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Abstract

If we define Symmetry as a continuous feature, we will naturally get
a more complex definition than the discrete one, but more useful in some
fields, as Computer Vision. Therefore, the interest of such a definition is
not only theoretical, but also applied, for instance in A. I. It will be very
convenient to introduce “shade regions”, when we analyze the Asymmetry
of Shapes, modulating their degree of symmetry. We are so aiming at a
fuzzy concept.
In this paper, we analyze the Asymmetry problem fundamentally, in its
geometrical basis. We start with Shape Measures, Chirality Measure and
so on. Then, searching for more efficient tools, until reaching the Asym-
metry Level Function, as a new Normal Fuzzy Measure, with the proof of
two new theorems about it, and some corollaries from them.
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1 Symmetry

We may attempt three ways for climbing the summit of asymmetry measures.
First, the geometrical characterization of Symmetry, through group theory tools
[10, 18].

Second, by statistical machinery, through distribution or density, and charac-
teristic functions for instance, measuring the symmetry degree and the skewness
of different probability distributions [13].

And third, by applying Measure Theory [16], in its more recent and adequate
fuzzy version [2 — 7, 17].

In this way, the distance from Symmetry of a shape is quantified as a contin-
uous feature, instead of a discrete one: not only total coincidence and absolute
difference are considered, but also gradual distance from its symmetrical shape
[2-17].

The Fuzzy version of problems [1] is now very useful indeed. Because taking
into account the Entropy concept, a clue from Information Theory, the Fuzzy
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Variables can be transformed into Random Variables, and vice versa. So, the
Fuzzy Structure would be considered as a Random Structure, and vice versa. In
fact, it is a particular case, within the aforementioned mathematical construct.

Recall that both Uncertainty Measures play an ever important role in both
general A. I. and Reasoning under Uncertainty. For instance, it is almost im-
possible to avoid dealing with Uncertainty in fields as Decision Making.

2 Shape measures

Our purpose in this section is to prepare the way for some measures of asym-
metry and skewness, that is going to be useful when we work, for instance,
with probabilistic distributions. It is possible to classify, within a determinate
standard distribution, its variations respect to the model chosen as totally sym-
metrical.

We analyze the Symmetry as related to the more general case, that is, mul-
tivariate probability distributions. The univariate is just a simple particular
case.

Let X = (X3, Xo,..., X,,) € R™ be a random vector.

And let @ = (a1, a9, ...,a,) € R™ represent mean, mode or median, well-
known centralization measures of the distribution.

So,

X—a:(Xl—oq, XQ—OéQ,..., Xn—an)eR”

Therefore, they are three n-dimensional vectors.

There exist many examples of multivariate symmetry, according to the in-
variance of such "centered" random vector, X — a¢, under an appropriate family
of transformations.

For instance, spherical, elliptical, central and angular symmetry (in increas-
ing order of generality).

A random vector, X, shows a spherically symmetric distribution about «,
if rotation around a does not alter the distribution.
So:

X—a=A X-a)

where A represents any (n x n) — dimensional orthogonal matrix.
The sign = signifies equality in distribution.

It is possible to characterize such spherical symmetry: it would be when

n X —anand §:°‘ are independent, being 11 . 11 the Euclidean Norm, and
X I il

X_—o uniformly distributed on the unit sphere surface of R", denoted Sn—t,
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It may also be characterized through the projection of X — a onto lines
through the origin. They must have identical distributions.
Or also by the intervention of half-spaces.

The random vector X has a:
elliptically symmetric

(also called ellipsoidally symmetric)

distribution of parameters o and X, if it is affinely equivalent to that of a
spherically random vector Y, that is:

X=A"Y+a
denoting - the matricial product, and satisfying:
AA=%

The name comes from the distribution being elliptically symmetric, then the
contours of equal density are elliptical in shape.

The class of elliptically symmetric distributions is closed under conditioning,
and also under affine transformations.

The random vector X has a centrally symmetric distribution about «, if:
X-—-a=a-X
Relaxing the notion of "central symmetry", we obtain that of "degree of
symmetry".
Let Ci be a (n x n) — matriz, defined by:
-1, ifi=j=k
Ck:(cij)k: 07 ZfZ#J
+1,ifi=7#k
A random vector, X, is said symmetric of degree m, if there exists a vector:
a = (a1,a,...,a,,0,0,..,0) ¢ R?
and a orthogonal transformation, T, such that:

T (X—a)=Cy-Cor - Cpy [T (X — )]

This means that the distribution shows symmetries about m mutually or-
thogonal (n — 1)—dimensional hyperplanes. Hence, also about its (n—m)—dimensional
intersections, so it posesses m orthogonal directions of symmetry.

And now, around the angular symmetry of the random vector X about «,if:

X—a _ a—X
1X—an — 1 X—ai

Or in an equivalent expression:

if §:°‘ has centrally symmetric distribution.
1 (s 2]
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3 Chirality Measure

The first question coming to mind is about its name:

What is Chirality?

Let us start with a well known quotation of Lord Kelvin [11]:

“I call any geometrical figure, or group of points, chiral, and say that it has
chirality, if its image, in a plane mirror, ideally realized, cannot be brought to
coincide with itself”.

This opinion is supported on the classic and dichotomous division: to-
tally symmetric versus totally asymmetric, without intermediate terms, into
an Euclidean set.

A system is called chiral, if it differs from its mirror image, and such mirror
image cannot be superposed on the original system. It is the famous case of our
hands, our ears, and so on: it is impossible to superimpose with total coincidence
our left hand over the mirror image of our right hand. For this reason, we need
two different gloves, in order to cover our hands.

Therefore, we say that an object is Chiral when it is non-isomorphic to
its mirror-image. Its symmetry group only contains pure translations, pure
rotations, and also screw rotations.

When a system or object is not chiral, we says that is achiral.

Both elements of the pair (original chiral object, its mirror image) are de-
nominated mutually Enantiomorphs, from the old greek “opposite forms”.
Their mutual relation is an enantiomorphism.

When it refers to molecules, we says enantiomers.

The degree of such feature is measured by the Chiral Index (here denoted
Chi).

In the univariate case, it is expressed from the lower bound of the correlation
coefficient (p):

Ruin = lower bound p

between the distribution and itself.
Its mathematical expression will be:

A 1+Rmiu
Chi = =3

At previous step, we must suppose the existence of both statistical parame-
ters: variance and mean.

The range of this function will be:

%Chi S [0, 0.5]
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Obviously, if the object is Achiral (A), then its index is null:
Chi(A) =0

Furthermore, this property of symmetry is very important in many scien-
tific fields, as for instance, studying the geometry of the molecular structure in
chemical compounds.

It is possible to define such Chirality Measure for a space having any di-
mension, for which probability distributions may be very useful. Recall that con-
sidering the n-dimensional Euclidean space, a finite number of equally weighted
points can be considered as a n-dimensional distribution.

Two basic aspects are necessary. First, the Chiral Index may be invariant
under isometric transformations applied on the probability distribution. And
second, it may be independent of which particular mirror we have selected.

An achiral object may be superimposed on its mirror image, and then, its
symmetry group possesses certain operations inverting its geometry, as can be
glide reflections, not being this possible by a direct movement of a rigid body.

4 Fuzzy Measures

Recall some necessary definitions from Fuzzy Measure Theory.

Definition 1 Let U be the universe of discourse, with © a c—algebra on U.
Then, given a function
m:p— [0, 1]
we describe m as a Fuzzy Measure, if it verifies:
Dm @) =0
IIH)m (U) =1
1) If A, B € p, with AC B=m (A) <m (B) [monotonicity]

When we take the Entropy concept, we attempt to measure the fuzziness,
that is, the degree of being fuzzy for each element in .

Definition 2 The Entropy can be designed as the function:
H:p—|[0, 1]
verifying:
I)If A is a crisp set = H (A) =0
I)IfH (z)=1/2, Vx € A= H (A) is mazimal (total uncertainty)
III) If A is less fuzzified than B = H (A) < H (B)
IV)H (A)=H (U\A)
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And also:

Definition 3 The Specificity Measure will be introduced as a measure of the
tranquillity when we take decisions.
Such Specificity Measure is a function:

Sp:0, 1V =0, 1]
where:
1)Sp 0)=0
II) S p (5) =1<% 5 is a unitary set (singleton)
III) If ¢ and T are normal fuzzy sets in U
with: cCT7=Sp (s)>Sp (7).

Note: [0, 1]V denotes the class of fuzzy sets in U.

5 Assymetry/Symmetry Measures

Let (E, d) be a fuzzy metric space.

Note: our results may also be generalized to other spaces.

We proceed to define the new fuzzy measure, which is a new and useful
function.

Such application would be defined as one of the kind:
L;

with ¢ € {a, s}, where s denotes symmetry, and a denotes asymmetry.

From here onwards, we denote by ¢ (A) the cardinal of a fuzzy set A.

Theorem 1 Let (E,d) be a fuzzy metric space, being A a subset of E, and let
H and Sp two fuzzy measures defined on (E,d).
Then, the function Lg, operating on A as:

Ly (A) = {SP(A) (E;zg:) +(1 +H[A])1}

will also be a fuzzy measure.

This measure is called Symmetry Level Function.

Dually:

226



Theorem 2 Let (E,d) be a fuzzy metric space, being A any subset of E, and
let H and Sp be two fuzzy measures defined on (E,d).
Then, the function Lg,acting on A as:

La(4) =1~ {SP(A) (M) +(1 —|—H[A])‘1}

will also be a fuzzy measure.

This measure is called Asymmetry Level Function.

Corollary 1 In the precedent hypothesis, the Symmetry Level Function is a
Normal Fuzzy Measure.

Corollary 2 Also the Asymmetry Level Function is a Normal Fuzzy Measure.

Note: As you can see, it is possible to introduce the “integer part” function:
INT (z) = [z]

Remember that the values of such fuzzy measure, Sp, decrease as the size of
the considered set increases.

Also recall that the Range of the Specificity Measure, Sp, will be the closed
unit interval.

Proof. Proofs for both theorems are analogous.

For instance, we prove the axioms for the second of them.
L, (0) =07
- -1
La(@)=1-{sp(o) (f=a3) + @+ HIe) '} =

because:
c(@)=0
Sp(@)=0
[Az.T]
and
H(2) =
.. 1t verifies the first condition.
About the second:
L, (U)=17
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it verifies:
_ 11 — ¢(U)] -1
L) =1-{sp@) (F=<@) + o+ H o)™}
Then, for instance taking a family of sets converging from A to U :
{Aitieny 120 U
such that each cardinal coincides with its index:

C(Az) =1

i=1,2,...n
we can find:
LS(U):1_{sp(U)1imH+m} =1+ 5p(U) — w3y =1
because:

c(4p)=n

|1—n|__
1+ n| — 1

and

lim

*. it verifies the second condition.
Now, we arrive to proving the third axiom:
If A, B €p,with ACB=m (A) <m (B) [monotonicity|
So, if we start from A, B € p, fuzzy subsets of U, with A C B, then:
H(A) < H(B)

Therefore:

1+ H(A) <1+ H(B)=

1
T+ HB =1+ i‘I(A)
And also from the Axiom III of Specificity function:
Sp(B) < 5p(4)
Hence:

sp(A) () + + HIA) ™ = sp(B) (hsl) + A+ HIa) ™
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And by this inequality:
1-{sp(a) (B2) + @+ a1} < spB) { (B8 + 1+ H4) '}
That is:

La(A) < La (B)
So,we have proven that L, (or Ls, dually) are both fuzzy measures. B

Proof. [Corollaries 1 and 2]
To prove the Normal character of L, it suffices taking as maximal subset:

Ay =U
And as minimal subset:

A, =0
It could also be:

A, =A

From our construction.

In any case:

And

Here, we start from L,.
Then,

Lo(Ay) =L, (U)=1
Also
L,(A,) =L, (2)=0

Therefore, we have in fact a Normal fuzzy measure, L.

The proof for Ly is analogous.
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Corollary 3 Let (E,d) a fuzzy metric space, and {A;}]_, a contractive chain
of enchained fuzzy subsets (or subworlds into the universe U D A), all them
containing the monoatomic fuzzy set (or world) A, that is:

ACA 1 CA CU Vie{l,2,...,n}
being:

limi—eo A; = A

Then, we have:

[Ls (A;)] =1, in the monoatomic world

[Ls (A;)] =0, in other worlds

Corollary 4 Let (E,d) be a fuzzy metric space, and {A;};_, a contractive chain
of enchained subsets (or subworlds into the universe U D A), all them containing
the monoatomic fuzzy set (or world) A, i. e.,

AC A1 CA;, Vie{l,2,..,n}
being:

Then, we have:

[Lo (A;)] =0, in the monoatomic world

[Lo (A;)] =1, in other worlds

Corollary 5 In the same precedent hypotheses, we will obtain the composition
of the initial asymmetry level with the integer part function (INT):

la (A9) = INT{La (A)} = [La (4] = [1 -] 5]

}

Corollary 6 With the same precedent hypotheses, let {A;},cn C U be a de-
creasing (in the sense of contracting) sequence of fuzzy sets A; C A, if i > j,
into the Universal Set U. Then, we will reach by l, the final situation described
in the well-known Temporal Asymmetry Problem:

la (A))=1[La (A)]=1,if A;#A
orly, (A;)=0,if A;=A

ls (A) = INT{Ls (A)}=[Ls (A)] = Hili

Corollary 7 With the same hypotheses, let {A;},cny C U be a decreasing
(contracting) sequence of fuzzy sets A; C Aj, if i > j, belonging to P (U), with
U the Universal Set. Then, we will reach by ls such final situation of Temporal
Asymmetry Problem:

orls (4;)=1,if A;=A

Hence, such aforementioned results signifiy that it is possible to obtain a
feasible solution for the Temporal Asymmetry Problem.
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6

Conclusions

So, we conclude that it is possible, in this way, to introduce a new measure which
quantifies the asymmetry level of shapes, being in general, applicable to fuzzy
sets, rough sets and so on, as an attempt to improve the precedent measures.

From this, we obtain a more subtle combination of those fuzzy measures,

acting through the more adequate and related to this subject, as Entropy and
Specificity Measures.
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