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Abstract

In the classical inventory (or) supply chain models, it was assumed that the retailers and

their customers must pay for the items as soon as the items are received. However, in practice,

the supplier usually is willing to provide the retailer a full trade credit period for payments and

the retailer just offers the partial trade credit period to his/her customers. This paper develops

economic production quantity (EPQ)- based model to investigate the retailer’s inventory system

in a supply chain as a cost minimization problem under partial trade credit option to their

customers. Mathematical theorems are developed to determine optimal inventory policy for

the retailer and numerical examples are given to illustrate the theorems. We deduce some

previously published results of other researchers as particular cases and obtain lot of managerial

phenomena.

Keywords: Partial trade credit; EPQ models ; Supply chain ; Optimization

1. Introduction

In today’s business transactions, it is more and more common to see that retailers are allowed a

fixed time period before they settle their account to the supplier. We term this period as trade credit

period. Before the end of the trade credit period, the retailer can sell the goods and accumulate

revenue and earn interest. A higher interest is charged if the payment is not settled at the end of

the trade credit period. In the real world, the supplier would allow a specified credit period (say, 30

days) to the retailer for payment without penalty to stimulate the demand of consumable products.

This credit term in financial management is denoted as ‘net 30’. The trade credit financing produces
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two benefits to the supplier: (1) it should attract new customers who consider it to be a type of

price reduction; and (2) it should cause a reduction in sales outstanding, since some established

customers will pay more promptly in order to take advantage of trade credit more frequently. In

India, gas stations adopted a pricing policy that charged less money per gallon to the customer

who paid by cash, instead of by a credit card. Likewise, a store owner in many China towns around

the world usually charges a customer 5 % more if the customer pays by a credit card, instead of by

cash. As a result, the customer must decide which alternative to take when the supplier provides

not only a cash discount but also a permissible delay.

One level trade credit financing refers that the supplier would offer the retailer trade credit

but the retailer would not offer the trade credit to his/her customers. That is, the retailer could

sell the goods and accumulate revenue and earn interest within the trade credit period but the

customer would pay for the items as soon as the items are received from the retailer. Several

interesting and relevant papers related to one level trade credit financing exist in the literature.

Goyal (1985) analyzed effects of trade credit on the optimal inventory policy. Chand and Ward

(1987) analyzed Goyal’s problem under assumptions of the classical economic order quantity model,

obtaining different results. Chung (1998) developed an alternative approach to determine the

economic order quantity under the condition of permissible delay in payments. Aggarwal and

Jaggi (1995) considered the inventory model with an exponential deterioration rate under the

condition of permissible delay in payments. Chu et al. (1998) extended Goyal’s model to the case

of deterioration. Jamal et al. (1997) and Chang and Dye (2001) further generalized the model with

shortages. Many related articles can be found in Hwang and Shinn (1997), Jamal et al. (2000),

Arcelus et al. (2003), Abad and Jaggi (2003) and Chang (2004), Chung et al. (2005), Chung and

Liao (2006), and Huang (2007) and their references.

Partial trade credit financing refers to paying partial amount for the purchased items as soon

as the items are received and remaining amount should be settled at the end of a trade credit

period. Before the end of the trade credit period, we can sell the goods and accumulate revenue

and earn interest. A higher interest is charged if the payment is not settled by the end of the trade

credit period. Partial trade credit financing is one of central features in supply chain management.

Since in most business transactions, the one level trade credit financing is unrealistic, we want to

investigate the situation in a supply chain in which the supplier is willing to provide the retailer

a full trade credit period for payments and the retailer offers the partial trade credit to his/her

178



AMO - Advanced Modeling and Optimization, Volume 10, Number 2, 2008 1

customers. In practice, this partial trade credit financing at a retailer is more matched to real life

supply chains. For example, in India, the TATA Company can delay the full amount of purchasing

cost until the end of the delay period offered by his supplier. But the TATA Company only offers

partial delay payment to his dealership on the permissible credit period and the rest of the total

amount is payable at the time the dealership places a replenishment order.

In the above models, it was assumed that the products are obtained from an outside supplier

and the entire lot size was delivered at the same time. In fact, when a product can be produced in-

house, the replenishment rate is also the production rate, and is hence finite. Hence, the Economic

Production Quantity (EPQ) model should be the efficient model to deal with inventory management

issues in a supply chain. It is considered to be one of the most popular inventory control models

used in an industry. In this paper, we complement the shortcomings of all the previously mentioned

models by relaxing the traditional EPQ model in the following 4 ways: (1) the supplier is willing to

provide the retailer a full trade credit period for payments and the retailer offers the partial trade

credit period to his/her customers; (2) the retailer’s trade credit period offered by the supplier

is not necessarily longer than the customer’s trade credit period offered by the retailer; (3) the

retailer’s selling price per unit is not necessarily higher than the purchase unit cost; (4) interest

charge rate is not necessarily higher than the interest earned rate. The retailer could sell the goods

and accumulate revenue and earn interest within the trade credit period offered by the supplier

and retailer must pay interest to the items to the supplier if the payment is not settled at the end

of trade credit period. Under these conditions, we model the retailer’s inventory system as a cost

minimization problem to determine retailer’s optimal ordering policies.

2. Notations and assumptions

The following notations and assumptions will be used at the retailer of a supply chain.

Notations

D demand rate per year

P production rate per year

ρ 1 −
D
P

≥ 0

h stock-holding cost per unit per year excluding interest charges

A ordering cost per order

Ie interest earned per $ per year

179



AMO - Advanced Modeling and Optimization, Volume 10, Number 2, 2008 1

Ik interest charges payable per $ per year to the supplier

c unit purchasing price

s unit selling price

α customer’s fraction of the total amount owed payable at the time of

placing an order offered by the retailer, 0 ≤ α ≤ 1

M retailer’s trade credit period offered by the supplier in years

N customer’s trade credit period offered by the retailer in years

T cycle time in years

TC(T ) annual total cost, which is a function of T

T ∗ optimal cycle time

Q∗ = DT ∗ optimal order quantity.

Assumptions

1. Replenishment rate, P , is known and uniform.

2. Demand rate, D, is known and constant.

3. The supplier offers the full trade credit to the retailer. When T ≥ M , the account is settled

at T = M , the retailer pays off all units sold and keeps his/her profits, and starts paying for

the interest charges on the items in stock with rate Ik. When T ≤ M, the account is settled

at T = M and the retailer no need to pay any interest on the stock.

4. The retailer just offers the partial trade credit to his/her customers. Hence, the customer

must make a partial payment to the retailer when the item is sold. Then the customer must

pay off the remaining balance at the end of the trade credit period offered by the retailer.

That is, the retailer can accumulate interest from his/her customer payment with rate Ie.

5. Time horizon is infinite.

6. Shortages are not allowed.

3. Model formulation

The annual total cost incurred at the retailer,

TC(T ) = Setup cost + Holding cost + Interest payable - Interest earned
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Trade credit period of the retailer may be greater or lesser to the trade credit period of his

customer. So, two situations may arise: (I) M ≥ N and (II) M < N.

(a) (b)

Figure 1: (a) Total accumulation of interest payable when PM/D ≤ T , (b) Total accumulation of

interest payable when M ≤ T ≤ PM/D and DT/P ≤ N ≤ M (or) N ≤ DT/P

Case I: When M ≥ N

1. Annual ordering cost is A/T .

2. Excluding interest charges, the annual stock-holding cost is (shown in Fig.1(a))

hT (P − D)(DT/P )

2T
=

DTh

2
(1 −

D

P
) =

DThρ

2

3. According to assumption (3), there are four cases that occur in costs of interest payable for

the items kept in stock per year.

(a) For M ≤ PM/D ≤ T , (shown in Fig.1 (a))

the annual amount of interest payable

=
cIk

T

[

DT 2ρ

2
−

(P − D)M2

2

]

=
cIkρ

T

[

DT 2 − PM2

2

]

(b) For M ≤ T ≤ PM/D, (shown in Fig. 1(b))

the annual amount of interest payable

=
cIk

T

[

D(T − M)2

2

]
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(c) For N ≤ T ≤ M,

the annual interest payable amount is zero.

(d) For T ≤ N,

there is no annual interest payable cost.

4. According to assumption (4), there are four cases that occur in interest earned per year.

(a) (b)

Figure 2: (a) Total amount of interest earned when PM/D ≤ T (or) M ≤ T ≤ PM/D , (b) Total

amount of interest earned when N ≤ T ≤ M

(a) For M ≤ PM/D ≤ T and M ≤ T ≤ PM/D (see Fig. 2(a)), the annual interest earned

is
sIe

T

[

αDN2

2
+

(DN + DM)(M − N)

2

]

=
sIeD

2T
[M2

− (1 − α)N2]

(b) For N ≤ T ≤ M , (see Fig. 2(b)) the annual interest earned is

sIe

T

[

αDN2

2
+

(DN + DT )(T − N)

2
+ DT (M − T )

]

=
sIeD

2T
[2MT − (1 − α)N2

− T 2]

(c) For T ≤ N (see Fig. 3), the annual interest earned is

sIe

T

[

αDT 2

2
+ αDT (N − T ) + DT (M − N)

]

= sIeD

[

M − (1 − α)N −
αT

2

]
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Figure 3: Total amount of interest earned when T ≤ N

The total cost incurred at the retailer, TC(T ), is

TC(T ) =











































TC1(T ) if PM/D ≤ T

TC2(T ) if M ≤ T ≤ PM/D

TC3(T ) if N ≤ T ≤ M

TC4(T ) if 0 < T ≤ N

(1)

where

TC1(T ) =
A

T
+

DThρ

2
+

cIkρ

T

[

DT 2 − PM2

2

]

−
sIeD

2T
[M2

− (1 − α)N2] (2)

TC2(T ) =
A

T
+

DThρ

2
+

cIk

T

[

D(T − M)2

2

]

−
sIeD

2T
[M2

− (1 − α)N2] (3)

TC3(T ) =
A

T
+

DThρ

2
−

sIeD

2T
[2MT − (1 − α)N2

− T 2] (4)

TC4(T ) =
A

T
+

DThρ

2
− sIeD

[

M − (1 − α)N −
αT

2

]

(5)

Since TC1(PM/D) = TC2(PM/D), TC2(M) = TC3(M) and TC3(N) = TC4(N), TC(T ) is con-

tinuous and well-defined. All TC1(T ), TC2(T ), TC3(T ), TC4(T ) and TC(T ) are defined on T > 0.
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Taking first and second derivatives of the Eqs. (2)-(5), we have the following,

TC
′

1(T ) = −

[

2A − cIkρPM2 − sIeD[M2 − (1 − α)N2]

2T 2

]

+ Dρ

(

h + cIk

2

)

(6)

TC
′′

1 (T ) =
2A − cIkρPM2 − sIeD[M2 − (1 − α)N2]

T 3
(7)

TC
′

2(T ) = −

[

2A + cIkDM2 − sIeD[M2 − (1 − α)N2]

2T 2

]

+ D

(

hρ + cIk

2

)

(8)

TC
′′

2 (T ) =
2A + DM2(cIk − sIe) + sIeD(1 − α)N2]

T 3
> 0 (9)

TC
′

3(T ) = −

[

2A + sIeD(1 − α)N2

2T 2
+

D

2
(hρ + sIe)

]

(10)

TC
′′

3 (T ) =
2A + sD(1 − α)N2Ie

T 3
> 0 (11)

TC
′

4(T ) =
−A

T 2
+ D

[

hρ + sαIe

2

]

(12)

TC
′′

4 (T ) =
2A

T 3
> 0 (13)

Eqs. (9), (11) and (13) imply that TC2(T ), TC3(T ) and TC4(T ) are convex on T > 0. Eq.(7)

implies that TC1(T ) is convex on T > 0 when 2A − cIkρPM2 − sIeD[M2 − (1 − α)N2] > 0.

Furthermore, we have TC
′

1
(PM/D) = TC

′

2
(PM/D), TC

′

2
(M) = TC

′

3
(M) and TC

′

3
(N) = TC

′

4
(N).

Therefore TC(T ) is convex on T > 0 when 2A − cIkρPM2 − sIeD[M2 − (1 − α)N2] > 0.

3.1. Optimal cycle time T ∗ for the case M ≥ N

Let TC
′

i(T
∗

i ) = 0 for all i = 1, 2, 3, 4. We can obtain

T ∗

1 =

√

2A − cIkρPM2 − sIeD[M2 − (1 − α)N2]

Dρ(h + cIk)

if 2A − cIkρPM2
− sIeD[M2

− (1 − α)N2] > 0,

(14)

T ∗

2 =

√

2A + cIkDM2 − sIeD[M2 − (1 − α)N2]

D(hρ + cIk)
(15)

T ∗

3 =

√

2A + sIeD(1 − α)N2

D(hρ + sIe)
(16)

T ∗

4 =

√

2A

D(hρ + sαIe)
(17)

Eq.(14) gives the optimal value T ∗ for the the case when T ≥ PM/D so that T ∗

1
≥ M. We substitute

Eq.(14) into T ∗

1
≥ PM/D; then we obtain that

T ∗

1 ≥ PM/D if and only if − 2A− cIkDM2 + (PM/D)2D(hρ + cIk) + sIeD[M2
− (1−α)N2] ≤ 0.
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Eq.(15) gives the optimal value T ∗ for the the case when M ≤ T ≤ PM/D so that M ≤ T ∗

2
≤

PM/D. We substitute Eq.(15) in M ≤ T ∗

2
≤ PM/D; then we obtain that

T ∗

2 ≤ PM/D if and only if − 2A− cIkDM2 + (PM/D)2D(hρ + cIk) + sIeD[M2
− (1−α)N2] ≥ 0.

and

M ≤ T ∗

2 if and only if − 2A + DM2hρ + sIeD[M2
− (1 − α)N2] ≤ 0

Similarly, Eq.(16) gives the optimal value T ∗ for the the case when N ≤ T ≤ M so that N ≤ T ∗

3
≤

M. We substitute Eq.(16) in N ≤ T ∗

3
≤ M ; then we obtain that

T ∗

3 ≤ M if and only if − 2A + DM2hρ + sIeD[M2
− (1 − α)N2] ≥ 0

and

T ∗

3 ≥ N if and only if − 2A + DN2[hρ + sαIe] ≤ 0

Finally, Eq.(17) gives the optimal value T ∗ for the the case when T ≤ N so that T ∗

4
≤ N. We

substitute Eq.(17) in T ∗

4
≤ N ; then we obtain that

T ∗

4 ≤ N if and only if − 2A + DN2[hρ + sαIe] ≥ 0

Now, we let

∆1 = −2A − cIkDM2 + (PM/D)2D(hρ + cIk) + sIeD[M2
− (1 − α)N2] (18)

∆2 = −2A + DM2hρ + sIeD[M2
− (1 − α)N2] (19)

and ∆3 = −2A + DN2[hρ + sαIe] (20)

Eqs. (18), (19) and (20) imply that ∆1 ≥ ∆2 ≥ ∆3. From the above arguments, we obtain the

following Theorem 1.

Theorem 1.

(A) If ∆1 ≤ 0, then TC(T ∗) = TC(T ∗

1
) and T ∗ = T ∗

1

(B) If ∆1 > 0 and ∆2 ≤ 0, then TC(T ∗) = TC(T ∗

2
) and T ∗ = T ∗

2

(C) If ∆2 > 0 and ∆3 ≤ 0, then TC(T ∗) = TC(T ∗

3
) and T ∗ = T ∗

3

(D) If ∆3 > 0 then TC(T ∗) = TC(T ∗

4
) and T ∗ = T ∗

4
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(a) (b)

Figure 4: (a) Total amount of interest earned when M ≤ T , (b) Total amount of interest earned

when T ≤ M

Case II: Suppose M < N

1. Annual ordering cost is A/T .

2. Excluding interest charges, annual stock-holding cost is DThρ
2

3. According to assumption (3), there are three cases that occur in costs of interest payable for

the items kept in stock per year.

(a) For PM/D ≤ T,

the annual interest payable

=
cIkρ

T

[

DT 2 − PM2

2

]

(b) For M ≤ T ≤ PM/D,

the annual interest payable

=
cIk

T

[

D(T − M)2

2

]

(c) M ≥ T

the annual interest payable = 0

4. According to assumption (4), there are three cases that occur in interest earned per year.
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(a) For PM/D ≤ T and M ≤ T ≤ PM/D (see Fig. 4 (a)), the annual interest earned is

sIeDαM2

2T

(b) For M ≥ T , (see Fig. 4 (b)) the annual interest earned is

sIe

[

αDT 2

2
+ αDT (M − T )

]

/T = sIeD[αM − αT/2]

The total cost incurred at the retailer, TC(T), is

TC(T ) =



























TC5(T ) if PM/D ≤ T

TC6(T ) if M ≤ T ≤ PM/D

TC7(T ) if M ≥ T

(21)

where

TC5(T ) =
A

T
+

DThρ

2
+

cIkρ

T

[

DT 2 − PM2

2

]

−
sIeDαM2

2T
(22)

TC6(T ) =
A

T
+

DThρ

2
+

cIk

T

[

D(T − M)2

2

]

−
sIeDαM2

2T
(23)

TC7(T ) =
A

T
+

DThρ

2
− sIeD[αM − αT/2] (24)

Since TC5(PM/D) = TC6(PM/D) and TC6(M) = TC7(M), TC(T) is continuous and well-

defined. All TC5(T ), TC6(T ), TC7(T ) and TC(T ) are defined on T > 0. Taking first and second

derivatives of the Eqs. (22)-(24), we have the following equations,

TC
′

5(T ) = −

[

2A − cIkρPM2 − sIeαDM2

2T 2

]

+ Dρ

(

h + cIk

2

)

(25)

TC
′′

5 (T ) =
2A − cIkρPM2 − sIeDαM2

T 3
(26)

TC
′

6(T ) = −

[

2A + cIkDM2 − sIeDαM2

2T 2

]

+ D

(

hρ + cIk

2

)

(27)

TC
′′

6 (T ) =
2A + DM2(cIk − αsIe)

T 3
> 0 (28)

TC
′

7(T ) =
−A

T 2
+ D

[

hρ + sαIe

2

]

(29)

TC
′′

7 (T ) =
2A

T 3
> 0 (30)

Eqs. (28) and (30) imply that TC6(T ) and TC7(T ) are convex on T > 0 and Eq.(26) implies that

TC5(T ) is convex on T > 0 if 2A−cIkρPM2−sIeDαM2 > 0. Furthermore, we have TC
′

5
(PM/D) =
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TC
′

6
(PM/D) and TC

′

6
(M) = TC

′

7
(M). Therefore, Eq.(21) imply that TC(T) is convex on T > 0

when 2A − cIkρPM2 − sIeDαM2 > 0.

3.2. Optimal cycle time T ∗ for the case M < N

Let TC
′

i(T
∗

i ) = 0 for all i = 5, 6, 7. We can obtain

T ∗

5 =

√

2A − cIkρPM2 − sIeDαM2

Dρ(h + cIk)

if 2A − cIkρPM2
− sIeαDM2 > 0,

(31)

T ∗

6 =

√

2A + cIkDM2 − sIeDαM2

D(hρ + cIk)
(32)

T ∗

7 =

√

2A

D(hρ + sαIe)
(33)

Eq.(31) gives the optimal value T ∗ for the the case when T ≥ PM/D so that T ∗

5
≥ PM/D. We

substitute Eq.(31) in T ∗

5
≥ PM/D; then we obtain that

T ∗

5 ≥ PM/D if and only if − 2A + DM2(sαIe − cIk) + (PM/D)2D(hρ + cIk) ≤ 0.

Eq.(32) gives the optimal value T ∗ for the the case when M ≤ T ≤ PM/D so that M ≤ T ∗

6
≤

PM/D. We substitute Eq.(32) in M ≤ T ∗

6
≤ PM/D; then we obtain that

T ∗

6 ≤ PM/D if and only if − 2A + DM2(sαIe − cIk) + (PM/D)2D(hρ + cIk) > 0.

and

M ≤ T ∗

6 if and only if − 2A + DM2hρ + sIeαDM2
≤ 0

Similarly, Eq.(33) gives the optimal value T ∗ for the the case when T ≤ M so that T ∗

7
≤ M. We

substitute Eq.(33) in T ∗

7
≤ M ; then we obtain that

T ∗

7 ≤ M if and only if − 2A + DM2[hρ + sαIe] ≥ 0

Furthermore, we let

∆4 = −2A + DM2(sαIe − cIk) + (PM/D)2D(hρ + cIk) (34)

∆5 = −2A + DM2(hρ + sαIe) (35)
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Eqs. (34) and (35) imply that ∆4 ≥ ∆5. From the above arguments, we obtain the following

Theorem 2.

Theorem 2.

(A) If ∆5 ≥ 0, then TC(T ∗) = TC(T ∗

7
) and T ∗ = T ∗

7

(B) If ∆5 < 0 and ∆4 > 0, then TC(T ∗) = TC(T ∗

6
) and T ∗ = T ∗

6

(D) If ∆4 ≤ 0 then TC(T ∗) = TC(T ∗

5
) and T ∗ = T ∗

5

4. Particular cases

4.1. Chung and Haung’s model (2003)

When N = 0, M ≥ 0, s = c and α = 0 ( it means that the supplier offers full trade credit to

his/her retailer but the retailer does not offer trade credit to his/her customer), from Eqs.(2 - 4)

TC8(T ) =
A

T
+

DThρ

2
+

cIkρ

T

[

DT 2 − PM2

2

]

−
cIeDM2

2T
if T ≥ PM/D (36)

TC9(T ) =
A

T
+

DThρ

2
+

cIk

T

[

D(T − M)2

2

]

−
cIeDM2

2T
if M ≤ T ≤ PM/D (37)

TC10(T ) =
A

T
+

DThρ

2
−

cIe

T
[DT 2/2 + DT (M − T )] if T ≤ M (38)

From the optimality conditions, we have

TC
′

i(T
∗

i ) = 0 for i = 8, 9, 10

where

T ∗

8 =

√

2A + DM2c(Ik − Ie) − PM2cIk

Dρ(h + cIk)

if 2A + DM2c(Ik − Ie) − PM2cIk > 0,

(39)

T ∗

9 =

√

2A + DM2c(Ik − Ie)

D(hρ + cIk)
(40)

T ∗

10 =

√

2A

D(hρ + cIe)
(41)

189



AMO - Advanced Modeling and Optimization, Volume 10, Number 2, 2008 1

Eq.(1) is modified as follows:

TC(T ) =



























TC8(T ) if PM/D ≤ T

TC9(T ) if M ≤ T ≤ PM/D

TC10(T ) if M ≥ T

(42)

Eq.(42) is consistent with Eqs.(6 a-c) in Chung and Haung’s model (2003). Eqs.(18) and (19)

can be modified as

∆1 = −2A +
M2

D
[P (P − D)h + cIk(P

2
− D2) + cIeD

2] (43)

and ∆2 = −2A + DM2(hρ + cIe) (44)

(45)

respectively. If we let, ∆̄1 = −2A + M2

D
[P (P − D)h + cIk(P

2 − D2) + cIeD
2] and ∆̄2 = −2A +

DM2(hρ + cIe) then Theorem 1 can be modified as follows.

Theorem 3.

(A) If ∆̄1 ≤ 0 and ∆̄2 < 0, then TC(T ∗) = TC(T ∗

8
) and T ∗ = T ∗

8

(B) If ∆̄1 > 0 and ∆̄2 < 0, then TC(T ∗) = TC(T ∗

9
) and T ∗ = T ∗

9

(C) If ∆̄1 ≥ 0 and ∆̄2 > 0 then TC(T ∗) = TC(T ∗

10
) and T ∗ = T ∗

10

The above Theorem has been discussed in Theorem 3 of Chung and Haung’s model (2003).

Hence, Chung and Haung’s model is a particular case of this paper.

4.2. Haung’s model (2003)

When P → ∞, M ≥ N, s = c and α = 0 ( it means that the retailer (under EOQ strategy) also

offers full trade credit to his/her customer), we have

TC11(T ) =
A

T
+

DTh

2
+

cIkD(T − M)2

2T
−

cIeD(M2 − N2)

2T
(46)

TC12(T ) =
A

T
+

DTh

2
− cIeD[2MT − N2

− T 2]/2T (47)

TC13(T ) =
A

T
+

DTh

2
− cIeD(M − N) (48)

From the optimality conditions, we have

TC
′

i(T
∗

i ) = 0 for i = 11, 12, 13
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where

T ∗

11 =

√

2A + cD[M2(Ik − Ie) + N2Ie]

D(h + cIk)
(49)

T ∗

12 =

√

2A + DN2Ie

D(h + cIe)
(50)

T ∗

13 =

√

2A

Dh
(51)

Eq.(1) is modified as follows:

TC(T ) =



























TC11(T ) if M ≤ T

TC12(T ) if N ≤ T ≤ M

TC13(T ) if 0 < T ≤ N,

(52)

Eq.(52) is consistent with Eqs.(1 a-c) in Haung’s model (2003). Eqs.(18) and (19) can be modified

as

∆1 = −2A + M2[h + cIe] − cDN2Ie (53)

and ∆2 = −2A + DN2h (54)

(55)

respectively. If we let, ∆̄3 = ∆1 and ∆̄4 = ∆2 then Theorem 1 can be modified as follows.

Theorem 4.

(A) If ∆̄3 ≤ 0 and ∆̄4 < 0, then TC(T ∗) = TC(T ∗

11
) and T ∗ = T ∗

11

(B) If ∆̄3 > 0 and ∆̄4 < 0, then TC(T ∗) = TC(T ∗

12
) and T ∗ = T ∗

12

(C) If ∆̄3 > 0 and ∆̄4 ≥ 0 then TC(T ∗) = TC(T ∗

13
) and T ∗ = T ∗

13

The above Theorem has been discussed in Theorem 1 of Haung’s model (2003). Hence, Haung’s

model is a particular case of this paper.

4.3. Goyal’s model (1985)

When P → ∞, N = 0, s = c and α = 0 (it means that the retailer (under EOQ strategy) would

not offer the delay period to his/her customer, that is, one level of trade credit), let

TC14(T ) =
A

T
+

DTh

2
+

cIkD(T − M)2

2T
−

cIeDM2

2T
(56)

TC15(T ) =
A

T
+

DTh

2
− cIe[DT 2/2 + DT (M − T )]/2T (57)
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From the optimality conditions, we have

TC
′

i(T
∗

i ) = 0 for i = 14, 15

where

T ∗

14 =

√

2A + cDM2(Ik − Ie)

D(h + cIk)
(58)

T ∗

15 =

√

2A

D(h + cIe)
(59)

Eq.(1) is modified as follows:

TC(T ) =











TC14(T ) if M ≤ T

TC15(T ) if 0 ≤ T ≤ M

(60)

Eq.(60) is consistent with Eqs.(1) and (4) in Goyal’s model (1985) respectively. Eq.(18)) can be

modified as ∆1 = −2A+M2[h+cIe]. If we let, ∆̄ = ∆1 then Theorem 1 can be modified as follows.

Theorem 5.

(A) If ∆̄ < 0 then T ∗ = T ∗

14

(B) If ∆̄ > 0 then T ∗ = T ∗

15

(C) If ∆̄ = 0 then T ∗ = T ∗

14
= T ∗

15
= M

The above Theorem has been discussed in Theorem 1 of Goyal’s model (1985). Hence, Goyal’s

model (1985) is a particular case of this paper.

5. Numerical Examples

In order to evaluate the proposed model, we have designed 27 numerical problems for different

parameters of α, N and s when M ≥ N and M < N. By using Theorems 1 and 2, we have obtained

optimal solutions.

5.1. When M ≥ N

For convenience, the following set of input values for various inventory parameters are selected

randomly. Let P = 3000; D= 2000; A = 100; c = 14; h = 7; Ik= 0.1; Ie = 0.2; M = 0.1. The

optimal solutions are shown in Table 1.
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Table 1: Optimal solutions when M ≥ N

α N s ∆1 ∆2 ∆3 Theorem T ∗ Q∗ TC∗

0.2 0.03 10 < 0 < 0 < 0 1(A) 0.1631 326.1025 913.0871

20 > 0 < 0 < 0 1(B) 0.1435 287.0042 791.4825

30 > 0 < 0 < 0 1(B) 0.1250 249.9714 653.2267

0.06 10 < 0 < 0 < 0 1(A) 0.1677 335.4315 939.2082

20 < 0 < 0 < 0 1(A) 0.1518 303.5975 850.0729

30 > 0 < 0 < 0 1(B) 0.1382 276.3538 751.7209

0.09 10 < 0 < 0 < 0 1(A) 0.1752 350.4283 981.1993

20 < 0 < 0 < 0 1(A) 0.1679 335.7720 940.1617

30 < 0 < 0 < 0 1(A) 0.1602 320.4461 897.2491

0.5 0.03 10 < 0 < 0 < 0 1(A) 0.1625 324.9176 909.7692

20 > 0 < 0 < 0 1(B) 0.1425 284.9812 783.9298

30 > 0 < 0 < 0 1(B) 0.1232 246.4752 640.1739

0.06 10 < 0 < 0 < 0 1(A) 0.1654 330.7999 926.2397

20 > 0 < 0 < 0 1(B) 0.1475 294.9576 821.1751

30 > 0 < 0 < 0 1(B) 0.1317 263.4930 703.7073

0.09 10 < 0 < 0 < 0 1(A) 0.1702 340.3779 953.0582

20 > 0 < 0 < 0 1(A) 0.1572 314.4156 880.3636

30 > 0 < 0 < 0 1(B) 0.1448 289.6426 801.3325

0.8 0.03 10 < 0 < 0 < 0 1(A) 0.1619 323.7283 906.4392

20 > 0 < 0 < 0 1(B) 0.1415 282.9437 776.3232

30 > 0 < 0 < 0 1(B) 0.1215 242.9286 626.9333

0.06 10 < 0 < 0 < 0 1(A) 0.1631 326.1025 913.0871

20 > 0 < 0 < 0 1(B) 0.1435 287.0042 791.4825

30 > 0 < 0 < 0 1(B) 0.1250 249.9714 653.2267

0.09 10 < 0 < 0 < 0 1(A) 0.1650 330.0216 924.0606

20 > 0 < 0 < 0 1(B) 0.1468 293.6470 816.2822

30 > 0 < 0 < 0 1(B) 0.1306 261.2880 695.4753
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5.2. When M < N

Let P = 6000; D= 5000; A = 43; c = 10; h = 10; Ik= 0.1; Ie = 0.2; M = 0.05. The optimal

solutions are shown in Table 2.

The following results are observed from Tables 1 and 2

(1) For fixed value of N and s, the larger the value of α, the smaller the value of the optimal cycle

time and the lower the value of the annual total cost.

(2) For fixed α and s, the larger the value of N , the larger the value of the optimal cycle time and

the higher the value of the annual total cost when M ≥ N ; the optimal cycle time and the annual

total cost will be independent of N when M < N.

(3) Finally, for fixed α and N , the larger the value of s, the smaller value of the optimal cycle time

and the smaller the value of the annual total cost.

To study the effects of α, N and s on the optimal order quantity Q∗ and on the optimal total cost

TC(T ∗), there are some managerial phenomena from Tables 1 and 2: (1) When the unit selling

price is increasing, the retailer will order less quantity to take the benefits of the trade credit more

frequently. (2) When the customer’s trade credit period offered by the retailer is increasing, the

retailer will order more quantity to accumulate more interest to compensate the loss of interest

earned when longer trade credit period is offered to his/her customer under the condition of M ≥

N. (3) When the customer’s fraction of the total amount owed payable at the time of placing an

order offered by the retailer is increasing, the retailer will order less quantity and increase order

frequency. The retailer can accumulate more interest under higher order frequency and higher

customer’s fraction of the total amount owed payable at the time of placing an order offered by the

retailer.

6. Conclusions and Future Research

The results in this paper not only provide a valuable reference for decision-makers in planning

and controlling the inventory but also provide a useful model for many organizations that use the

decision rule to improve their total operation cost. Here, we develop an EPQ inventory model that

investigates retailer’s decision making right in a supply chain under some realistic features. First,

the supplier provides his retailer a full trade credit period and the retailers also adopt the partial

trade credit option to their customers to stimulate high sales. Second, interest charge rate is not

necessarily higher than the interest earned rate. These assumptions are consistent with economic
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senses. We develop two effective and easy-to-use theorems to help the decision maker to find the

optimal replenishment policy. Theorem 1 gives the decision rule of the optimal cycle time when

M ≥ N after computing the numbers ∆1, ∆2 and ∆3. Theorem 2 does the decision rule of the

optimal cycle time when M < N after computing the numbers ∆4 and ∆5. Then we deduce Chung

and Haung’s model (2003), Haung’s model (2003) and Goyal’s model (1985) as particular cases of

this paper. Numerical examples are given to illustrate all effective theorems and obtained a lot of

managerial insights.

In practice, the contributions of this paper and the approach we considered to solve the problem

are significant because the retailer has to decide whether it is worthwhile to alter the regular

ordering pattern to exploit other opportunities and assess their monetary impact to find the optimal

ordering policy under realistic conditions linking marketing as well as operations management

concerns. Finally, this paper brings attention into the trade credit that is of major importance in

the operations of enterprises in many economics. The proposed model can be extended in several

ways. For instance, we may extend this for perishable items. In addition, we could consider the

probabilistic demand with shortages and quantity discounts.
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Table 2: Optimal solutions when M < N

α N s ∆4 ∆5 Theorem T ∗ Q∗ TC∗

0.1 0.06 10 < 0 < 0 2(C) 0.0940 470.0097 861.6844

30 < 0 < 0 2(C) 0.0911 455.2721 834.6656

50 < 0 < 0 2(C) 0.0880 440.0413 806.7424

0.08 10 < 0 < 0 2(C) 0.0940 470.0097 861.6844

30 < 0 < 0 2(C) 0.0911 455.2721 834.6656

50 < 0 < 0 2(C) 0.0880 440.0413 806.7424

0.1 10 < 0 < 0 2(C) 0.0940 470.0097 861.6844

30 < 0 < 0 2(C) 0.0911 455.2721 834.6656

50 < 0 < 0 2(C) 0.0880 440.0413 806.7424

0.5 0.06 10 < 0 < 0 2(C) 0.0708 440.0413 806.7424

30 > 0 < 0 2(B) 0.0520 354.1956 649.3587

50 < 0 < 0 2(C) 0.0880 259.8076 442.8203

0.08 10 < 0 < 0 2(C) 0.0880 440.0413 806.7424

30 < 0 < 0 2(C) 0.0708 354.1956 649.3587

50 > 0 < 0 2(B) 0.0520 259.8076 442.8203

0.1 10 < 0 < 0 2(C) 0.0880 440.0413 806.7424

30 < 0 < 0 2(C) 0.0708 354.1956 649.3587

50 > 0 < 0 2(B) 0.0520 259.8076 442.8203

0.9 0.06 10 < 0 < 0 2(C) 0.0816 407.8770 747.7745

30 > 0 > 0 2(A) 0.0493 246.6760 393.1772

50 > 0 < 0 2(A) 0.0402 200.7797 108.3495

0.08 10 < 0 < 0 2(C) 0.0816 407.8770 747.7745

30 < 0 > 0 2(A) 0.0493 246.6760 393.1772

50 > 0 > 0 2(A) 0.0402 200.7797 108.3495

0.1 10 < 0 < 0 2(C) 0.0816 407.8770 747.7745

30 > 0 > 0 2(A) 0.0493 246.6760 393.1772

50 > 0 > 0 2(A) 0.0402 200.7797 108.3495
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