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Abstract: This paper concentrates on Multi-level Multi-objective 

Decision-Making (MMDM) problem with linear constraints. The objective 

functions at each level are to be maximized and are linear functions. A 

convergent algorithm based on Stackelberg strategy is employed to solve the 

(MMILP) problem which does not increase the complexities of the problem 

considered here. It solves the problem hierarchically for a given choice of the 

variables under the control of the upper level decision maker (DM) and each 

level having several objectives which are conflicting in nature is solved by the 

weighted method by assigning a positive weight vector to each objective 

function and transforms it into a parametric program. An illustrative numerical 

example is given to demonstrate the algorithm.  
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1. INTRODUCTION  

 Multilevel multiobjective optimization problems have attracted 

considerable attention from the scientific and economic community in recent 

years. The multilevel multiobjective system has extensive existences in 

management fields. Usually, this kind of problem can be solved by multiple 

mathematical programming. Most of studies in this field are focused on bilevel 

programming [2,3,4,8]. However, many practical problems need to be 

modelled as multilevel multiobjective program evolving new appropriate and 

efficient methods. Multilevel Multiobjective Integer Linear Programming 

(MMILP) problems involve sequential or multistage decision making [5, 9]. An 

MMILP problem concerns with decentralized planning problems with multiple 

decision makers (DMs) in a multilevel or hierarchical organization where 

decision makers have interacted with each other. Multilevel Multiobjective 

Programming Problem is computationally more complex than the conventional 

Multi-Objective Programming Problem (MOPP) or a Multi-Level 

Programming Problem (MLPP).  

 One of the important characteristics of Multi-Level Programming 

Problems (MLPP) is that a planner at a certain level of hierarchy may have 

his/her objective function and decision space determined partially by other 

levels. Further, the control instruments of each planner can affect the policies at 

other levels to improve his/her own objective function. These instruments may 
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include the allocation and use of resources at lower levels and the advantages 

obtained from other levels. MLP problems share the following common features.  

1. The system has interacting decision making units within a hierarchical 

structure.  

2. Each subordinate level performs its policies after knowing completely 

the decisions of superior levels.  

3. Each unit maximizes net benefits independently of other units but may 

be influenced by actions and reactions of those units.  

4. The external effect on a decision maker's problem can be reflected in 

both the objective function as well as on the set of feasible decisions.  

The MMILP problem considered in this paper has K decision makers located at 

K different hierarchical levels, each independently controls a set of decision 

variables and each DM has q (q ≥  2) objective functions at each level. The 

hierarchical nature of the problem is reflected by the order imposed on the 

choice of the decision. One level makes his/her decision according to that of 

his/her higher level. It is assumed that the DM at first level, DMI, called the 

Leader, masters the information of the follower's objectives and constraints, 

while the followers make their decisions after the leader's strategy is 

announced. The DMs at lower level also have effect on upper objective 

function, while DMs at upper level may adjust their decision until their 

objective functions are satisfied. The decision makers at the same level have 

common constraints and make decision cooperatively.  
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Due to the complexity of the MMLP problems, there exists no efficient 

traditional techniques for obtaining the solutions of the problem with 

reasonable size. The decision deadlock arises in some situations due to 

rejecting the solution by the followers for not giving a decision power to it. In 

the techniques for solving the MMILP problems, the decisions of all the DMs 

are sequential alongwith essential cooperation with each other to make a 

balance of decision powers to the DMs. These methods have been introduced 

primarily to tackle situations when the DM has no prior information on the 

desired levels for the several objective functions and on the priorities and the 

ranking as in goal programming. They are also pertinent when no information 

is available on the weights indicating their relative importance.  

 The techniques used for solving multilevel multiple objective integer 

linear programming problems are diverse : cutting plane techniques, dynamic 

programming approaches, dual simplex procedures, branch and bound 

algorithms or iterative techniques that consist of solving a sequence of 

progressively more and more constrained linear / non-linear programs with 

single objective. The structure of MMILP problem being complex rarely 

admits of a globally optimal solution to the MMILP problems. 

 As a class of MLPP [2, 8], most of the developments focus on bi-level 

linear programming. Anandalingam [1] studied bi-level non-linear 

programming. Bi-level multi-objective with multiple interconnected decision 

makers was discussed in [4]. Several three – level programming problems 
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along with their solution methods were studied and introduced viz. hybrid 

extreme – point search algorithm [3]. A bibliography of the related references 

on bi-level and multi-level programming in both linear and non-linear cases, 

which is updated biannually, can be found [7]. 

The basic concept of the MLPP technique is that the first level decision 

maker (DMI) sets his goal/decision, then asks each subordinate level of the 

organization for their optima which are calculated in isolation. The lower level 

DMs are then submitted and modified by DMI in consideration of the over all 

benefit for the organization. The process continues until a compromise solution 

is reached. In this paper we propose a new method for solving a multilevel 

multiobjective system. It has more extensive application in practice and is 

based on the weighted method approach for the solution of MOPPs. The 

proposed algorithm is inspired by the work of Crema and Sylva [6] for the 

multiobjective integer linear programs. As is generally the case, passing from 

MOILP to MMILP is not trivial. In this paper, we focus on the problem of 

optimizing a linear function over the efficient set of a MMILP problem. For 

each level of the MMILP, a direct approach could consist of finding all 

efficient solutions of the MMILP problem and then optimizing the 

corresponding parametric programming problem on that set. But this approach 

is not appropriate for practical purposes. We hereby propose an implicit 

technique that avoids search for all efficient solutions. Motivated by the 

concept of parametric programming, we would like to examine the possibility 
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of unifying the level-wise (hierarchical) operation and stagewise operation for 

the MMILP problem. The advantage of the proposed method is that the DMs 

progressively learn about the problem, the nature and the conflict among the 

objectives and the solution process. This paper is organized as follows : Section 

2 presents the MMILP problems mathematically. Section 3 features the 

definitions and theoretical development of the problem alongwith determining 

the efficient solutions to the leader's problem. Section 4 explains the solution 

technique and termination condition. Section 5 introduces the algorithmic 

representation of the solution technique and a flow diagram.   

2. FORMULATION OF MMILP PROBLEMS 

 In the MMILP under consideration, in order to arrive at a solution which 

is acceptable to all the decision makers they would be required to cooperate 

with each other to make a balance of decision powers. For attaining this 

solution, they may compromise by giving a possible relaxation of their 

individual Pareto-optimal decision. In such a case, the K objective functions  

F1, F2,...,FK at different levels are each transformed into the corresponding 

parametric programs hierarchically by means of assigning an imprecise weight 

vector to each of them 

 Let the hierarchical system be comprised of K levels of decision makers, 

where the higher level decision maker, called the leader, controls decision 

variables { }1n1 2
1 1 1 1X x , x ... x= and the lower level divisions control decision 

variables 
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 { }jn1 2
j j j jX x , x . . . x , 2 j K= ≤ ≤  

The overall system is described by a set of constraints which provide a feasible 

set 1 2 kn n ...nS E + +⊂  for jX ,1 j K≤ ≤ , where En denotes the n-dimensional 

Euclidean space. Let  

DM1 denote the DM at the first (Upper) level,  

DM2 denote the DM at the second level,  

M  
DMK denote the DM at the Kth level.  

We can formulate a maximization K-level MMILP problem mathematically as 

follows : 

(MMILP) DM1 
1

1X
max F (X) 

DM2 
2

2X
max F (X) 

M  

DMK 
K

KX
max F (X) 

subject to  

   X S∈  

where,  1 2 K 1 2 KX X X ..... X ;   n n n ... n ;= ∪ ∪ ∪ = + + +  

S = { }nX : AX b, X 0, X ;= ≥ ∈Z  b∈ m
� ;  n m nX ; A ;×∈ ∈� �  � is the set of 

integers; � is the set of rational numbers; jX  is the decision vector under the 
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control of DMj (1 ≤ j ≤ K) and has nj number of decision variables; Fj (1 ≤ j ≤ 

K) is the objective function at the j-th level defined as  

i i1 i2 iq
iF (X) C X (C X, C X, . . . C X)= =  (q 2)≥  each CiqX being a row vector 

for 1 i K, q 2;≤ ≤ ≥   

{ }1
Tn1 2

1 1 1 1X x , x ,...., x= is (are) decision variable(s) under  control of DM1 (leader), 

{ }2
Tn1 2

2 2 2 2X x , x ... x=  is (are) decision variable(s) under the control of DM2, 

  M  

{ }K
Tn1 2

K K K KX x , x ... x=  is (are) decision variable(s) under the control of DMK 

with q decision makers on each level (q≥ 2), n decision variables and m 

constraints.  

It is assumed that S is a non-empty and bounded set over the convex 

polyhedron. The DM at the rth level where r = 1, 2, …., K individually solves 

his/her maximization problem and the DMs at the same level carry same status 

for executing their decision powers in the decision making situation. In real 

practice, due to the conflicting objectives, there is not a maximum solution for 

each level, but an efficient solution.  

3. NOTATIONS, DEFINITIONS AND THEORETICAL DEVELOPMENT 

The problem (Lu) (1 ≤ u ≤ K) is defined as  

{ }u nmax C X : AX b, X 0, X= ≥ ∈�  
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and the problem u(L )′  is defined as  

{ }T u nmax C X : AX b,X 0, Xλ = ≥ ∈� . 

Definition 1 : A point Xo∈S is said to be an efficient point of a real valued 

function F defined on S if and only if there does not exist another point X′∈S 

such that  

1 oF(X ) F(X )≥  

with strict inequality holding atleast once. 

If there exists a point X1 for which  

1 oF (X ) F (X )≥  

with strict inequality holding atleast once, then the point X0 is said to be 

dominated by X1 and F(X0) is said to be a dominated vector.  

Definition 2: A point { }1 1 2 Kn n 1 n n0 1 2 n
0 0 0 0 0 0 0X x , x ,...., x , x ,..., x ,...., x x+= =  is an efficient 

point to the problem (MMILP) if and only if 

(a) Xo is an efficient point to the Leader's problem.  

(b) 1n 1 n
0 0{x , ... , x }+  is an efficient solution to the problem (L2) for a given  

{ }1n1
0 0x , . . . x , 

M        M 

(c) ( K 1)n 1 n
0 0{x , . . . x }− +  is an efficient solution to the problem (LK) for a given 

K–1n1
0 0{x ,...., x }  

Steuer [5] proposed the following theorem which connects the Multiple 

Objective Programming and Parametric Programming: 
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Theorem: If X* is an optimal solution to the parametric programming problem  

Tmax { CX : X S}λ ∈  

for some q , 0,λ ∈ λ >�  then X* is an efficient solution to problem 

{ }max CX : X S∈  

The converse of the theorem stated above does not hold for Multiobjective 

Integer Linear Programming Problems as it might be the case that some 

efficient solutions may not be optimal for any λ> 0. However, it is possible to 

find new efficient solutions if known efficient solutions are removed from the 

feasible set. 

The efficient solution of each level is determined by the method 

described in the theorem mentioned above for a given value of the variables 

under the control of the upper level decision maker (DM).  

We now present a procedure for finding efficient solutions to the 

Leader’s problem (DM1) using parametric programming based on the 

technique of Sylva and Crema [6] defined as follows: 

Choose a weight vector λ > 0 and solve the following Integer Linear 

Programming (ILP) problem: 

1(L )′ : max {λTC1X : Ax = b, X ≥ 0, X ∈ �n} 

If there exists no solution for 1(L )′ , then the problem (MMILP) is unfeasible. 
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If 1(L )′  admits of an optimal solution 1 1 2 nX (x ,x ,...., x )= , then it is an efficient 

solution to the problem (L1) defined as 

(L1): max{C1X : AX = b, X ≥ 0, X∈�n} 

In order to find the other efficient solutions to (L1), a sequence of progressively 

more constrained problems (LPl) is solved. 

In this manner, a new efficient solution Xl is determined. 

Deleting all solutions from the feasible set of (LPl−1) such that C1X ≤ C1Xl, a 

new problem (LPl) is defined by adding the following linear constraints to the 

problem (LPl−1): 

 1 1

r r r r r(C X) ((C X ) 1)y M (1 y )≥ + − −l l l ,  for r = 1, 2, …, q 

 
K

r
r 1

y 1
=

≥∑ l  

 ryl  ∈ {0, 1} for r = 1, 2, …, q 

where −Mr is a lower bound of the r-th objective function of the leader for any 

feasible value of the objective function. 

 Note that each time addition of these constraints is equivalent to 

truncating the region 

 Nt = {X ∈ �n: C1X ≤ C1Xt}    (1 ≤ t ≤ l) 

from the feasible set the problem (LPl) is equivalent to the problem (PNl) 

defined by 

(PNl) :  
T 1

t
t 1

max C X : X S N
=

 λ ∈ − 
 

l

U  
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where S is the feasible set of the (MMILP) problem. 

Also, any solution to the problem (PNl) is efficient to problem (LPl) defined as: 

(LPl): max  λTC1X 

 subject to 

Ax = b 

(C1X)r  ≥ (C1Xt)r+ 1)yl
t− Mr(1−yr

t),    for t = 1, 2, …, l;  r = 1, 2…, q 

q
t t

r r
r 1

y 1, y {0,1}
=

= ∈∑  for t = 1, …, l; r = 1, …, q,   

X ≥ 0, X ∈ �n 

The procedure will produce the whole set of non-dominated vectors if all the 

elements of the matrix C1 are integers. 

4. METHOD OF SOLUTION 

4.1 Solution Technique 

In this paper we have proposed new method for the solution of the problem 

considered above in which the solution is obtained hierarchically and 

levelwise. Stackelberg strategy has been employed as a solution concept. 

Firstly DM1 optimizes his/her objective function by using the parametric 

approach. Then for a given value of the variable(s) under the control of DM1, 

DM2 optimizes his/her objective function by parametric programming method. 

If DM2 also produces the same solution, we move to the next level, otherwise, 

we find the next efficient solution to the leader’s problem by adding a set of 
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linear constraints. The process is continued till the last level and each time the 

next efficient solution to DM1 is obtained by progressively adding a set of 

constraints. The solution so obtained is the solution to the (MMILP) problem. 

Although, addition of the constraints to the leader’s problem increases the 

problem size, but the algorithm proposed in this paper usually solves a 

multilevel multiobjective integer linear programming problem easily in a finite 

number of iterations and does not increase the complexities of the original 

problems. Each decision maker optimizes his/her objective function 

independently without producing any harm to the choice of the decision 

variables at the lower succeeding levels. 

4.2 Termination condition of the iterative process for MMILP Problems 

When the efficient solution of each decision maker considered 

hierarchically for a given choice of the variables under the control of upper 

level decision maker is same, the termination condition is satisfied. 

5. ALGORITHM AND FLOWCHART 

The outline of the procedure is summarized in the following algorithm and 

flowchart: 

 

5.1 Technical representation of the algorithm:  

The algorithm to solve the (MMILP) considered in this paper is technically 

summarized as follows: 



 310 

Step 0 : Initialization 

 Consider the leader’s problem i.e. problem of first level decision 

maker DM1 

(L1) : max C1X 

  subject to  

AX = b 

   X ≥ 0 

   X ∈ �n 

Step 1:  Solving the problem (L1): Choose a weight vector λ > 0 and 

solve the integer linear programming problem 1(L )′ . 

′1(L )  max {λTC1X : AX = b,  X ≥ 0,  X ∈ �n} 

If the problem ( 1L′ ) is infeasible, then the problem (MMILP) is 

unfeasible. 

 Otherwise, let 1X̂  be the optimal solution of the problem 1(L )′ . Then, 

according to theorem 1, the solution 1X̂  so obtained is an efficient solution to 

the leader’s problem (L1). 

Step 2: Set u = 2,  i.e. Move to the next level. 

  Consider the problem (Lu) defined as 

(Lu) :  max CuX 

  subject to  
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AX = b 

   X ≥ 0 

   X ∈ �n 

  for a given (u 1)n1 1(x ,x ,...., x )−  

Find the efficient solution of (Lu) by solving the corresponding 

parametric problem (L′u) defined as: 

u(L )′ :   max {λTCuX : AX = b, X ≥ 0, X ∈ �n} 

for a given (u 1)n1 2(x ,x ,...., x )−  

Let Xu be an optimal solution of the problem u(L )′ . 

Step 3 : If X u = 1X̂ , set u = u + 1 and repeat step 2 and continue the 

process until we find an efficient solution of a multi level 

programming problem. 

 If X u ≠ 1X̂  for any u, then we find the next efficient solution of 

1(L )′  and repeat the process for the second, third …., uth level 

until a solution is obtained which is the solution of multilevel 

programming problem.  

 This stops the algorithm. 

Step 4: uX̂  is the efficient solution of the given problem (MMILP) where 

uX̂  is the u-th efficient solution of the leader’s problem. 

5.2  Flow Chart 
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The flow chart of the algorithm is as follows 

START 

Given F1, F2, …., FK and  
the constraint region 

Consider the  
leader’s problem  

(L1) 

Choose a weight vector  
λ > 0 and solve the corresponding  

parametric program (L1)  
to find its solution 

Let 1X̂  be its  
optimal solution 

Set K = 2 

A 

    B 

B             A 

For a given value of variables under the control  
of DM(K−1), solve the problem K(L )′  with an  
appropriate choice of positive weight vector. 

Let XK
 be its  

optimal solution 
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Is 

XK = 1X̂  

 
 Yes 

Are  
all levels 

exhausted? 

 
 Yes 

Efficient solution to  
(MMILP) is reached  

and XK is the efficient  
solution to the given  

problem  

STOP 

 

 

  

 

6. NUMERICAL EXAMPLE 

 Consider the following (MMILP) problem: 

 
1 2

1 2 3 4 5 1 2 3 5x ,x
max(2x x x 4x x , x 3x 3x x )− − + + + + −  

 
3

1 2 3 4 2 3 5x
max(x 2x 2x x , x 2x 3x )− − + − + −  

Update the efficient 
solution of the leader 

by using the procedure 
described in section 3 

No 

No 
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 1 2 3 4 5 1 2 4 5max(2x 2x x x 2x , x x 5x 3x )− − − + − + + −  

 subject to  

  3x1 − x2 + 3x3  + 4x5  ≤ 6 

  −x1 + 2x2 − x3 + 5x4 + 4x5 ≤ 9 

  −x1     + 5x3 + 4x4 + 2x5 ≤ 8 

  5x1     − x4 + 3x5 ≤ 7 

  −x1     −x3 + 2x4  ≤ 7 

  xi ∈ {0, 1, 2} for i = 1, 2, 3, 4, 5. 

  x1, x2, x3, x4, x5 ≥ 0 

Step 0 :  Consider the leader’s problem 

 (L1) : 
1 2

1 2 3 4 5 1 2 3 5x ,x
max(2x x x 4x x , x 3x 3x x )− − + + + + −  

 subject to 

  3x1 − x2 + 3x3  + 4x5  ≤ 6 

  −x1 + 2x2 − x3 + 5x4 + 4x5 ≤ 9 

  −x1     + 5x3 + 4x4 + 2x5 ≤ 8 

  5x1     − x4 + 3x5 ≤ 7 

  −x1     −x3 + 2x4  ≤ 7 

  xi ∈ {0, 1, 2} for i = 1, 2, 3, 4, 5. 

  xi ≥ 0 for i = 1, 2, 3, 4, 5 

Step 1 : Solving the Problem (L1) 
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 Choose λ = (4, 1) and solve the integer linear programming (ILP) 

problem 1(L )′  defined as 

  
1 2

1 2 3 4 5 1 2 3 5x ,x
max 4(2x x x 4x x ) ( x 3x 3x x )− − + + + + + −  

  = 9x1 − x2 − x3 + 16x4 + 3x5 

  subject to 

  3x1 − x2 + 3x3  + 4x5  ≤ 6 

  −x1 + 2x2 − x3 + 5x4 + 4x5 ≤ 9 

  −x1     + 5x3 + 4x4 + 2x5 ≤ 8 

  5x1     − x4 + 3x5 ≤ 7 

  −x1     −x3 + 2x4  ≤ 7 

  xi ∈ {0, 1, 2} for i = 1, 2, 3, 4, 5. 

  xi ≥ 0 for i = 1, 2, 3, 4, 5 

 The optimal value of the objective function is −3 at the point 

1

1 2 3 4 5
ˆ ˆ ˆ ˆ ˆ ˆX (x ,x ,x , x ,x )=  = (0, 2, 1, 0, 0) with objective vector  

(−3, 9) at 1X̂ . 

 

Step 2 :  Set u = 2 

  i.e. consider the problem (L2) defined as 

  max C2X 

  subject to  
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Ax = b 

   X ≥ 0 

   X ∈ �n 

  for a given 1 2
ˆ ˆ(x ,x )  

 i.e. consider 

(L2) :  
3

2

1 2 3 4 2 3 5x
maxC X (x 2x 2x x , x 2x 3x )= − − + − + −  

   = (−4 − 2x3 + x4, −2 + 2x3 − 3x5) 

  subject to 

          3x3  + 4x5  ≤ 8 

        − x3 + 5x4 + 4x5 ≤ 5 

          5x3 + 4x4 + 2x5 ≤ 8 

       − x4 + 3x5 ≤ 7 

       −x3 + 2x4  ≤ 7 

  xi ∈ {0, 1, 2} for i = 1, 2, 3, 4, 5. 

  x3, x4, x5 ≥ 0  

Choose λ = (6, 5) and solve the integer linear programming (ILP) problem 

2(L )′  defined as 

2(L )′ :  
3x

max −34 − 2x3 + 6x4 − 15x5 

  subject to  

          3x3  + 4x5  ≤ 8 
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        − x3 + 5x4 + 4x5 ≤ 5 

          5x3 + 4x4 + 2x5 ≤ 8 

       − x4 + 3x5 ≤ 7 

          −x3 + 2x4  ≤ 7 

  x3, x4, x5 ∈ {0, 1, 2}  

  x3, x4, x5 ≥ 0  

 The optimal value of the objective function is −28 at 

 X2 = (0, 2, 0, 1, 0) 

Step 3 :  Since X2 = (0, 2, 0, 1, 0) ≠ (0, 2, 1, 0, 0), therefore we find the 

next efficient solution of (L1) by adding a set of linear constraints 

to the problem (L1) to obtain  

 
1 2x ,x

max 9x1 − x2 − x3 + 16x4 + 3x5 

 subject to 

  3x1 − x2 + 3x3  + 4x5  ≤ 6 

  −x1 + 2x2 − x3 + 5x4 + 4x5 ≤ 9 

  −x1     + 5x3 + 4x4 + 2x5 ≤ 8 

  5x1     − x4 + 3x5 ≤ 7 

  −x1     −x3 + 2x4  ≤ 7 

  2x1 − x2 − x3 + 4x4 + x5 ≥ −2 1

1y  − 3(1 − 1

1y ) = 1

1y − 3 

  x1 + 3x2 + 3x3 − x5 ≥ 10 1

2y − 1(1 − 1

2y ) = 11 1

2y  − 1 
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  1 1
1 2y y 1+ ≥  

  1 1

1 2y , y {0,1}∈  

  xi ∈ {0, 1, 2}   for i = 1, …,5   

Note that −3 is a lower bound on the first objective and −1 is a lower bound on 

the second objective of the leader. 

The problem value of the objective function to this problem is 41 at 2X̂  = (1, 0, 

0, 2, 0) with 1 1

1 2y 1, y 0= =  and the corresponding objective vector is (10, 1) 

Step 4 : For a given value of x1 = 1 and x2 = 0, we solve the second level 

problem defined as 

 
3x

max(1 − 2x3 + x4, 2x3 − 3x5) 

 subject to  

          3x3  + 4x5  ≤ 3 

        − x3 + 5x4 + 4x5 ≤ 10 

          5x3 + 4x4 + 2x5 ≤ 9 

       − x4 + 3x5 ≤ 2 

          −x3 + 2x4  ≤ 8 

   x3, x4, x5 ∈ {0, 1, 2}  

   x3, x4, x5 ≥ 0  

Choose λ = (2, 1) and solve the following ILP problem 
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3x

max 2 − 2x3 + 2x4 − 3x5 

 subject to 

          3x3  + 4x5  ≤ 3 

        − x3 + 5x4 + 4x5 ≤ 10 

          5x3 + 4x4 + 2x5 ≤ 9 

       − x4 + 3x5 ≤ 2 

          −x3 + 2x4  ≤ 8 

   x3, x4, x5 ∈ {0, 1, 2}  

   x3, x4, x5 ≥ 0  

The optimal value of the objective function is 6 at the point  

(1, 0, 0, 2, 0) = 2X̂ . Hence we move to the third level problem. 

Step 5  :  We now solve the problem of DM3 for a given value of x1 = 1,  

x2 = 0, x3 = 0 i.e. the problem (L3) defined as 
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3(L )′ :  
4 5x ,x

max (2 + x4 + 2x5 , −1 + 5x4 − 3x5) 

 subject to 

                 x5  ≤ 3 

                  5x4 + 4x5 ≤ 10 

                   4x4 + 2x5 ≤ 10 

       − x4 + 3x5 ≤ 2 

                   2x4  ≤ 8 

       x4, x5 ∈ {0, 1, 2}  

       x4, x5 ≥ 0  

Choose λ = (2, 1) and solve the integer linear programming problem defined as  

3(L )′ :  
4 5x ,x

max (−5 + 7x4 + x5) 

 subject to 

                 x5  ≤ 3 

                  5x4 + 4x5 ≤ 10 

                   4x4 + 2x5 ≤ 10 

       − x4 + 3x5 ≤ 2 

                   2x4  ≤ 8 

       x4, x5 ∈ {0, 1, 2}  

       x4, x5 ≥ 0  
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The optimal value of the objective function is 14 at x4 = 2, x5 = 0 which is same 

as 2X̂ . Hence, 2X̂  = (1, 0, 0, 2, 0) is the efficient solution of the given 

(MMILP) problem.  

7. CONCLUSIONS 

 The main advantage of the proposed hierarchical and levelwise approach 

is that positive weight vectors are assigned to each level of the hierarchical 

system thereby transforming the problem of each decision maker into a 

parametric programming problem which can be solved efficiently. Moving 

from one efficient solution to the other efficient solution of the leader (DM1) is 

sequential and progressively more constrained, but does not increase the 

complexities of the problem. The algorithm employs Stackelberg strategy as a 

solution concept. Furthermore, for large scale problems, the method is efficient 

and flexible enough to produce a useful set of solutions. It is hoped that the 

proposed approach can contribute to future study in the field of practical 

hierarchical decision making problems.  
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