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Abstract

In this paper we consider two nonlinear optimization problems. We show that these problems
can be reformulated in such a way that the admissible set becomes a subset of a prescribed
rearrangement class. The well known theory of rearrangemnts is then applied to prove existence
of optimal solutions. Numerical results determining optimal solutions are presented.
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1 Introduction

The theory of rearrangements as a tool for solving a variety of problems is growing in popularity. This
theory has been established by Geoffrey R. Burton [Burton 1987, 1989]. Subsequently, many applications
in solid and fluid mechanics [Burton et al., 1999; Emamizadeh et al., 2004], meteorology [Douglas, 2002]
followed. In this paper, we demonstrate the use of rearrangements to prove the existence of optimal solutions
to nonlinear optimization problems. For definiteness, we consider the following practical situation:

Suppose that a factory intends to run an electric machine for a fixed amount of time every day during
the twenty four hour period. This task bears two types of costs; one for electricity and the other for
labor. Given the electricity and labor cost distributions over the twenty four hour period, we would like
to determine an optimal set of time intervals so that the total cost is maximal or minimal.

To model the above problem we proceed as follows. Set Ω = [0, 24], and let g1 and g2 (the electricity
and labor cost distributions, respectively) be two non-negative, bounded, and measurable functions defined
on Ω. Denoting the set of all measurable subsets of Ω by 2Ω, the non-additive total cost function C : 2Ω → R
is defined as follows:

C(F ) =

(∫
F

g1 dx

)2

+

(∫
F

g2 dx

)2

. (1.1)

We are interested in the following optimization problems:

(M) sup
|F |=A

C(F ), (1.2)

and
(m) inf

|F |=A
C(F ), (1.3)

where |F | denotes the one dimensional Lebesgue measure of F . We assume 0 < A < 24, in order to avoid
triviality.

2 Reformulation of (M) and (m); main results

Our first task is to reformulate (M) and (m) in terms of a rearrangement class. For this purpose we first
observe that C(·) can be written as follows:

C(F ) =

(∫
Ω

χF g1 dx

)2

+

(∫
Ω

χF g2 dx

)2

,

where χF stands for the characteristic function of F . Next, since every set E ⊆ Ω can be identified with
the characteristic function χE , there is a natural bijection between the two sets {F ⊆ Ω : |F | = A} and
{χF :

∫
Ω
χF dx = A}. Note that problems (M) and (m) are equivalent to:

(M̃) sup
χ

F
∈{χ

E
:

∫
Ω χE

=A}
C̃(χF ),

and
(m̃) inf

χ
F
∈{χ

E
:

∫
Ω χE

=A}
C̃(χF ),

respectively. Here we have

C̃(f) =

(∫
Ω

fg1 dx

)2

+

(∫
Ω

fg2 dx

)2

.

Clearly if χ
F̂

is a solution to (M̃), then F̂ is a solution to (M). Similarly, if χ
Ĝ

is a solution to (m̃), then Ĝ

is a solution of (m). Therefore the natural questions are whether (M̃) and (m̃) are solvable or not. Indeed,
we show that the answers to both questions are affirmative as stated in the following theorems which are
the main results of this paper.

Theorem 1 The maximization problem (M̃) is solvable; that is, there exists χ
F̂

, |F̂ | = A, such that

C̃(χ
F̂

) = sup
χ

F
∈{χ

E
:

∫
Ω χE

=A}
C̃(χF ).
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Theorem 2 Suppose g1 =
∑N
k=1 γ

(1)
k χ[ak,bk], and g2 =

∑M
s=1 γ

(2)
s χ[cs,ds]. Then (m̃) is solvable; that is,

there exists χ
Ĝ

, |Ĝ| = A, such that

C̃(χ
Ĝ

) = inf
χ

F
∈{χ

E
:

∫
Ω χE

=A}
C̃(χF ).

Remark 1. Note that the assumptions on gi, i = 1, 2, in Theorem 2 are realistic. Indeed it is natural to
expect the electricity and labor costs to be constants over various time intervals (sets).

3 Rearrangements

In this section we review some well known results from the theory of rearrangements of functions, as much
as it is relevant to our purpose.

Recall that two functions f, g : Ω → R are said to be rearrangements of each other provided their
respective distribution functions are equal; that is,

λf (α) = λg(α), ∀α ≥ 0.

Here λf (α) = |{x ∈ Ω : f(x) ≥ α}|, and λg(α) is similarly defined. The reader is referred to [Hardy
et al., 1988] for an extensive treatment of the distribution functions. When two functions f and g are
rearrangements of each other we write f ∼ g. Clearly if f ∼ g, then g ∼ f as well. For a fixed non-negative
function f0 : Ω→ R, the rearrangement class generated by f0 denoted R(f0), is defined as follows:

R(f0) = {f : Ω→ R : f ∼ f0}.

If, in addition, we assume f0 ∈ L∞(Ω), then the following result is well known, see for example [Burton
1987, 1989].

Lemma 1 i) The set R(f0) ⊆ L∞(Ω), and ‖f‖∞ = ‖f0‖∞, for every f ∈ R(f0).
ii) The w∗-closure of R(f0), in L∞(Ω), denoted R(f0), is w∗-compact and convex.
iii) Denoting the extreme values of R(f0) by ext(R(f0)), ext(R(f0)) = R(f0).

Let us henceforth fix F0 ⊆ Ω such that |F0| = A. Then from [Turkington et al., 1989], we obtain:

Lemma 2 With the notation introduced above we have:

R(χF0
) =

{
f : Ω→ [0, 1] :

∫
Ω

fdx = A

}
.

4 Proofs of Theorems 1 and 2

Proof of Theorem 1. According to the discussion in the previous section we need to prove solvability of the
following maximization problem:

sup
f∈R(χ

F0
)

C̃(f).

We first relax the problem by replacing R(χF0
) by R(χF0

). Observe that C̃(·) is w∗-continuous. To see this
we consider fn ⇀ f , in L∞(Ω). Here “⇀” indicates convergence with respect to w∗-topology in L∞(Ω).
Since gi ∈ L∞(Ω), it follows that

∫
Ω
fngidx →

∫
Ω
fgidx, as n tends to infinity. Hence C̃(fn) → C̃(f), as

claimed. C̃(·) being w∗-continuous, and R(χF0
) compact, by Lemma 1, it follows that the relaxed problem:

sup
f∈R(χ

F0
)

C̃(f)

is solvable. Let us assume f is a solution. To prove the solvability of the original problem it suffices to verify
existence of f̂ ∈ R(χF0

) such that C̃(f̂) = C̃(f). To derive a contradiction we assume the contrary; that is,
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C̃(f) < C̃(f), for every f ∈ R(χF0
). From Lemma 1, we deduce that there exist t ∈ (0, 1), fi ∈ R(χF0

),

i = 1, 2, such that f = tf1 + (1− t)f2. Observe that C̃(·) is convex on L∞(Ω), so

C̃(f) = C̃(tf1 + (1− t)f2) ≤ tC̃(f1) + (1− t)C̃(f2)

< tC̃(f) + (1− t)C̃(f)

= C̃(f),

which is a contradiction, as desired. �
To prove Theorem 2, we need some preparations. We begin with defining a partition for Ω. To this end

let us collect the right end points of the intervals [ai, bi], [ci, di], and form the set S = {b1, · · ·, bN , d1, · · ·, dM}.
Next we arrange the elements of S in an increasing order:

e1 < e2 < · · · < el,

where ei equals some bj or dk; note also that l ≤ N +M . Now define the zones, Z1, Z2, · · ·, Zl as follows:

Zi = [ei−1, ei], i = 1, 2, · · ·, l,

where we set e0 = 0. Note that el = 24, and Ω = ∪li=1Zi. Let us state some properties of C(·) relative to
the partition {Z1, Z2, · · ·, Zl}:

Lemma 3 The following statements hold for the set function C(·):
a) For two sets E, F located in the same zone and satisfying |E| = |F |, we have C(E) = C(F ).
b) C(·) is additive on every zone; that is, if E and F are two disjoint subsets of Zi, for some i, then
C(E ∪ F ) = C(E) + C(F ).
c) For E ⊆ Zi, F ⊆ Zj, where i 6= j, we have

C(E ∪ F ) = C(E) + C(F ) + Pi,j(E,F ),

where Pi,j(E,F ) = 2
(∫
E
g1dx

∫
F
g1dx+

∫
E
g2dx

∫
F
g2dx

)
.

Proof. All assertions follow easily from the very definition of C. �

Remark 3. A consequence of Lemma 3(a) is that if E is located in some Zi, then C(E) = C([α, β]), where
[α, β] ⊆ Zi, and β − α = |E|.

The following proposition shows that in case l = 2, the assertion in Theorem 2 is verifiable.

Proposition 1. Suppose l = 2, then the minimization problem

inf
f∈R(χ

F0
)
C̃(f) (4.4)

is solvable. Proof. Since l = 2, there exist two zones Z1 and Z2. According to Remark 3, the minimization

(4.4) reduces to finding a ∈ [0, 24−A] such that the interval [a, a+A] minimizes C(·) relative to {F : |F | =
A}. So, if we define ξ : [0, 24−A]→ R by

ξ(a) = C([a, a+A]),

then (4.4) is equivalent to
inf

0≤a≤24−A
ξ(a).

Since g1 and g2 are simple functions, it turns out that ξ is continuous, thus the above problem has a
minimum, so (m̃) is solvable, which implies (4.4) is solvable. �

To state our next result we first define a partial ordering amongst Z1, · · ·, Zl.

Definition. We write Zi � Zj , provided: For every E ⊂ Zi, F ⊆ Zj , satisfying |E| = |F |, we have
C(E) ≤ C(F ).
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Proposition 2. If l = 2, Z1 � Z2, and A ≤ length (Z1), then (4.4) is solvable. In fact any set F̂ ⊆ Z1 with
|F̂ | = A is a solution Proof. Fix F̂ ⊆ Z1 satisfying |F̂ | = A. To verify F̂ is a solution to (4.4) it suffices to

show C(F̂ ) ≤ C(F ). To do this we consider F ⊆ Ω, so F = F1 ∪F2, where F1 ⊆ Z1 and F2 ⊆ Z2. Therefore
by Lemma 3(c), we have

C(F ) = C(F1) + C(F2) + P1,2(F1, F2) ≥ C(F1) + C(F2)

≥ C(F1) + C(F ′2),

where F ′2 ⊂ Z1, and F ′2 ∩F1 = ∅. Note that F ′2 exists. Now applying Lemma 3(b) we infer C(F1) +C(F ′2) =
C(F̂ ). Thus, C(F ) ≥ C(F̂ ), as desired. � Proof of Theorem 2. Using the ideas of Proposition 1, we should

look for F̂ in the following form:

F̂ = [δ
(1)
1 , δ

(1)
2 ] ∪ · · · · · · ∪[δ

(l)
1 , δ

(l)
2 ],

such that [δ
(i)
1 , δ

(i)
2 ] ⊆ Zi, i = 1, · · ·, l. Let us now introduce κ : Rl×l → R by

κ(δ
(1)
1 , δ

(1)
2 , · · ··, δ(l)

1 , δ
(l)
2 ) = C(F̂ );

it is clear that κ is a continuous piecewise quadratic polynomial in terns of δ
(1)
1 , δ

(1)
2 , · · ··, δ(l)

1 , δ
(l)
2 . So (m̃)

reduces to the following minimization problem

inf
A
κ(δ

(1)
1 , δ

(1)
2 , · · ··, δ(l)

1 , δ
(l)
2 ), (4.5)

where

A =

{
(δ

(1)
1 , δ

(1)
2 , · · ··, δ(l)

1 , δ
(l)
2 ) : 0 ≤ δ(1)

1 ≤ δ(1)
2 ≤ · · · ≤ δ(l)

1 ≤ δ
(l)
2 ,

l∑
i=1

(δ
(i)
2 − δ

(i)
1 ) = A

}
.

Since A is a compact subset of Rl×l, it follows that infA κ is solvable, hence (m̃) is. �

5 When g1 and g2 are monotonic

In this section we discuss both (M̃) and (m̃) in case gi are monotonic (increasing or decreasing).
Let us recall the following result due to Hardy and Littlewood, see for example [Hardy et al., 1988].

Lemma 4 Suppose h1 and h2 are two non-negative integrable functions over Ω. Then the following inequal-
ities hold: ∫

Ω

(h1)∆h
∆
2 dx =

∫
Ω

h∆
1 (h2)∆dx ≤

∫
Ω

h1h2dx ≤
∫

Ω

h∆
1 h

∆
2 dx =

∫
Ω

(h1)∆(h2)∆dx.

Recall that h∆, h∆, respectively, denote the increasing, decreasing rearrangements of h.

Theorem 3 (a) If g1 and g2 are both increasing on Ω, then χF̂ will be a solution of (M̃), and χF a solution

of (m̃). Here F̂ = [24 − A,A] and F = [0, A]. (b) If g1 and g2 are both decreasing on Ω, then χF will be a

solution of (M̃), and χF̂ a solution of (m̃). Here F and F̂ are defined as in part (a).

Proof. We only prove part (a) since part (b) is similarly verified. Consider F ⊆ Ω satisfying |F | = A. Then
by Lemma 4, we obtain

C̃(χF ) ≤
(∫

Ω

(χF )∆(g1)∆dx

)2

+

(∫
Ω

(χF )∆(g2)∆dx

)2

=

(∫
Ω

χF̂ g1dx

)2

+

(∫
Ω

χF̂ g2dx

)2

= C̃(χF̂ ).
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So χF̂ is a solution of (M̃), as desired.
On the other hand,

C̃(χF ) ≥
(∫

Ω

(χF )∆(g1)∆dx

)2

+

(∫
Ω

(χF )∆(g2)∆dx

)2

=

(∫
Ω

χF g1dx

)2

+

(∫
Ω

χF g2dx

)2

= C̃(χF ).

Thus, χF is a solution of (m̃). �

6 Numerical Results

In this section we present numerical results that verify the theory. We solve the minimization problem (1.3)
using the subroutine ”wnnlp” from the public domain software package ”wnlib”. The algorithm in wnnlp
uses techniques from operations research and the conjugate gradient method to determine the solution.

We divide the interval [0, 24] into 3 zones corresponding to working and non-working hours Z1 = [0, 8],
Z2 = [8, 17] and Z3 = [17, 24]. We determine intervals [x1, x2] ∈ Z1, [x3, x4] ∈ Z2 and [x5, x6] ∈ Z3 that
yield the minimum cost given by (1.1) where F = χ[x1,x2]

⋃
χ[x3,x4]

⋃
χ[x5,x6]. In this context, we have the

following constraints:
0 ≤ x1 ≤ x2 ≤ 8 ≤ x3 ≤ x4 ≤ 17 ≤ x5 ≤ x6 ≤ 24,

x2 − x1 + x4 − x3 + x6 − x5 = A.

Example 1. We choose the costs gi, i = 1, 2 to be monotonic increasing functions and constant in each
zone; namely,

g1(x) =


5, x ∈ Z1

10, x ∈ Z2

20, x ∈ Z3

g2(x) =


10, x ∈ Z1

20, x ∈ Z2

30, x ∈ Z3

The resulting cost function to be minimized is given by

C(F ) = [5(x2 − x1) + 10(x4 − x3) + 20(x6 − x5)]2 + [10(x2 − x1) + 20(x4 − x3) + 30(x6 − x5)]2.

On using wnnlp with A = 7, 14, 21, the solutions obtained are tabulated in Table 6. The solutions in the
table affirm the result in Theorem 3.

A x1 x2 x3 x4 x5 x6 min cost
7 0.50 7.50 15.33 15.33 22.97 22.97 6,125
14 0.00 8.00 11.00 17.00 22.17 22.17 50,000
21 0.00 8.00 8.00 17.00 19.01 22.99 188,091

Example 2. In this example, we choose the costs gi, i = 1, 2 to be monotonic decreasing functions and
constant in each zone, that is,

g1(x) =


20, x ∈ Z1

10, x ∈ Z2

5, x ∈ Z3

g2(x) =


30, x ∈ Z1

20, x ∈ Z2

10, x ∈ Z3

The solutions when A = 7, 14, 21, tabulated in Table 6, affirm the result in Theorem 3.
Example 3. We choose the cost of electricity g1 to be monotonic increasing and the cost of labor g2 to

be low during working hours and high during non-working hours; viz.,

g1(x) =


5, x ∈ Z1

10, x ∈ Z2

20, x ∈ Z3

g2(x) =


50, x ∈ Z1

20, x ∈ Z2

50, x ∈ Z3
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A x1 x2 x3 x4 x5 x6 min cost
7 6.83 6.83 15.28 15.28 17.00 24.00 6,125
14 5.67 5.67 10.00 17.00 17.00 24.00 55,125
21 2.01 6.99 8.00 17.00 17.00 24.00 210,304

The solutions when A = 7, 14, 21 are tabulated in Table 6. We do not have theory for this case yet. From a
practical point of view, the solutions obtained seem reasonable.

A x1 x2 x3 x4 x5 x6 min cost
7 6.83 6.83 9.06 16.06 22.06 22.06 24,500
14 3.00 8.00 8.00 17.00 21.00 21.00 198,084
21 0.00 8.00 8.00 17.00 18.50 22.50 651,888
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