Applications of rearrangements to nonlinear optimization problems

Behrouz Emamizadeh

Department of Mathematics, The Petroleum Institute
P. O. Box 2533, Abu Dhabi, UAE

E-mail: bemamizadeh@pi.ac.ae

Ryan I. Fernandes
Department of Mathematics, The Petroleum Institute
P. O. Box 2533, Abu Dhabi, UAE

E-mail: rfernandes@pi.ac.ae
and

Majid Poshtan

Department of Electrical Engineering, The Petroleum Institute
P. O. Box 2533, Abu Dhabi, UAE

E-mail: mposhtan@pi.ac.ae

Abstract

In this paper we consider two nonlinear optimization problems. We show that these problems can be reformulated in such a way that the admissible set becomes a subset of a prescribed rearrangement class. The well known theory of rearrangemnts is then applied to prove existence of optimal solutions. Numerical results determining optimal solutions are presented.

Key Words: Optimization, Rearrangements, Cost function, Length, Weak closure.

1 Introduction

The theory of rearrangements as a tool for solving a variety of problems is growing in popularity. This theory has been established by Geoffrey R. Burton [Burton 1987, 1989]. Subsequently, many applications in solid and fluid mechanics [Burton et al., 1999; Emamizadeh et al., 2004], meteorology [Douglas, 2002] followed. In this paper, we demonstrate the use of rearrangements to prove the existence of optimal solutions to nonlinear optimization problems. For definiteness, we consider the following practical situation:

Suppose that a factory intends to run an electric machine for a fixed amount of time every day during the twenty four hour period. This task bears two types of costs; one for electricity and the other for labor. Given the electricity and labor cost distributions over the twenty four hour period, we would like to determine an optimal set of time intervals so that the total cost is maximal or minimal.
To model the above problem we proceed as follows. Set $\Omega=[0,24]$, and let g_{1} and g_{2} (the electricity and labor cost distributions, respectively) be two non-negative, bounded, and measurable functions defined on Ω. Denoting the set of all measurable subsets of Ω by 2^{Ω}, the non-additive total cost function $\mathcal{C}: 2^{\Omega} \rightarrow \mathbb{R}$ is defined as follows:

$$
\begin{equation*}
\mathcal{C}(F)=\left(\int_{F} g_{1} d x\right)^{2}+\left(\int_{F} g_{2} d x\right)^{2} . \tag{1.1}
\end{equation*}
$$

We are interested in the following optimization problems:

$$
\begin{equation*}
\text { (M) } \sup _{|F|=A} \mathcal{C}(F) \text {, } \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { (m) } \quad \inf _{|F|=A} \mathcal{C}(F) \text {, } \tag{1.3}
\end{equation*}
$$

where $|F|$ denotes the one dimensional Lebesgue measure of F. We assume $0<A<24$, in order to avoid triviality.

2 Reformulation of (M) and (m); main results

Our first task is to reformulate (M) and (m) in terms of a rearrangement class. For this purpose we first observe that $\mathcal{C}(\cdot)$ can be written as follows:

$$
\mathcal{C}(F)=\left(\int_{\Omega} \chi_{F} g_{1} d x\right)^{2}+\left(\int_{\Omega} \chi_{F} g_{2} d x\right)^{2},
$$

where χ_{F} stands for the characteristic function of F. Next, since every set $E \subseteq \Omega$ can be identified with the characteristic function χ_{E}, there is a natural bijection between the two sets $\{F \subseteq \Omega:|F|=A\}$ and $\left\{\chi_{F}: \int_{\Omega} \chi_{F} d x=A\right\}$. Note that problems (M) and (m) are equivalent to:

$$
(\tilde{M}) \sup _{\chi_{F} \in\left\{\chi_{E}: \int_{\Omega} \chi_{E}=A\right\}} \tilde{\mathcal{C}}\left(\chi_{F}\right),
$$

and

$$
\text { (} \tilde{m}) \inf _{\chi_{F} \in\left\{\chi_{E}: \int_{\Omega} \chi_{E}=A\right\}} \tilde{\mathcal{C}}\left(\chi_{F}\right),
$$

respectively. Here we have

$$
\tilde{\mathcal{C}}(f)=\left(\int_{\Omega} f g_{1} d x\right)^{2}+\left(\int_{\Omega} f g_{2} d x\right)^{2}
$$

Clearly if $\chi_{\hat{F}}$ is a solution to (\tilde{M}), then \hat{F} is a solution to (M). Similarly, if $\chi_{\hat{G}}$ is a solution to (\tilde{m}), then \hat{G} is a solution of (m). Therefore the natural questions are whether (\tilde{M}) and (\tilde{m}) are solvable or not. Indeed, we show that the answers to both questions are affirmative as stated in the following theorems which are the main results of this paper.
Theorem 1 The maximization problem (\tilde{M}) is solvable; that is, there exists $\chi_{\hat{F}},|\hat{F}|=A$, such that

$$
\tilde{\mathcal{C}}\left(\chi_{\hat{F}}\right)=\sup _{\chi_{F} \in\left\{\chi_{E}: \int_{\Omega} \chi_{E}=A\right\}} \tilde{\mathcal{C}}\left(\chi_{F}\right) .
$$

Theorem 2 Suppose $g_{1}=\sum_{k=1}^{N} \gamma_{k}^{(1)} \chi_{\left[a_{k}, b_{k}\right]}$, and $g_{2}=\sum_{s=1}^{M} \gamma_{s}^{(2)} \chi_{\left[c_{s}, d_{s}\right]}$. Then ($\left.\tilde{m}\right)$ is solvable; that is, there exists $\chi_{\hat{G}},|\hat{G}|=A$, such that

$$
\tilde{\mathcal{C}}\left(\chi_{\hat{G}}\right)=\inf _{\chi_{F} \in\left\{\chi_{E}: \int_{\Omega} \chi_{E}=A\right\}} \tilde{\mathcal{C}}\left(\chi_{F}\right) .
$$

Remark 1. Note that the assumptions on $g_{i}, i=1,2$, in Theorem 2 are realistic. Indeed it is natural to expect the electricity and labor costs to be constants over various time intervals (sets).

3 Rearrangements

In this section we review some well known results from the theory of rearrangements of functions, as much as it is relevant to our purpose.

Recall that two functions $f, g: \Omega \rightarrow \mathbb{R}$ are said to be rearrangements of each other provided their respective distribution functions are equal; that is,

$$
\lambda_{f}(\alpha)=\lambda_{g}(\alpha), \quad \forall \alpha \geq 0
$$

Here $\lambda_{f}(\alpha)=|\{x \in \Omega: \quad f(x) \geq \alpha\}|$, and $\lambda_{g}(\alpha)$ is similarly defined. The reader is referred to [Hardy et al., 1988] for an extensive treatment of the distribution functions. When two functions f and g are rearrangements of each other we write $f \sim g$. Clearly if $f \sim g$, then $g \sim f$ as well. For a fixed non-negative function $f_{0}: \Omega \rightarrow \mathbb{R}$, the rearrangement class generated by f_{0} denoted $\mathcal{R}\left(f_{0}\right)$, is defined as follows:

$$
\mathcal{R}\left(f_{0}\right)=\left\{f: \Omega \rightarrow \mathbb{R}: f \sim f_{0}\right\} .
$$

If, in addition, we assume $f_{0} \in L^{\infty}(\Omega)$, then the following result is well known, see for example [Burton 1987, 1989].

Lemma 1 i) The set $\mathcal{R}\left(f_{0}\right) \subseteq L^{\infty}(\Omega)$, and $\|f\|_{\infty}=\left\|f_{0}\right\|_{\infty}$, for every $f \in \mathcal{R}\left(f_{0}\right)$.
ii) The w^{*}-closure of $\mathcal{R}\left(f_{0}\right)$, in $L^{\infty}(\Omega)$, denoted $\overline{\mathcal{R}}\left(f_{0}\right)$, is w^{*}-compact and convex.
iii) Denoting the extreme values of $\overline{\mathcal{R}}\left(f_{0}\right)$ by $\operatorname{ext}\left(\overline{\mathcal{R}}\left(f_{0}\right)\right)$, $\operatorname{ext}\left(\overline{\mathcal{R}}\left(f_{0}\right)\right)=\mathcal{R}\left(f_{0}\right)$.

Let us henceforth fix $F_{0} \subseteq \Omega$ such that $\left|F_{0}\right|=A$. Then from [Turkington et al., 1989], we obtain:
Lemma 2 With the notation introduced above we have:

$$
\overline{\mathcal{R}}\left(\chi_{F_{0}}\right)=\left\{f: \Omega \rightarrow[0,1]: \int_{\Omega} f d x=A\right\} .
$$

4 Proofs of Theorems 1 and 2

Proof of Theorem 1. According to the discussion in the previous section we need to prove solvability of the following maximization problem:

$$
\sup _{f \in \mathcal{R}\left(\chi_{F_{0}}\right)} \tilde{\mathcal{C}}(f) .
$$

We first relax the problem by replacing $\mathcal{R}\left(\chi_{F_{0}}\right)$ by $\overline{\mathcal{R}}\left(\chi_{F_{0}}\right)$. Observe that $\tilde{\mathcal{C}}(\cdot)$ is w^{*}-continuous. To see this we consider $f_{n} \rightharpoonup f$, in $L^{\infty}(\Omega)$. Here " Δ " indicates convergence with respect to w^{*}-topology in $L^{\infty}(\Omega)$. Since $g_{i} \in L^{\infty}(\Omega)$, it follows that $\int_{\Omega} f_{n} g_{i} d x \rightarrow \int_{\Omega} f g_{i} d x$, as n tends to infinity. Hence $\tilde{\mathcal{C}}\left(f_{n}\right) \rightarrow \tilde{\mathcal{C}}(f)$, as claimed. $\tilde{\mathcal{C}}(\cdot)$ being w^{*}-continuous, and $\overline{\mathcal{R}}\left(\chi_{F_{0}}\right)$ compact, by Lemma 1, it follows that the relaxed problem:

$$
\sup _{f \in \overline{\mathcal{R}}\left(\chi_{F_{0}}\right)} \tilde{\mathcal{C}}(f)
$$

is solvable. Let us assume \bar{f} is a solution. To prove the solvability of the original problem it suffices to verify existence of $\hat{f} \in \mathcal{R}\left(\chi_{F_{0}}\right)$ such that $\tilde{\mathcal{C}}(\hat{f})=\tilde{\mathcal{C}}(\bar{f})$. To derive a contradiction we assume the contrary; that is,
$\tilde{\mathcal{C}}(f)<\tilde{\mathcal{C}}(\bar{f})$, for every $f \in \mathcal{R}\left(\chi_{F_{0}}\right)$. From Lemma 1, we deduce that there exist $t \in(0,1), f_{i} \in \mathcal{R}\left(\chi_{F_{0}}\right)$, $i=1,2$, such that $\bar{f}=t f_{1}+(1-t) f_{2}$. Observe that $\tilde{\mathcal{C}}(\cdot)$ is convex on $L^{\infty}(\Omega)$, so

$$
\begin{aligned}
\tilde{\mathcal{C}}(\bar{f})=\tilde{\mathcal{C}}\left(t f_{1}+(1-t) f_{2}\right) & \leq t \tilde{\mathcal{C}}\left(f_{1}\right)+(1-t) \tilde{\mathcal{C}}\left(f_{2}\right) \\
& <t \tilde{\mathcal{C}}(\bar{f})+(1-t) \tilde{\mathcal{C}}(\bar{f}) \\
& =\tilde{\mathcal{C}}(\bar{f}),
\end{aligned}
$$

which is a contradiction, as desired.
To prove Theorem 2, we need some preparations. We begin with defining a partition for Ω. To this end let us collect the right end points of the intervals $\left[a_{i}, b_{i}\right],\left[c_{i}, d_{i}\right]$, and form the set $S=\left\{b_{1}, \cdots, b_{N}, d_{1}, \cdots, d_{M}\right\}$. Next we arrange the elements of S in an increasing order:

$$
e_{1}<e_{2}<\cdots<e_{l},
$$

where e_{i} equals some b_{j} or d_{k}; note also that $l \leq N+M$. Now define the zones, $Z_{1}, Z_{2}, \cdots, Z_{l}$ as follows:

$$
Z_{i}=\left[e_{i-1}, e_{i}\right], \quad i=1,2, \cdots, l,
$$

where we set $e_{0}=0$. Note that $e_{l}=24$, and $\Omega=\cup_{i=1}^{l} Z_{i}$. Let us state some properties of $C(\cdot)$ relative to the partition $\left\{Z_{1}, Z_{2}, \cdots, Z_{l}\right\}$:

Lemma 3 The following statements hold for the set function $C(\cdot)$:
a) For two sets E, F located in the same zone and satisfying $|E|=|F|$, we have $C(E)=C(F)$.
b) $C(\cdot)$ is additive on every zone; that is, if E and F are two disjoint subsets of Z_{i}, for some i, then $C(E \cup F)=C(E)+C(F)$.
c) For $E \subseteq Z_{i}, F \subseteq Z_{j}$, where $i \neq j$, we have

$$
C(E \cup F)=C(E)+C(F)+P_{i, j}(E, F),
$$

where $P_{i, j}(E, F)=2\left(\int_{E} g_{1} d x \int_{F} g_{1} d x+\int_{E} g_{2} d x \int_{F} g_{2} d x\right)$.
Proof. All assertions follow easily from the very definition of C.
Remark 3. A consequence of Lemma 3(a) is that if E is located in some Z_{i}, then $C(E)=C([\alpha, \beta])$, where $[\alpha, \beta] \subseteq Z_{i}$, and $\beta-\alpha=|E|$.

The following proposition shows that in case $l=2$, the assertion in Theorem 2 is verifiable.
Proposition 1. Suppose $l=2$, then the minimization problem

$$
\begin{equation*}
\inf _{f \in \mathcal{R}\left(\chi_{F_{0}}\right)} \tilde{\mathcal{C}}(f) \tag{4.4}
\end{equation*}
$$

is solvable. Proof. Since $l=2$, there exist two zones Z_{1} and Z_{2}. According to Remark 3, the minimization
(4.4) reduces to finding $a \in[0,24-A]$ such that the interval $[a, a+A]$ minimizes $C(\cdot)$ relative to $\{F:|F|=$ $A\}$. So, if we define $\xi:[0,24-A] \rightarrow \mathbb{R}$ by

$$
\xi(a)=C([a, a+A]),
$$

then (4.4) is equivalent to

$$
\inf _{0 \leq a \leq 24-A} \xi(a) .
$$

Since g_{1} and g_{2} are simple functions, it turns out that ξ is continuous, thus the above problem has a minimum, so (\tilde{m}) is solvable, which implies (4.4) is solvable.

To state our next result we first define a partial ordering amongst Z_{1}, \cdots, Z_{l}.
Definition. We write $Z_{i} \preceq Z_{j}$, provided: For every $E \subset Z_{i}, F \subseteq Z_{j}$, satisfying $|E|=|F|$, we have $C(E) \leq C(F)$.

Proposition 2. If $l=2, Z_{1} \preceq Z_{2}$, and $A \leq$ length $\left(Z_{1}\right)$, then (4.4) is solvable. In fact any set $\hat{F} \subseteq Z_{1}$ with $|\hat{F}|=A$ is a solution Proof. Fix $\hat{F} \subseteq Z_{1}$ satisfying $|\hat{F}|=A$. To verify \hat{F} is a solution to (4.4) it suffices to
show $C(\hat{F}) \leq C(F)$. To do this we consider $F \subseteq \Omega$, so $F=F_{1} \cup F_{2}$, where $F_{1} \subseteq Z_{1}$ and $F_{2} \subseteq Z_{2}$. Therefore by Lemma 3(c), we have

$$
\begin{aligned}
C(F)=C\left(F_{1}\right)+C\left(F_{2}\right)+P_{1,2}\left(F_{1}, F_{2}\right) & \geq C\left(F_{1}\right)+C\left(F_{2}\right) \\
& \geq C\left(F_{1}\right)+C\left(F_{2}^{\prime}\right),
\end{aligned}
$$

where $F_{2}^{\prime} \subset Z_{1}$, and $F_{2}^{\prime} \cap F_{1}=\emptyset$. Note that F_{2}^{\prime} exists. Now applying Lemma $3(\mathrm{~b})$ we infer $C\left(F_{1}\right)+C\left(F_{2}^{\prime}\right)=$ $C(\hat{F})$. Thus, $C(F) \geq C(\hat{F})$, as desired.Proof of Theorem 2. Using the ideas of Proposition 1, we should look for \hat{F} in the following form:

$$
\hat{F}=\left[\delta_{1}^{(1)}, \delta_{2}^{(1)}\right] \cup \cdots \cdots \cup\left[\delta_{1}^{(l)}, \delta_{2}^{(l)}\right]
$$

such that $\left[\delta_{1}^{(i)}, \delta_{2}^{(i)}\right] \subseteq Z_{i}, i=1, \cdots, l$. Let us now introduce $\kappa: \mathbb{R}^{l \times l} \rightarrow \mathbb{R}$ by

$$
\kappa\left(\delta_{1}^{(1)}, \delta_{2}^{(1)}, \cdots \cdot, \delta_{1}^{(l)}, \delta_{2}^{(l)}\right)=C(\hat{F}) ;
$$

it is clear that κ is a continuous piecewise quadratic polynomial in terns of $\delta_{1}^{(1)}, \delta_{2}^{(1)}, \cdots \cdots, \delta_{1}^{(l)}, \delta_{2}^{(l)}$. So (\tilde{m}) reduces to the following minimization problem

$$
\begin{equation*}
\inf _{\mathcal{A}} \kappa\left(\delta_{1}^{(1)}, \delta_{2}^{(1)}, \cdots \cdot, \delta_{1}^{(l)}, \delta_{2}^{(l)}\right) \tag{4.5}
\end{equation*}
$$

where

$$
\mathcal{A}=\left\{\left(\delta_{1}^{(1)}, \delta_{2}^{(1)}, \cdots \cdot, \delta_{1}^{(l)}, \delta_{2}^{(l)}\right): 0 \leq \delta_{1}^{(1)} \leq \delta_{2}^{(1)} \leq \cdots \leq \delta_{1}^{(l)} \leq \delta_{2}^{(l)}, \sum_{i=1}^{l}\left(\delta_{2}^{(i)}-\delta_{1}^{(i)}\right)=A\right\}
$$

Since \mathcal{A} is a compact subset of $\mathbb{R}^{l \times l}$, it follows that $\inf _{\mathcal{A}} \kappa$ is solvable, hence (\tilde{m}) is.

5 When g_{1} and g_{2} are monotonic

In this section we discuss both (\tilde{M}) and (\tilde{m}) in case g_{i} are monotonic (increasing or decreasing).
Let us recall the following result due to Hardy and Littlewood, see for example [Hardy et al., 1988].
Lemma 4 Suppose h_{1} and h_{2} are two non-negative integrable functions over Ω. Then the following inequalities hold:

$$
\int_{\Omega}\left(h_{1}\right)_{\Delta} h_{2}^{\Delta} d x=\int_{\Omega} h_{1}^{\Delta}\left(h_{2}\right)_{\Delta} d x \leq \int_{\Omega} h_{1} h_{2} d x \leq \int_{\Omega} h_{1}^{\Delta} h_{2}^{\Delta} d x=\int_{\Omega}\left(h_{1}\right)_{\Delta}\left(h_{2}\right)_{\Delta} d x .
$$

Recall that h_{Δ}, h^{Δ}, respectively, denote the increasing, decreasing rearrangements of h.
Theorem 3 (a) If g_{1} and g_{2} are both increasing on Ω, then $\chi_{\hat{F}}$ will be a solution of (\tilde{M}), and $\chi_{\bar{F}}$ a solution of (\tilde{m}). Here $\hat{F}=[24-A, A]$ and $\bar{F}=[0, A]$. (b) If g_{1} and g_{2} are both decreasing on Ω, then $\chi_{\bar{F}}$ will be a
solution of (\tilde{M}), and $\chi_{\hat{F}}$ a solution of (\tilde{m}). Here \bar{F} and \hat{F} are defined as in part (a).
Proof. We only prove part (a) since part (b) is similarly verified. Consider $F \subseteq \Omega$ satisfying $|F|=A$. Then by Lemma 4, we obtain

$$
\begin{aligned}
\tilde{\mathcal{C}}\left(\chi_{F}\right) & \leq\left(\int_{\Omega}\left(\chi_{F}\right)_{\Delta}\left(g_{1}\right)_{\Delta} d x\right)^{2}+\left(\int_{\Omega}\left(\chi_{F}\right)_{\Delta}\left(g_{2}\right)_{\Delta} d x\right)^{2} \\
& =\left(\int_{\Omega} \chi_{\hat{F}} g_{1} d x\right)^{2}+\left(\int_{\Omega} \chi_{\hat{F}} g_{2} d x\right)^{2} \\
& =\tilde{\mathcal{C}}\left(\chi_{\hat{F}}\right) .
\end{aligned}
$$

So $\chi_{\hat{F}}$ is a solution of (\tilde{M}), as desired.
On the other hand,

$$
\begin{aligned}
\tilde{\mathcal{C}}\left(\chi_{F}\right) & \geq\left(\int_{\Omega}\left(\chi_{F}\right)^{\Delta}\left(g_{1}\right)_{\Delta} d x\right)^{2}+\left(\int_{\Omega}\left(\chi_{F}\right)^{\Delta}\left(g_{2}\right)_{\Delta} d x\right)^{2} \\
& =\left(\int_{\Omega} \chi_{\bar{F}} g_{1} d x\right)^{2}+\left(\int_{\Omega} \chi_{\bar{F}} g_{2} d x\right)^{2} \\
& =\tilde{\mathcal{C}}\left(\chi_{\bar{F}}\right) .
\end{aligned}
$$

Thus, $\chi_{\bar{F}}$ is a solution of (\tilde{m}).

6 Numerical Results

In this section we present numerical results that verify the theory. We solve the minimization problem (1.3) using the subroutine "wnnlp" from the public domain software package "wnlib". The algorithm in wnnlp uses techniques from operations research and the conjugate gradient method to determine the solution.

We divide the interval [0,24] into 3 zones corresponding to working and non-working hours $Z_{1}=[0,8]$, $Z_{2}=[8,17]$ and $Z_{3}=[17,24]$. We determine intervals $\left[x_{1}, x_{2}\right] \in Z_{1},\left[x_{3}, x_{4}\right] \in Z_{2}$ and $\left[x_{5}, x_{6}\right] \in Z_{3}$ that yield the minimum cost given by (1.1) where $F=\chi_{\left[x_{1}, x_{2}\right]} \cup \chi_{\left[x_{3}, x_{4}\right]} \cup \chi_{\left[x_{5}, x_{6}\right]}$. In this context, we have the following constraints:

$$
\begin{aligned}
& 0 \leq x_{1} \leq x_{2} \leq 8 \leq x_{3} \leq x_{4} \leq 17 \leq x_{5} \leq x_{6} \leq 24, \\
& x_{2}-x_{1}+x_{4}-x_{3}+x_{6}-x_{5}=A
\end{aligned}
$$

Example 1. We choose the costs $g_{i}, i=1,2$ to be monotonic increasing functions and constant in each zone; namely,

$$
g_{1}(x)=\left\{\begin{array}{ll}
5, & x \in Z_{1} \\
10, & x \in Z_{2} \\
20, & x \in Z_{3}
\end{array} \quad g_{2}(x)= \begin{cases}10, & x \in Z_{1} \\
20, & x \in Z_{2} \\
30, & x \in Z_{3}\end{cases}\right.
$$

The resulting cost function to be minimized is given by

$$
\mathcal{C}(F)=\left[5\left(x_{2}-x_{1}\right)+10\left(x_{4}-x_{3}\right)+20\left(x_{6}-x_{5}\right)\right]^{2}+\left[10\left(x_{2}-x_{1}\right)+20\left(x_{4}-x_{3}\right)+30\left(x_{6}-x_{5}\right)\right]^{2} .
$$

On using wnnlp with $A=7,14,21$, the solutions obtained are tabulated in Table 6 . The solutions in the table affirm the result in Theorem 3.

A	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	min cost
7	0.50	7.50	15.33	15.33	22.97	22.97	6,125
14	0.00	8.00	11.00	17.00	22.17	22.17	50,000
21	0.00	8.00	8.00	17.00	19.01	22.99	188,091

Example 2. In this example, we choose the costs $g_{i}, i=1,2$ to be monotonic decreasing functions and constant in each zone, that is,

$$
g_{1}(x)=\left\{\begin{array}{ll}
20, & x \in Z_{1} \\
10, & x \in Z_{2} \\
5, & x \in Z_{3}
\end{array} \quad g_{2}(x)= \begin{cases}30, & x \in Z_{1} \\
20, & x \in Z_{2} \\
10, & x \in Z_{3}\end{cases}\right.
$$

The solutions when $A=7,14,21$, tabulated in Table 6, affirm the result in Theorem 3.
Example 3. We choose the cost of electricity g_{1} to be monotonic increasing and the cost of labor g_{2} to be low during working hours and high during non-working hours; viz.,

$$
g_{1}(x)=\left\{\begin{array}{ll}
5, & x \in Z_{1} \\
10, & x \in Z_{2} \\
20, & x \in Z_{3}
\end{array} \quad g_{2}(x)= \begin{cases}50, & x \in Z_{1} \\
20, & x \in Z_{2} \\
50, & x \in Z_{3}\end{cases}\right.
$$

A	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	min cost
7	6.83	6.83	15.28	15.28	17.00	24.00	6,125
14	5.67	5.67	10.00	17.00	17.00	24.00	55,125
21	2.01	6.99	8.00	17.00	17.00	24.00	210,304

The solutions when $A=7,14,21$ are tabulated in Table 6 . We do not have theory for this case yet. From a practical point of view, the solutions obtained seem reasonable.

A	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	min cost
7	6.83	6.83	9.06	16.06	22.06	22.06	24,500
14	3.00	8.00	8.00	17.00	21.00	21.00	198,084
21	0.00	8.00	8.00	17.00	18.50	22.50	651,888

Acknowledgements. The authors, B. Emamizadeh and R. I. Fernandes, wish to acknowledge the support received by separate research initiation grants from The Petroleum Institute, Abu Dhabi, UAE during the preparation of the paper.

References

[1] Burton G. R.,(1987) Rearrangements of functions, maximization of convex functionals, and vortex rings, Math. Ann. vol. 276, no. 2, pp. 225-253.
[2] Burton G. R., (1989) Variational problems on classes of rearrangements and multiple configurations for steady vortices. Ann. Inst. H. Poincar Anal. Non Linaire vol. 6, no. 4, pp. 295-319.
[3] Burton G. R., and Emamizadeh B., (1999) A constrained variational problem for steady vortices in a shear flow. Comm. Partial Differential Equations vol. 24, no. 7-8, pp. 1341-1365
[4] Douglas R. J., (2002) Rearrangements of functions with applications to meteorology and ideal fluid flow. Large-scale atmosphere-ocean dynamics, Vol. I, pp. 288-341, Cambridge Univ. Press, Cambridge.
[5] Emamizadeh B., Bahrami F., and Mehrabi M. H., (2004) Steiner symmetric vortices attached to seamounts. Commun. Pure Appl. Anal. vol. 3 , no. 4, pp. 663-674.
[6] Hardy G. H., Littlewood J. E., and Pólya G., (1988) Inequalities. Reprint of the 1952 edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge.
[7] Turkington B., and Eydeland A., (1989) An iterative method for computing steady vortex flow systems. Mathematical aspects of vortex dynamics (Leesburg, VA, 1988), 80-87, SIAM, Philadelphia, PA.

