈S, Σk, M, a〉 if and only if R is an equivalence relation on S which
has substitution property (∀u, v)S (∀σ)Σk

uRv → M(u, σ)R M(v, σ). For
testing a given equivalence relation R on a finite machine S = 〈S, Σk, M, a〉
to be a congruence relation we simply partition S as induced by R. Let
R = {A1, A2, ...., Am}. Then for any fixed j we consider the equivalence
class Aj. We take two elements u, v ∈ Aj and test u against v, i.e., we
look whether M(u, σi) and M(v, σi) belong to the same equivalence class for
i = 0, 1, 2, ...., k − 1. We do the same for all other elements w ∈ Aj. If any
check fails we conclude that R is not a congruence relation. Otherwise we
conclude that R is a congruence relation.
Definition 12. Let R be a congruence relation on a sequential ma-
chine S = 〈S, Σk, M, a〉. The quotient machine of S modulo R is a se-
quential machine denoted by S/R and is defined by S/R = 〈T, Σk, N, b〉
where T = {R[s], class induced by R represented by s|s ∈ S} and
(∀s)S (∀σ)Σk

N(R[s], σ) = R[M(s, σ)] and b = R[a].
Theorem 7. Definition 12 implies that (∀s)S (∀x)Σ∗

k
N(R[s], x) =

R[M(s, x)].
Theorem 8. i) rpS/R(x) = R[rpS(x)].

ii) If S is connected then S/R is also so.
Definition 13. Let φ be a homomorphism from a machine S into a machine
T . Then we define a relation Rφ on S by sRφs

′ if and only if φ(s) = φ(s′).
Clearly Rφ is a congruence relation on S.
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Theorem 9. Let φ be a homomorphism from a machine S onto a machine
T and Rφ be defined as in Definition 13. Then T is isomorphic to S/Rφ.
Theorem 10. If R is a congruence relation on a machine S then there exists
a homomorphism from S onto S/R.
Definition 14. The equiresponse relation of a sequential machine S to
be denoted by ρ(S) is a relation on Σ∗

k defined by xρ(S)y if and only if
rpS(x) = rpS(y).
Theorem 11. ρ(S) is a congruence relation on Σ∗

k.
Theorem 12. For any sequential machine S, T (ρ(S)) is isomorphic to SC

where T (ρ(S)) = S/ρ(S).
Theorem 13. For any congruence relation R on Σ∗

k, ρ(T (R)) = R.
Theorem 14. Let R1 and R2 be two congruence relations on Σ∗

k. There
exists a homomorphism from T (R1) onto T (R2) if and only if R1 ⊆ R2.
Theorem 15. There exists a homomorphism from a connected machine S
onto a connected machine T if and only if ρ(S) ⊆ ρ(T ).
Theorem 16. Two connected machines S and T are isomorphic if and only
if ρ(S) = ρ(T ).

4 Sequential machine with output

Definition 15. A sequential machine with output or a Mealy machine is
a six-tuple S = 〈S, Σk, ∆l, M, Z, a〉 where S = 〈S, Σk, M, a〉 is a sequential
machine without output; ∆l is the output alphabet and Z is a function from
S × Σk → ∆l.
A Mealy machine may not have an initial state. S is called a finite state
machine if the set S is finite. If S = {s0, s1, · · · , sn−1} then the func-
tions M and Z are given by transition tables in which the ordered pair
(M(si, σj), Z(si, σj)) appeared si ∈ S rowwise and σj ∈ Σk columnwise. In
the Moore Graph representation, node si is joined to node sk by means of a
directed line labelled σj|δp if and only if sk = M(si, σj); δp = Z(si, σj).
If a Mealy machine is such that its output function Z depends only on the
internal states and not on the inputs explicitly then the machine is called a
Moore machine.
Definition 16. A Moore machine is a six-tuple S = 〈S, Σk, ∆l, M, Z, a〉
where 〈S, Σk, M, a〉 is a sequential machine without output; ∆l is the output
alphabet and Z : S → ∆l is the output function. A Moore machine too may
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not have a specified initial state.
Remark 1. Although a Moore machine appears restricted it can be shown
that every Mealy machine may be represented by a Moore machine.
Theorem 17. Given a Mealy machine (without initial state) S =
〈S, Σk, ∆l, M, Z〉, we can construct a Moore machine S ′ = 〈S ′, Σk, ∆l, M

′, Z ′〉
such that S ′ determines S uniquely.
Remark 2. The Moore machine is theoretically simpler to study but has
a practical disadvantage namely that the size of the equivalent Moore ma-
chine increases k-times. If in a Moore machine we restrict the output al-
phabet to ∆2 = {0, 1} which does not however, curtail the generality to a
great extent, the output function Z may be replaced by a set F defined by
F = {s ∈ S|Z(s) = 1}.
An input word is said to be recognized by the machine if the final output
after feeding the input is 1, i.e., the final state resulting from feeding the
input belongs to F . Thus, formally we define an automaton in the following.

4.1 Finite state automaton

Definition 17. An automaton is a five-tuple S = 〈S, Σk, M, a, F 〉 where
S = 〈S, Σk, M, a〉 is a sequential machine without output and F is a given
subset of S called the set of final states of S or the output set. An automaton
is called finite if it has a finite number of internal states. A finite automaton
may be represented by a Moore Graph of the associated sequential machine
without output together with a list of elements of F .
Remark 3. Properties of automata which are not connected to the output
set are exactly the same as for the associated machine without output. Thus,
the concept of transition function, response function, equi-response relation,
connectedness, congruence relation will be taken over unchanged from these
results of sequential machines without output.
Definition 18. A word or tape x is said to be recognized or accepted by an
automaton S = 〈S, Σk, M, a, F 〉 if and only if rpS(x) ∈ F .
Definition 19. The behaviour of an automaton S = 〈S, Σk, M, a, F 〉 is
the set of all words recognized by S denoted by βS and is defined by
βS = {x ∈ Σ∗

k|rpS(x) ∈ F}.
Definition 20. Two automata are said to be behaviourally equivalent, writ-
ten as S ≡ T if and only if βS = βT .
Theorem 18. Behavioural equivalence is an equivalence relation on the set
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of all machines.
Definition 21. A connected sub automaton of a given automaton S =
〈S, Σk, M, a, F 〉 is denoted by SC and is defined by SC = 〈SC , Σk, M

C , a, FC〉
where 〈SC , Σk, M

C , a〉 is a connected sub-machine of the associated sequen-
tial machine without output 〈S, Σk, M, a〉 and FC = F ∩ SC .
Theorem 19. βSC = βS.
Definition 22. φ is a homomorphism from an automaton S =
〈S, Σk, M, a, F 〉 into (onto) an automaton T = 〈T, Σk, N, b,G〉 if and only
if φ is a homomorphism from the associated sequential machine without
output 〈S, Σk, M, a〉 into (onto) the associated sequential machine without
output 〈T, Σk, N, b〉 and (∀s)S if s ∈ F then φ(s) ∈ G.
Definition 23. φ is called a strong homomorphism from an automaton
〈S, Σk, M, a, F 〉 into (onto) an automaton 〈T, Σk, N, b,G〉 if and only if φ is a
homomorphism from 〈S, Σk, M, a, 〉 into (onto) 〈T, Σk, N, b〉 without output
and (∀s)S s ∈ F if and only if φ(s) ∈ G.
Definition 24. An isomorphism from S into T is a one-to-one strong homo-
morphism from S into T . Automaton S is said to be isomorphic to automaton
T if and only if there exists an isomorphism from S into T .
Definition 25. Let R be an equivalence relation on a set S. Then R is said
to refine a set F ⊆ S if (∀u, v)S uRv then (u ∈ F if and only if v ∈ F ).
Remark 4. A partition of F induced by R is obtained by further partition-
ing the sets F and S − F .
Definition 26. Let R be a congruence relation on an automaton S =
〈S, Σk, M, a, F 〉 such that R refines F . The quotient automaton of S modulo-
R is denoted by S/R and is defined by S/R = 〈T, Σk, N, b,G〉 where
〈T, Σk, N, b〉 = 〈S, Σk, M, a〉/R and G = {R[u]|u ∈ F}.
Theorem 20. βS/R = βS.
Theorem 21. There exists a strong homomorphism from S onto S/R.
Theorem 22. For any automaton S = 〈S, Σk, M, a, F 〉 , ρ(S) refines βS.
Let S be a given automaton whose behaviour is βS. Suppose our problem is to
construct an automaton having behaviour βS and having the fewest possible
internal states. We have already noticed that if R is any congruence relation
on S such that R refines F , the output of S, then the quotient automaton
S/R has the same behaviour as S but has a lesser number of internal states.
So in order to compute the minimum state automaton we must look for the
largest such congruence relation.
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4.2 State Equivalence

Definition 27. Let S = 〈S, Σk, M, a, F 〉 and T = 〈T, Σk, N, b,G〉 be two
automata. A state s ∈ S is said to be equivalent to a state t ∈ T , denoted as
s ≡ t, if and only if (∀x)Σ∗

k
(M(s, x) ∈ F if and only ifN(t, x) ∈ G). If s 6≡ t

then automata S and T are said to be distinct.
Theorem 23. Connected machine S = 〈S, Σk, M, a, F 〉 is equivalent to con-
nected machine T = 〈T, Σk, N, b,G〉 if and only if a ≡ b.
Theorem 24. Let S = 〈S, Σk, M, a, F 〉 and T = 〈T, Σk, N, b,G〉 be two
automata in which s ∈ S and t ∈ T . s ≡ t if and only if (∀x)Σ∗

k
M(s, x) ≡

N(t, x).
Definition 28. If we consider equivalence of states of a single automaton
S = 〈S, Σk, M, a, F 〉 then, for convenience, the notation ≡ will be denoted
by RF and is defined by (∀u, v)S uRF v if and only if (∀x)Σ∗

k
(M(u, x) ∈ F if

and only if M(v, x) ∈ F ).
Theorem 25. i) RF is a congruence relation on S induced by F .

ii) RF refines F .
Definition 29. RF is called the congruence relation on S induced by F .
Theorem 26. RF is the largest congruence relation which refines F .
Definition 30. Let S = 〈S, Σk, M, a, F 〉 be a given connected automa-
ton and RF , the congruence relation on S induced by F . The mini-
mal automaton associated with S, denoted as SM , is defined by SM =
S/RF i.e. SM = 〈SM , Σk, M

′, a, F 〉 where SM = {RF [s]|s ∈ S} and
(∀s)SM (∀σ)Σk

M ′(RF [s], σ) = RF [M(s, σ)] with a = RF [a] and F =
{RF [u]|u ∈ F}.
Theorem 27. βSM = βS.
Theorem 28. There exists a strong homomorphism from S onto SM .
Theorem 29. Let S and T be two connected automata. S ≡ T if and only
if automata SM and TM are isomorphic.
Theorem 30. Let S be a given connected automaton and T is an automaton
such that T ≡ S. Then the number of states of T is greater than or equal to
the number of states of SM i.e., among all automata having behaviour βS.
SM has the minimum number of states. If T has the same no of states as
SM then T is isomorphic to SM , i.e., the minimal automaton is unique upto
isomorphism.
Theorem 31. If S is a connected automaton then any two states of SM are
distinguishable.
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4.3 Regular Set

Definition 31. A set β ∈ Σ∗
k is said to be regular if and only if there exists

a finite automaton S whose behaviour is β.
Theorem 32. β ∈ Σ∗

k is regular if and only if one of the following conditions
hold,
(i) The induced congruence relation Rβ is of finite rank;
(ii) There exists a congruence relation R on Σ∗

k of finite rank which refines
β.
Theorem 33. (i) Φ and Σ∗

k are regular sets.
(ii) If β is a regular set then β̄ = Σ∗

k − β is a regular set.
(iii) If β1 and β2 are regular sets then β1 ∪ β2 , β1 ∩ β2 are regular sets.
(iv) If Rk denote the set of all regular sub-sets of Σ∗

k then Rk =
〈Rk,∩,∪,− , Φ, Σ∗

k〉 is a Boolean algebra.
Theorem 34. i) {ε} is a regular set.
ii) If x ∈ Σ∗

k then {x} is a regular set. Any finite sub-set of Σ∗
k is a regular

set.
Definition 32. The transpose of a set α ⊆ Σ∗

k is denoted by αT = {xT |x ∈
α}.
Theorem 35. For α, β ⊆ Σ∗

k, (αT )
T

= α; (α.β)T = βT .αT .
Theorem 36. If β is a regular set then βT is a regular set.
In order to facilitate the study of regular sets we introduce the following
generalization of a finite automaton.
Definition 33. A transition system is a six-tuple S = 〈S, Σk, M, A, F, P 〉
where S is the set of internal states, Σk is the input alphabet , M is a function
from S×Σk → 2S, where 2S is the set of all subsets of S , called the transition
function such that for s ∈ S and σ ∈ Σk, M(s, σ) is the set of states at which
the machine can go to when in state s and consumes σ as input; A is a
non-empty subset of S called the set of initial states, F is a given subset of
S , called the set of final states; P is a binary relation on S such that for
u, v ∈ S if uPv then we say that there is a spontaneous transition from u to
v and P is called the spontaneous transition relation. A transition system S
is called finite if and only if the set S is finite.
A finite state transition system may be represented by a transition table to-
gether with the prescription of the sets A, F and the relation P or by means
of a transition graph in which vertex u is joined to vertex v by means of a
directed line bearing label ε iff uPv, the sets A and F being given separately.
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Example 1. S = 〈S, ΣDNA, M, A, F, P 〉 is a transition system where
S = {s0, s1, s2, s3, s4}; ΣDNA = {a, t, g, c}; A = {s0, s1}; F = {s3};
P = {(s2, s3)}. The transition table is given by table 1.

a t g c

s0 {s3} {s2} Φ {s1}
s1 Φ {s3} {s4} Φ
s2 Φ Φ {s0} {s4}
s3 Φ Φ Φ Φ
s4 {s3, s0} Φ Φ Φ

Table 1: The transition table of the Example 1.

Figure 3: The transition graph corresponding to the transition system S of
Example 1.

Definition 34. Any (sequential machine) automaton may be recognised as
a transition system.
Definition 35. The transition relation of a transition system S =
〈S, Σk, M, A, F, P 〉 is a relation between three states S, Σk and S, i.e., a sub-
set of S×Σk×S, denoted by |u, σ, v| and is defined by (∀u, v)S (∀σ)Σk

|u, σ, v|
if and only if (∃s, w)S uP̂ s∧w ∈ M(s, σ)∧wP̂v where P̂ is the reflexive and
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transitive closure of P (P̂ =
∞⋃
i=1

P i ∪O).

Definition 36. The response relation of a transition system S =
〈S, Σk, M, A, F, P 〉 to be denoted by ρS is a relation between Σ∗

k and S and
is defined by ρS = {(x, s)|(∃a)A|a, x, s|} i.e. xρSs if and only if (∃a)A|a, x, s|.
Definition 37. A word x is said to be accepted or recognized by a transition
system S = 〈S, Σk, M, A, F, P 〉 if and only if (∃u)F xρSu, i.e., if and only if
(∃a)A (∃u)F |a, x, u|.
Definition 38. The behaviour of a transition system S is defined to be
the set of all words recognized by S and is denoted by βS, i.e., βS =
{x|(∃u)F xρSu} = {x|(∃a)A (∃u)F |a, x, u|}.
Theorem 37. The behaviour of a finite transition system is a regular set.
Definition 39. Regular Expressions are abstract notations used to denote
regular sets. Regular expressions over alphabet Σk are exactly those expres-
sions that can be constructed recursively from the following rules
i) ε is a regular expression;
ii) For each σ ∈ Σk, σ is a regular expression;
iii) If e1 and e2 are regular expressions then e1|e2, e1e2 are regular expres-
sions;
iv) If e is a regular expression then e∗ is a regular expression.
Each regular expression e over Σ∗

k actually denotes a language, called the val-
uation of the regular expression and is a regular set denoted by v(e) where
i) v(ε) = {ε};
ii) v(σ) = {σ};
iii) v(e1|e2) = v(e1) ∪ v(e2);
iv) v(e1e2) = v(e1).v(e2);
v) v(e∗) = {v(e)}∗.
Example 2: Human FMR-1 gene sequence fragment containing a triplet
repeat region given by,

... GCG CGG CGG CGG CGG CGG CGG CGG CGG CGG CGG AGG CGG CGG CGG
CGG CGG CGG CGG CGG CGG AGG CGG CGG CGG CGG CGG CGG CGG CGG CGG CTG
...

The regular expression representing the pattern would be gcg((c|a)gg)∗ctg.
The transition graph corresponding to the regular expression is given in figure 4.
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Figure 4: Transition graph of the FMR-1 gene fragment given in Example 2.

Figure 5: The deterministic finite automata (DFA) representing FMR-1 gene
fragment of Example 2.

5 Mathematical formulation of Biological

mutational operations

DNA sequence specifies the exact genetic instruction required to create a
particular organism. Every organism has an inherent tendency to undergo
change from one hereditary state to another. Such hereditary change is called
mutation. Actually mutation is an alteration in the nucleotide sequence of a
DNA molecule. The bases constituting DNA molecules are adenine, thymine,
guanine and cytosine and are represented with the symbols a, t, g, c. Let us
set ΣDNA = {a, t, g, c}, the alphabet of DNA.
Definition 40. A finite transducer is a 7-tuple S = 〈S, Σk, ∆l, M, Z, a, F 〉
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where 〈S, Σk, ∆l, M, Z, a〉 is a finite state machine with output and F is a
finite subset of the set of internal states S, called the set of final states.
Remark 5. Properties of finite transducers which are not connected to the
output set are exactly the same as for the associated finite state machine
without output. Results of finite transducers which are not connected to
the output function Z are exactly the same for the associated finite state
automaton. Thus the concepts of extension of definition of M and Z, the
response function, equi-response relation, connectedness, congruence relation
will be taken over unchanged from these results of sequential machines with-
out output.
Definition 41. An input word x ∈ Σ∗

k is said to be accepted by a finite
transducer S if and only if M(a, x) ∈ F i.e., rpS(x) ∈ F. The collection
of all words x acceptable to a finite transducer is called the behaviour of the
transducer.
Definition 42. Let x ∈ Σ∗

k be acceptable to a finite transducer S. Then
there correspond an output word y ∈ ∆∗

l , called the output correspond-
ing to the input x. The collection of all output words (non-determinism)
corresponding to the input word ‘x’ is denoted by δS(x), and is defined as
δS(x) = {y ∈ ∆∗

L|rpS(x) ∈ F ∧ Z(a, x) = y}.
Definition 43. The sequence of transitions employed to reach a final state
starting from the initial state after consuming an input word (string) x ∈ Σ∗

k

is called a derivation and is denoted by D(x). When D(x) is unique it is
called a deterministic transducer. A transducer which is not deterministic
will be called non-deterministic.
Example 3. Let S = 〈S, Σk, ∆l, M, Z, a, F 〉 be a finite transducer. Let
S={s0, s1, s2}, Σ2={σ0, σ1}, ∆2={δ0, δ1}, and a = {s0} and F = {s2}. The
state transition matrix and the output are as shown in the table 2.

M=

ε σ0 σ1

s0 s0 s1 s2

s1 s0 s2 s0

s2 − s2 s2

Z=

ε σ0 σ1

s0 − δ0 δ1

s1 − δ1 δ1

s2 − δ0 δ0

Table 2: The state transition matrix and the output of Example 3.
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δS =
⋃

x∈Σ∗
k
δS(x) is called the derivation of S. Thus y ∈ δS → (∃x)Σ∗

k
s.t.

y ∈ ∆∗
l ∧ rpS(x) ∈ F ∧ Z(a, x) = y.

Figure 6: Transition diagram of the finite transducer of Example 3.

It is easy to see that the word σ0σ1σ1 is acceptable as M(s0, σ0σ1σ1) = s2 ∈
F. Whereas the set of words represented by the regular expression (σ0σ1)

∗

is not acceptable. From the transition table the response function can be
represented by means of a response tree as in the figure 5. Here we have
Z(s0, σ0σ

2
1) = δ0δ

2
1.

The set of all words acceptable to the finite transducer will be given by the
valuation of the regular expression (σ1|σ2

0|(σ0|σ0σ1)(σ1|σ2
0))(σ1|σ0)

∗ and is the
derivation.
D(σ1) = {s2} ; D(σ2

0) = {s1s2} ; D(σ3
0) = {s1s0s1s2, s1s2s2} ; ... etc.

δS(σ0) = {δ0} ; δS(σ1) = {δ1} ; δS(σ2
0) = {δ0δ1} ; δS(σ3

0) = {δ0δ
2
1} ; δ0δ

∗
1 ∈ δS.

Definition 44. A weighted finite transducer is a finite transducer S =
〈S, Σk, ∆l, M

′, Z, a, F 〉 where 〈S, Σk, ∆l, Z, a〉 is the same as in Definition 41
and the transition function M ′ : S × Σk → S × U ; where U ⊂ <, the real
number set. More explicitly, M ′(s, σ) = (M(s, σ), u).
This number associated with a state transition is called the weight of the
transition. Accordingly, the weight of a derivation is the sum of weights of
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Figure 7: Response Tree of Example 3.

Figure 8: Mechanisms using finite state machines.

the transitions employed.

6 A case study with FMR-1 gene

The degree to which the genetic factors influence human intelligence remains
a matter of controversy. Mutation affecting the FMR1 gene cause the fragile
X syndrome, the most prevalent known inherited cause of intellectual dys-
function. The most common mutation occurring in the FMR1 locus involves
expansion of a triplate (CGG)n repeat sequence within the promoter region of
the gene. When more than 200 CGG repeats are present, the expanded repeat
sequence and an adjacent CpG island are usually hypermethylated, a phe-
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Figure 9: Transducer corresponding to biological mutational activities.

Figure 10: The mutator corresponding to the mechanisms M1, M2, ...,Mn.

nomenon associated with transcriptional silencing of the gene and commonly
referred to as the FMR1 full mutation. Most males with the FMR1 full
mutation function show mentally retarded range of intelligence; in contrast,
females with the FMR1 full mutation show a broader range of intelligence,
from mental retardation to normal intelligence. Despite differnces in severity
of intellectual dysfunction, both males and females with the FMR1 full mu-
tation manifest a similar cognitive profile with weakness in the visual-spatial
and attentional-organizational domains and relatively preserved verbal abil-
ities (Reiss et al. 1995, Reyniers et al. 1993, Fu et al. 1991).

The function δ(CGG)= 0+0+1=1 may be used as a measure of the occur-
rence of the triplet CGG. The M and Z functions of the DFA of FMR-1 gene
(figure 16) has been given in table 3.
Definition 45. The mutation ratio, denoted as µ, is defined as a measure of
the number of occurrence of a subsequence of length (say) m in a sequence
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Figure 11: The mutator corresponding to the biological mutational mecha-
nisms.

M=

a t g c

s0 s0 s0 s0 s1

s1 s0 s0 s2 s1

s2 s0 s0 s3 s1

s3 − − − −

Z=

a t g c

s0 0 0 0 0
s1 0 0 0 0
s2 0 0 1 0
s3 0 0 0 0

Table 3: The M and Z functions of the DFA to calculate the occurrence of
the motif CGG given in Figure 13. The output calculates the occurrence of
the motif.

of length (say) n. Specifically, if r occurrence of a subsequence of length m
is observed in a sequence of length n, then µ = rm

n
. Obviously, 0 ≤ µ ≤ 1.

Accordingly, the value of µ for the subsequences CGG and AGG are calculated
for the FMR-1 gene of different species is represented in table 5. The count
shows a difference between the normal and the genomic mutant.

7 Conclusion

Our aim was to develop a mathematical machine that simulates biological
mutational operations. We have developed a Mutator that corresponds to
a finite state sequential machine with output and then the operations were
described by means of transition diagram. We have developed a theory to
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Figure 12: The tree corresponding to the FMR-1 gene.

obtain the minimal state automata. We have studied the FMR-1 gene. A
DFA is constructed with the gene sequence. The mutation ratio is studied for
different species. We hope that this will help us to model different concepts
of biomolecular sequence analysis.
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Figure 13: The DFA to calculate the occurrence of the motif CGG. A counter
is added at the state s3 to calculate the occurrence of the motif.

M=

a t g c

s0 − − s1 −
s1 − − − s2

s2 − − s3 −
s3 s5 − − −
s4 − − s6 −
s5 − − s6 −
s6 − − s7 −
s7 s5 − − s8

s8 − s9 s6 −
s9 − − s10 −

Z=

a t g c

s0 0 0 0 0
s1 0 0 0 0
s2 0 0 0 0
s3 0 0 0 0
s4 0 0 0 0
s5 0 0 0 0
s6 0 0 1 0
s7 0 0 0 0
s8 0 0 0 0
s9 0 0 0 0

Table 4: The M and Z functions of the DFA of FMR-1 gene given in Figure
16.
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Figure 17: The µ count plot for different species and human genomic mutant
for FMR1 gene.
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