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Abstract

Some di¢ culties with the Theory of Lewis and its applications to
Causal Analysis have appeared. Certain of them are concerned with Tem-
poral Asymmetry and questions related with the mathematical treatment
of Causality. Also it is a very classical problem in Physical theories, with
its own characteristics.

Here, we analyze this problem and attemp to �nd a geometrical con-
struct which also permits reaching an e¢ cient measure of the Level of
Asymmetry of Shapes and Graphs. So, for BNs (in particular) and Fuzzy
Sets (in the more general case).
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1. Introduction
The Counterfactual Theory starts with the work of the Scottish philoso-

pher David Hume (1711-1776). Such initial theory is taken up again by John
Stuart Mill, in 1843. Later, David Kellogg Lewis (1941-2001) developed succes-
sive, improved versions of their Counterfactual Theory. Lewis was an American
mathematical logician and analytical philosopher. He worked on a great num-
ber of �elds, lately developing successive improved versions of his Counterfactual
Theory. In 1999, the last of such versions was issued: it was during the White-
head Lectures, at Harvard University. In 1999 were exposed the last of such
versions: it was into the Whitehead Lectures, at Harvard University.
In more recent times, it is essential the work of Judea Pearl (1936-).
We will previously analyze some of such ideas.

David Hume said in 1748: �We may de�ne a cause to be an object followed
by another, and where all the objects, similar to the �rst, are followed by an
object similar to the second. Or, in other words, where, if the �rst object
had not been, the second never had existed�. The �rst paragraph re�ects the
Regularity Criteria. And the second is the known Counterfactuality Criteria:
�A has caused B�, which in counterfactual notation is denoted: A �! B; and
is equivalent to: �B would not have occurred, if it were not for A�.
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Rather than a cumbersome enumeration of de�nitions, which may be found
in good surveys in circulation, as [13], [5] or [17], we prefer showing certain
illustrative quotations. Nevertheless, we introduce some de�nitions and com-
mentaries when needed.

Pearl [13] writes: �Causality connotes lawlike necessity, whereas probability
connotes exceptionality, doubt and lack of regularity �.
Lewis [10] asks: �Why not take counterfactuals as face value: as statements

about possible alternatives to the actual situation?�
Implicitly, it is supposed that counterfactual expressions are less ambiguous,

to our minds, that the causal ones.
Roughly speaking: to decide or not on counterfactuals requires generating

and examining possible alternatives to the current situation, and also verifying
whether certain propositions are valid on them.
And Pearl also asks: �How can this be done? What mental representation

allows humans to process counterfactuals so swiftly and reliably, and what logic
governs this process, so as to maintain uniform standards of coherence�.
According to Lewis�explanation [11], for the evaluation of counterfactuals

we need the notion of Similarity, which permits ordering possible worlds.
An open question: which election of Similarity Measure could be so that the

counterfactual reasoning was compatible with the usual conceptions of cause
and e¤ect?
Furthermore, the Logic of Lewis establishes two rules and six axioms, being

equivalent to the three axioms of Structural Counterfactuals (Composition, Ef-
fectiveness and Reversibility) on Recursive Systems. Such axioms hold on every
Causal Model.
The supposition on Lewis, according to which: an asymmetry of causal de-

pendence characterizes our world is basic in the Lewisian framework.
But there has been criticism against the explanation given by Lewis, in some

authors, as [7], [14] or [6].

Our objective is to contribute to giving an answer to these objections, through
the introduction of a new fuzzy measure, which re�ects the asymmetry level
of the system, whether it be Fuzzy Set, Graph, Bayesian Network or Markov
Model.

The supposition on Lewis [11], according which: an asymmetry of causal
dependence characterizes our world is basic into the Lewisian framework. But
criticism appeared against the explanation given by Lewis, in some authors, as
Horwich [7], Price [14] and Hausman [6].
One of the main arguments of the critics is based on supposing that this

explanation of Lewis su¤ers from a certain psychological implausibility. This
can be found in Horwich [7].
Lewis admits that this asymmetry is possibly a contingent characteristic of

the actual world, not present in other worlds.
So, in a world populated by only one atom such asymmetry on the overde-

termination does not hold. For this reason, there exists a possible discontinuity
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problem in the boundary. Because if we consider a contractive sequence of sub-
worlds, each of them asymmetric, converging to the monoatomic world, denoted
W, where asymmetry does not hold, we would have a weakness in the theory.

2. Causality and Symmetry
Remember now the properties of a Causality relation, or Causation.

Let A, B and C be three di¤erent events in a world, W .
Then, we have:

Transitivity: If A is cause of B, and B is cause of C, then A is cause of C.
Asymmetry or Anti-Symmetry: If A is cause of B, then B can not be the

cause of A.
Irre�exivity or Anti-Re�exivity: A is not possible (never) to be the own

cause.

One of the main arguments of the critics is based on supposing that Lewis�
explanation su¤ers from a certain psychological implausibility [7].
Lewis admits that this asymmetry is possibly a contingent characteristic of

the actual world, not present in other worlds. So, in a world populated by only
one atom such asymmetry on the overdetermination does not hold.
For this reason, in our opinion, there exists a possible discontinuity problem

in the boundary. Because if we consider a contractive sequence of subworlds,
each of them asymmetric, converging to the monoatomic world, denoted W ,
where asymmetry does not hold, we would have a weakness in the theory.

3. Symmetry vs Asymmetry
Symmetry is de�ned as invariance under a speci�ed group of transformations.

Asymmetry would be, then, the absolute lack of symmetry. And so, Antisym-
metry relates to the apparition of relative symmetry in the properties of the
observed object. Therefore, it corresponds to di¤erent degrees of symmetry in
such properties, for the considered object.

In our world, there are many time asymmetries. Let us make mention of
some:

E¤ects never seem to precede their causes.
A later state of higher entropy never follows another of lower entropy, accord-

ing to the Second Principle of Thermodynamics. Therefore, entropy increases
with time, in closed systems. It is maximal, for instance, in black holes. Note
that the world acts spontaneously on the systems, maximizing entropy, or dis-
order, so minimizing potentials. Whereas the First Law makes no distinction of
past, present and future, the Second Law introduces the basis for detecting this
di¤erence.
Humans have memories of their past, but never of their future.
Some of such asymmetries can be based on others. Among the thinkers with

this opinion was David K. Lewis [11]: �the asymmetry of counterfactual depen-
dence serves to explain more familiar asymmetries�. This refers to temporal
asymmetry of causation: a cause �always� precedes its e¤ect.
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Or the asymmetry of openness: �the obscure contrast we draw between the
open future and the �xed past�.
Lewis characterizes the asymmetry of counterfactual dependence in this

manner: �the way the future depends counterfactually on the way the present
is. If the present were di¤erent, the future would be di¤erent�.
This supposition, according to which an asymmetry of causal dependence

characterizes our world, is basic in the framework of Lewis�Theory.
Frequently, the causal relation is taken to be intrinsically asymmetric, be-

cause in the world of our experience it is so. However, the fundamental physical
laws are symmetric. Any other temporal asymmetries are accounted in terms of
the Principle of the Common Cause (PCC), due to Hans Reichenbach, which
says: �If an improbable coincidence has occurred, there must exist a common
cause�[16].
Through such Principle, it is possible to explain the arrows (of entropy,

experience and so on) by the Causal Theory. And at the same time, the PCC
results as Corollary of the Probabilistic Theory of Causation.
The Entropic Theory works in two phases: �rst, reducing any other arrow

(causation, radiation, experience...) to the entropic arrow; and second, explain-
ing entropic asymmetry in terms of boundary conditions on the universe.
Leyton [9] investigated the psychological relationships between shape and

time, arguing that shape is used, by mind, to recover the past, and it forms
a basis of the memory. And then, symmetry is the means by which shape is
converted into memory.

Remind that the Symmetry is an intrinsic property which causes it to re-
main invariant under some classes of transformations. So, Rotation, Re�ection,
Inversion or more abstract mathematical operations.
For instance, it can be represented in the form of coe¢ cients of equations.
In Physics we have the essential Noether´ s Symmetry Theorem, given by

great german mathematician Emmy Noether, in 1918: each symmetry of a sys-
tem leads to a physically conserved quantity.
So, Symmetry under Translation corresponds to Conservation of Momen-

tum.
Symmetry under Rotation corresponds to Conservation of Angular Momen-

tum.
Symmetry in time, to Conservation of Energy.
And so on.
Indeed, Noether propose two theorems with many posterior consequences.
For the �rst, there exist equivalence between an invariance property and a

conservation law.
For the second, there exist relationships among an invariance and the exis-

tence of certain integral of the equations of motion.
In recent times, some extensions of Noether theorem have been provided,

in the mathematical literature, very useful for the solution of more general
problems in Modeling and Optimization.
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4. Measures of (A)Symmetry
From this point, after analyzing the �state of the art�, we move on to some

aspects of our initial contribution.
Usually, Symmetry and Asymmetry are considered two sides of the same

coin: an object would be either totally symmetric, or totally asymmetric, in
relation to a pattern object. Intermediate situations of partial symmetry or
partial asymmetry are not taken into account. But this dichotomic classi�ca-
tion, because of its simplicity, is lacking in necessary and realistic gradation.
For this reason, it is convenient to introduce �shade regions�, modulating the
degree of symmetry (a fuzzy concept). So, we will describe the symmetry as a
continuous feature, much more complex than the previous discrete de�nition,
but more useful in many �elds, as Computer Vision, in Laue photographs of
X-ray beam spectra, where it allows analyzing the quality of crystalline struc-
tures according to their symmetry. Therefore, its interest is not only theoretical,
but also applied, being possible to construct new plausible computational tools
which permits the automatic transition from theoretical concepts on Symme-
try/Asymmetry to applications in the real world. And with this, the apparition
of a new collection of nearest shapes: because given an object O, we will de�ne
SD, the Symmetry Distance of the shape to its reference pattern.
This way, we are measuring the lack of symmetry in shape as a continuous

feature, as opposed to a discrete one: gradual �similarity�of a shape to its
symmetrical one, instead of either total coincidence or absolute di¤erence.
This distance from Symmetry in shape is de�ned as the minimum mean

squared distance required for moving points from the original shape, in order
to obtain a symmetrical shape. So, SD is the minimum e¤ort required to turn
a given shape into a symmetric shape.
Every pair of such shapes (V and W , for instance) are represented by their

respective sequence of points:
Then, the aforementioned metric, m, is de�ned as:

m : 	�	! R+ [ f0g

m (V; W ) = m
�
fVjgj=n�1j=0 ; fWjgj=n�1j=0

�
=

= kV0�W0k2+kV1�W1k2+:::+kVn�1�Wn�1k2
n =

=

P
kVj�Wjk2

n

Also, we de�ne the Symmetric Transform of V, denoted ST (V ), as the closest
symmetric shape to V , relative to such metric.

By this tool, it is possible to introduce the SD of a shape, V, as the distance
measured between such V and its Symmetry Transform, ST (V ):

We are going to show the Algorithm necessary to evaluate such Symmetry
Transform (ST):

To start with, n original points:
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fVjgn�1j=0

which conform the shape of Oi:

First step:
Fold fVjgn�1j=0 into

�
V �j
	n�1
j=0

.
For instance, in the Cn case, rotating each point counter clockwise about

the centroid by 2� jn radians.

Second step:
Average out this new set of points:

V }0 = 1
n

n�1P
j=0

V �j

Third step:
Unfold such average point, obtaining:n

V }j

on�1
j=0

In the aforementioned example, of Cn�symmetry, it consists in maintaining
V }0 ; and then rotate the points 2�

j
n radians. In this way, we can reach:

ST
�
fVjgn�1j=0

�
=
n
V }j

on�1
j=0

Corresponding one-to-one with the points of the precedent shape, but in a
�more symmetrical �position now.
Therefore, the SD of a shape V is evaluated by passing �rst through its

Symmetry Transform, and then computing their respective distance:

SD (V ) = m (V; ST (V ))

This measure is invariant under translation and rotation.

If the shape V is totally symmetric, then it coincides with its symmetric
transform, and so SD is null.

Given a general shape, O, it is necessary the transformation which departing
from its boundary, @O; goes to a �nite sequence of points. This permits applying
the precedent algorithm.
Such selection may proceed in di¤erent ways:
We can obtain a polyhedral (ever improved) approximation to O.
Suppose that @O is a closed planar curve of length L: Then, to introduce

(for instance) �ve points:

fVig4i=0

it would be su¢ cient �xing an initial point, say V0; and from here, applying a
distance equal to L=5 over the curve, V1; and so on, until V4:
From then, turning out V0 :
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V0 (+ L=5)! V1 (+ L=5)! V2 (+ L=5)!
! V3 (+ L=5)! V4 (+ L=5)! V0

The di¢ culty can appear when the shapes are partially occluded, or perhaps
the data set is noisy. In such case, a previous process of smoothing is required.
For example, by the equiangular selection.
In a very common real-world situation: when the shape is partially occluded,

we need to recompose the hidden region by our knowledge of its symmetrical fea-
tures. It is possible to determine a centroid, which by succesive approximations,
can give us their centre of symmetry.
The symmetry centre may be de�ned as the point which minimizes the total

of symmetry distances:

min
P

SD

It is possible to locate it by iteratively applying a procedure of hill-climbing :
the gradient descent method. For this, we depart from the centroid of the shape.
The position of each new point would be modelled by a Gausssian distribu-

tion, which by standardization can be considered a N (0; 1).
There also exists a method for evaluating such probable positions, given a

set of measurements. Its theoretical basis is the Maximum Likelihood Criterion.
So, we can start o¤ with n ordered points:

fWign�1i=0

each one of them with locations described by a Gaussian:

Wi � N (Vi; �i)
8i = 0; 1; 2; :::; n� 1

being Vi their expected position and �i the covariance matrix.
Finally, the probability distributions of SD values correspond to a chi-square�

�2
�
distribution, with (n� 1) freedom degrees:

�2n�1

But, as known, this would be approximated by a Gaussian distribution.

5. Markovian Modeling
For each vertex or node, representing in the graph a random variable, we

dispose of the probability distribution value associated with its position. So,
each possible situation of the node, into the corresponding slice, must possess a
numerical image of the random variable, that jointly with the symmetry distance
value to the pattern object, O, provides of a pair, describing probabilistically its
position and how far it is from its symmetrical �nal place. Because we do not
know previously the exact position of each node in each slide, advancing trough
the development structure. We only know the probability distribution of such
position: with what non-deterministic value such node goes to �ll a place.
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It is possible to de�ne a Markovian Decision Process from this model, as a
sequential chain of steps to be carried through such randomized Markov process:
each node only depends on the corresponding vertex that belongs to shapes
either in the same or in the precedent slice (Markovian property).

Such shapes can be supposed n vertices-polyhedra in the �rst step, fVjgn�1j=0 ; n-

1 vertices in the second shape, fVjgn�2j=0 ; and so on, until reaching the triangular

shape, fVjg2j=0, the line, fVjg
1
j=0 and �nally, the monoatomic world: a point,

W = V0. All of such shapes would be included in its corresponding slice.
Furthermore, it is possible to suppose an associated asymmetry level, de-

creasing, by applying in each step the algorithm on its points to obtain the
Symmetry Transform, before acting to delete the corresponding point:

fVjgn�1j=0 ! ST
�
fVjgn�1j=0

�
! fVjgn�2j=0 !

! ST
�
fVjgn�2j=0

�
! :::! ST

�
fVjg2j=0

�
!

! ST
�
fVjg1j=0

�
! ST (W = V0) = V0

The elimination order will be given by the natural decreasing order of the
indices, according to the pre�xed order of vertices in the original shape.
We can take as Total Expectancy Reward (TER), for the minimization (in-

stead of maximization) process the previously de�ned Symmetry Distance (SD)
between the succesive shapes.

It is also possible to introduce a new Reward function as inversely propor-
tional to such SD translated in 1:

TER = 1
1 + SD (Oi; O)

In such a case, appliyng the procedure of maximization is logical, now with-
out the �nal problem of discontinuity.
According to the observability of system states, we construct a Fully Ob-

servable Markovian Decision Process (FOMDP), described without hidden vari-
ables.
Associated with each step of this process, we have the �transition proba-

bilities�: in the instant t, the system is in the state Si, after carrying out the
action, or decision, ai :

do(X = xi)

When the system was in state Si�1. Such probability of transition will be
expressed as:

Pt (Si = Si�1; ai)
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The underlying (and basic) idea is the replication of the shapes (therefore,
the set of its nodes-vertices, representing random variables), on a sequence of
temporal points. Because in our case, the random variables can be the succesive
shapes, in the evolution, or their nodes.
Then, we reach a Foliation of Bayesian Nets, F , where each BN belongs to

a temporal slice, and so the total construct will be a Dynamic Bayesian Net:

Foliation of BNs = S (T ) = [t2T S (t)

Therefore, it contains its corresponding slices, S (t) ; according the evolution
of the system.
So, we can consider each shape immersed in their parallel hyperplane, into

the global Foliation de�ned on BNs.

6. Entropy and Speci�city Measures
Let U be the universe of discourse, with } a ��algebra on U .
Then, given a function

m : }! [0; 1]

we describe m as a Fuzzy Measure, if it veri�es:

I) m (;) = 0
II) m (U) = 1
III) If A; B 2 }; with A � B )
) m (A) � m (B) [monotonicity]

When we take the Entropy concept, we attempt to measure the fuzziness,
that is, the degree of being fuzzy for each element in }:
It can be designed as the function:

H : }! [0; 1]

verifying:

I) If A is a crisp set ) H (A) = 0
II) If H (x) = 1=2; 8x 2 A)
) H (A) is maximal (total uncertainty)
III) If A is less fuzzi�ed than B )
) H (A) � H (B)
IV) H (A) = H (U nA)
And the Speci�city Measure will be introduced as a measure of the tranquil-

lity when we take decisions. Such Speci�city Measure is a function:

S p : [0; 1]
U ! [0; 1]
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where:

I) S p (;) = 0
II) S p ({) = 1, { is a unitary set (singleton).
III) If & and � are normal fuzzy sets in U ,
with: & � � ) S p (&) � S p (�) :
Note: [0; 1]U denotes the class of fuzzy sets in U .

7. Asymmetry Level as a Normal Fuzzy Measure
We can de�ne now the symmetry/asymmetry level so (using Speci�city Mea-

sure):

La (An) = 1� fSp (An)g
h
p1 � cp
p1 + cp

i
) Ls (An) = fSp (An)g

h
p1 � cp
p1 + cp

i
From here, based on:

0 � Sp (An) � 1)

) lim fLs (An)g = Ls (A) = Ls (fag)

About the intervention of the Entropy Measure, H, in our formula, we must
consider that:

Ai � Aj ) H (Ai) � H (Aj)

The Entropy degree increases when the cardinal (or number of elements, for
�nite sets) increases, and reciprocally:

1 +H (Ai) � 1 +H (Aj))

) 1
1 + H(Aj)

� 1
1 + H(Ai)

;

being i 6= j

In our construction, we have: j � i

Also, we can obtain a more complete expression of the Symmetry Level
Function, through the intervention of the Entropy Measure, H depending on
the increment or decrement of the cardinal of the set:

L�s =
n
Sp
�
p1 � cp
p1 + cp

�
+ (1 +H)

�1
o
,

, L�a = 1�
n
Sp
�
p1 � cp
p1 + cp

�
+ (1 +H)

�1
o
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Therefore, when H increase, L�s decrease (so, L
�
a increase).

And when Sp increase, L�s also increase (so, L
�
a decrease, respectively).

But actually, in these cases, we are back to cardinal two:

RINT 2 f0; 1g

Reappearing in such case the discontinuous situation for the described func-
tion.

It is also possible to formulate it (as we say) as function of the Entropy, H,
because the value of such measure increases with the number of elements in the
set.
Therefore:

[L�s (Ai)] = 1; in the monoatomic world

and [L�s (Ai)] = 0; in other worlds

) [L�a (Ai)] = 0; in the monoatomic world
and [L�a (Ai)] = 1; in other worlds

Obtaining so, �nally, the composition of the initial asymmetry level with the
integer part function (INT):

l�a (Ai) = INT fL�a (Ai)g =
h
1�

��� 1�c1+c

���i
l�s (Ai) = INT fL�s (Ai)g =

h��� 1�c1+c

���i
l�a (Ai) = [L

�
a (Ai)] = 1; if Ai 6= A;

or
l�a (Ai) = 0; if Ai = A

) l�s (Ai) = [L�s (Ai)] = 0; if Ai 6= A;
or

l�s (Ai) = 1; if Ai = A

Finally, it is possible to omit the asterisk in the L0 symbols.
So,we will obtain La or Ls, according to our purpose.

To prove the Normal character of La, it su¢ ces taking as maximal subset:

AM = U

And as minimal subset:

Am = ?
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In any case:

m (AM ) = m (U) = 1

And

m (An) = m (?) = 0

Therefore, in fact we have a Normal fuzzy measure, La:

8. Related work and future research
So far, the fundamental mathematical direction when working on Symmetry

and its properties was the geometrical, from problems derived from di¤erent
�elds. Let us cite some: the analysis of chrystalline stuctures, by the Chystal-
lographic Planar or Spacial Groups; also, it was an immediate application of
the classical Group Theory; and many more: physical problems, as in Quantum
Mechanics, or in Penrose tiles, Fractals, Chaos Theory and so on.
Closer to the Computer Science, it is connected with Arti�cial Vision, Pat-

tern Recognition, the analysis of symmetrical structures in Computational Lin-
guistics or similar aspects of AI, where the presence or absence of certain sym-
metrical features, and their degrees, is essential.
Basically, the precedent work related to these aspects is on Symmetry Groups,

the Hermann Weyl papers and his famous book, Symmetry [18]. About their
application to pattern recognitition, arti�cial vision and so on, the papers and
presentations of Liu on Computational Symmetry [12]. And also the revisited
question of symmetrical patterns.
The future research needs to focus on questions derived from the versatility

of the real world and the relatively coarse and rigid old geometry (group theory
included), which only permits a �rst approximation to new and more di¢ cult
problems of AI, like in Computer Vision.

Conclusions
Our initial objective is �nally reached, because we obtain a new fuzzy mea-

sure, which permits evaluating the degree of asymmetry, or dually, the degree
of symmetry, of any fuzzy set. So, it is useful in general: it may be applied to
graphs in general, or to Bayesian Networks in particular.
And many other applications in very promising and connected �elds, as

Modeling and Optimization.
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