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Abstract

Each step of an interior point method for nonlinear optimization

requires the solution of a symmetric indefinite linear system known

as a KKT system, or more generally, a saddle point problem. As

the problem size increases, direct methods become prohibitively

expensive to use for solving these problems; this leads to iterative

solvers being the only viable alternative.

In this thesis we consider iterative methods for solving saddle point

systems and show that a projected preconditioned conjugate gra-

dient method can be applied to these indefinite systems. Such a

method requires the use of a specific class of preconditioners, (ex-

tended) constraint preconditioners, which exactly replicate some

parts of the saddle point system that we wish to solve.

The standard method for using constraint preconditioners, at least

in the optimization community, has been to choose the constraint

preconditioner and then factor it. However, even the most basic

choices in constraint preconditioner can be prohibitive to factor.

We shall propose an alternative to this method: implicit factor-

ization constraint preconditioners. We exhibit how these can be

effectively applied whilst only having to factor smaller sub-blocks

of the saddle point systems, thus reducing the expected time and

memory costs of our iterative method. Numerical experiments are

provided which reveal that the benefits of using implicit factoriza-

tion constraint preconditioners compared to the standard method

can be very dramatic.
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progresses when no permutation is used. . . . . . . . . . . . . . 138

8.2 CVXQP1 M: Diagonal entries of Ĥ as the interior point method
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Chapter 1

Introduction

1.1 The Problem

One of the core components of computational mathematics is the optimization

of an objective function involving unknowns that may be constrained in some

way. Optimization problems occur in many different areas — nature, business,

and engineering are just a small subset of such areas.

The field of continuous optimization has undergone a dramatic change since

1984 with the “interior point revolution”. Each iteration of an interior point

method involves the solution of a symmetric and indefinite linear system known

as the Karush-Kuhn-Tucker (KKT) system (or, more generally, a saddle point

system), which we shall assume to be of a sparse nature. The most common

approach reduces the indefinite system to a smaller positive definite one called

the Schur complement and then uses the Cholesky factorization to solve the

system. However, this reduction produces a more ill-conditioned system which

is a lot denser than the former [63]. As a result, methods involving the solution

of the indefinite system are often preferable. This indefinite system takes the

form [
H AT

A −C

]

︸ ︷︷ ︸
H

[
x

y

]
=

[
b

d

]

︸ ︷︷ ︸
c

, (1.1.1)

where H ∈ R
n×n, C ∈ R

m×m are symmetric and A ∈ R
m×n, m ≤ n, and A has

full row rank.

The interior point methods considered in this thesis are presented in Chap-

ter 2; the spectral properties of the resulting saddle point systems are also

analyzed in that chapter. Equation (1.1.1) can be solved either directly or by

1



CHAPTER 1. INTRODUCTION 2

the use of an iterative method. We shall consider suitable direct methods in

Chapter 3 and then describe possible iterative methods in Chapter 4.

In Section 2.4.2 we show that the coefficient matrix in (1.1.1) is indefinite.

This appears to imply that the conjugate gradient method isn’t a suitable

method for solving such saddle point systems; however, with the use of con-

straint preconditioners, we can effectively apply this method. We shall derive

the resulting methods in Chapter 5 and also give theoretical results about the

associated convergence properties. For the cases of C = 0 and C symmetric

and positive definite, preconditioned conjugate gradient-based methods (of-

ten called projected preconditioned conjugate gradient methods) are already

known, but we reveal that there is a projected preconditioned conjugate gradi-

ent method which can be used when C is symmetric and positive semidefinite;

when C = 0 or C is symmetric and positive definite, this new method encom-

passes the two previously known methods.

The standard method for using constraint preconditioners, at least in the

optimization community, has been to choose the constraint preconditioner and

then factor it. There is no reason this should be any more efficient than

solving (1.1.1) directly. In fact, in Chapters 6 and 7 we will observe that

even the simplest choices can be impractical to use. However, we propose the

alternative of implicit factorization constraint preconditioners. In Chapter 6 we

introduce the idea of implicit factorization preconditioners for the case C = 0.

In particular, we consider the Schilders factorization. We then extend this to

the case C 6= 0 in Chapter 7. Numerical results are given in both chapters to

indicate how these preconditioners would behave in one iteration of an interior

point method.

To be able to use implicit factorization preconditioners we make a funda-

mental assumption about the structure of the saddle point system (1.1.1): the

first m columns of A are linearly independent. Although this is not generally

true, we can always carry out a symmetric permutation of the required saddle

point problem such that this assumption will hold. We will analyze different

choices of permutation in Chapter 8. Numerical examples involving the use of

interior point methods to solve test constrained optimization problems will be

presented.

We will have so far concentrated on the use of constraint preconditioners

within a conjugate gradient method. Several other preconditioners have been

suggested for solving saddle point systems that arise through the discretization
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of specific classes of partial differential equations; these preconditioners require

the use of a more general iterative method, for example, the Bi-conjugate

gradient method. We shall compare some of these preconditioners with the

implicit factorization constraint preconditioners in Chapter 9.

Finally, we will draw some conclusions and describe several extensions to

our ideas, some of which will connect our work to different application areas.

1.2 Definition of Optimization Problems

Optimization is the minimization or maximization of a function subject to a

set of constraints on its variables. Throughout this thesis we shall let x be a

vector of variables, f be an objective function, and c be a vector of constraints

that the variables must satisfy. The function f is a function of x that returns

a real value that we wish to minimize or maximize. Since

maximum f(x) = − minimum (−f(x))

there is no loss in generality in restricting our optimization problem to being

that of minimization.

The generalized form of an optimization problem is

min
x∈Rn

f(x)

subject to ci(x) = 0, i = 1, 2, . . . ,m;

ci(x) ≥ 0, i = m+ 1, . . . ,m′,

(1.2.1)

where f : R
n → R and c : R

n → R
m′

. We call f the objective function, while

ci, i = 1, . . . ,m, are the equality constraints and ci, i = m+ 1, . . . ,m′ are the

inequality constraints. We define the feasible set C to be the set of points x

that satisfy the constraints:

C = {x | ci(x) = 0, i = 1, 2, . . . ,m; ci(x) ≥ 0, i = m+ 1, . . . ,m′}, (1.2.2)

so that we can write (1.2.1) more compactly as

min
x∈C

f(x). (1.2.3)

Any point x that lies in C is said to be feasible and any x 6∈ C is said to be

infeasible.

There are a number of important subclasses of optimization problems. If

m′ = m = 0 then we have an unconstrained minimization problem — this
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is the simplest of all the subclasses. The problems where 0 < m = m′ are

called equality constrained minimization problems and if 0 = m < m′ then we

have an inequality constrained minimization problem. Finally, if 0 < m < m′

then the problem is known as a mixed constraints minimization problem. For

consistency we shall assume that m ≤ n.

1.3 Important Notation

Suppose that f(x) is at least twice continuously differentiable (f ∈ C2).

Definition 1.3.1. The gradient , g(x), of the objective function f is defined

to be

g(x) = ∇xf(x),

where ∇xf(x) denotes the vector of first partial derivatives, whose i-th com-

ponent is ∂f(x)/∂xi.

Definition 1.3.2. The Hessian, H(x), of the objective function f is

H(x) = ∇xxf(x),

where the i, j-th component is the second partial derivative ∂2f(x)/∂xi∂xj.

(Note: H(x) is always symmetric.)

Likewise, the gradient and Hessian of the i-th constraint are respectively

defined as ai(x) = ∇xci(x) and Hi(x) = ∇xxci(x).

Definition 1.3.3. The Jacobian matrix is

A(x) = (∇xc(x))
T =




aT
1 (x)
...

aT
m′(x)


 .

We shall use the usual Euclidean inner product between two t-vectors u

and v, i.e. 〈u, v〉 =
∑t

i=1 uivi.

Definition 1.3.4. If y is a vector (of so-called Lagrange multipliers), the

Lagrangian function L(x, y) is defined as

L(x, y) = f(x)− 〈y, c(x)〉 .

Its gradient and Hessian with respect to x are

g(x, y) = ∇xL(x, y) ≡ g(x)− AT (x)y,

H(x, y) = ∇xxL(x, y) ≡ H(x)−∑m

i=1 yiHi(x).
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The i-th unit (canonical) vector is denoted by ei, whilst e is the vector

of ones and I is the identity matrix of appropriate dimension [41]. Given a

symmetric matrix M with, respectively, m+, m− and m0 positive, negative

and zero eigenvalues, we denote its inertia by In(M) = (m+,m−,m0).

We will use the following standard order notation throughout; see [19] for

more details.

Definition 1.3.5 (Order Notation). Let φ be a function of a positive variable

h, and let p be fixed.

• If there exists a constant κu > 0 such that |φ| ≤ κuh
p for all sufficiently

small h, then we write φ = O(hp). If p = 0, we write φ = O(1) and say

that φ is finite.

• If there exists a constant κl > 0 such that |φ| ≥ κlh
p for all sufficiently

small h, then we write φ = Ω(hp). If p = 0, we write φ = Ω(1) and say

that φ is bounded away from zero.

• If there exist constants κl > 0 and κu > 0 such that κlh
p ≤ |φ| ≤ κuh

p

for all sufficiently small h, then we write φ = Θ(hp). If p = 0, we write

φ = Θ(1) and say that φ is both finite and bounded away from zero.

1.4 Optimality Conditions

Let us firstly define what global and local minimizers are with respect to our

general optimization problem (1.2.1).

Definition 1.4.1. A point x∗ is called a global minimizer if x∗ ∈ C and

f(x∗) ≤ f(x) for all x ∈ C.

Definition 1.4.2. A point x∗ is called a local minimizer if x∗ ∈ C and there

is an open neighbourhood N of x∗ such that f(x∗) ≤ f(x) for all x ∈ C ∩ N .

We say that x∗ ∈ C is isolated if there is an open neighbourhood N of x∗ such

that f(x∗) < f(x) for all x 6= x∗ ∈ C ∩ N .

It can be extremely difficult to say anything about the solutions of optimiza-

tion problems because, in general, they may have many local, often non-global,

minimizers. We therefore need some optimality conditions; these conditions
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provide a means of guaranteeing that a candidate solution is indeed (locally)

optimal (the sufficient conditions) and they can also guide us in the design of

algorithms for solving such problems.

We will consider the unconstrained, equality constrained, inequality con-

strained and mixed constraint problems separately.

1.4.1 Optimality Conditions for Unconstrained Optimiza-
tion

The necessary conditions for optimality are derived by assuming that a point

x∗ is a local minimizer and then proving facts about g(x∗) and H(x∗). We

shall not show the proofs to these theorems — proofs can be found in [45] and

[62].

Theorem 1.4.3 (First-Order Necessary Conditions). If x∗ is a local minimizer

of f(x) and f is continuously differentiable in an open neighbourhood of x∗,

then g(x∗) = 0.

Theorem 1.4.4 (Second-Order Necessary Conditions). If x∗ is a local min-

imizer of f(x) and ∇2f is continuous in an open neighbourhood of x∗, then

g(x∗) = 0 and H(x∗) is positive semidefinite.

Suppose that we have found a point that satisfies the above conditions. We

can guarantee that it is a minimizer, an isolated one, provided the following

second-order sufficient optimality conditions are satisfied.

Theorem 1.4.5 (Second-Order Sufficient Conditions). Suppose ∇2f is contin-

uous in an open neighbourhood of x∗ and that g(x∗) = 0 and H(x∗) is positive

definite. Then x∗ is an isolated local minimizer of f(x).

1.4.2 Optimality Conditions For Equality Constrained
Minimization

When constraints become involved in the problem we must take the role of

the feasibility region into account. Given equality constraints, the necessary

optimality conditions are as follows.
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Theorem 1.4.6 (First-Order Necessary Conditions). If x∗ is a local mini-

mizer of f(x) subject to c(x) = 0 and f and c are continuously differentiable

in open neighbourhoods of x∗, then, so long as the set of constraint gradients

{∇ci(x∗), i = 1, . . . ,m} is linearly independent, there exists a vector of La-

grange multipliers y∗ such that

c(x∗) = 0 (primal feasibility),

g(x∗)− AT (x∗)y∗ = 0 (dual feasibility).

Theorem 1.4.7 (Second-Order Necessary Conditions). If x∗ is a local mini-

mizer of f(x) subject to c(x) and ∇2f,∇2c are continuous in open neighbour-

hoods of x∗, then, so long as the set of constraint gradients {∇ci(x∗), i =

1, . . . ,m} is linearly independent, there exists a vector of Lagrange multipliers

y∗ such that c(x∗) = 0, g(x∗)− AT (x∗)y∗ = 0 and

〈s,H(x∗, y∗)s〉 ≥ 0 for all s ∈ N ,

where

N = {s ∈ R
n|A(x∗)s = 0}.

Strengthening the requirement on H(x∗, y∗) gives us the sufficient condi-

tions:

Theorem 1.4.8 (Second-Order Sufficient Conditions). Suppose ∇2f and ∇2c

are continuous in open neighbourhoods of x∗ and that there exists a vector of

Lagrange multipliers y∗ such that c(x∗) = 0, g(x∗)− AT (x∗)y∗ = 0 and

〈s,H(x∗, y∗)s〉 > 0 for all s ∈ N ,

where

N = {s ∈ R
n|A(x∗)s = 0}.

Then x∗ is an isolated local minimizer of f(x) subject to c(x) = 0.

1.4.3 Optimality Conditions For Inequality Constrained
Minimization

Suppose that x∗ is a minimizer of the inequality constrained minimization

problem

min
x∈Rn

f(x) subject to c(x) ≥ 0.
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We shall say that a constraint is active at x∗ if and only if ci(x
∗) = 0. The active

constraints play an important role in defining the minimizer, but the inactive

constraints play no part at all. We’ll denote the set of active constraints for a

given x∗ as A(x∗) and call it the active set .

Definition 1.4.9 (LICQ). Given the point x∗ and the active set A(x∗), we say

that the linear independence constraint qualification (LICQ) holds if the set

of active constraint gradients {∇ci(x∗), i = 1, . . . ,m′} is linearly independent.

Theorem 1.4.10 (First-Order Necessary Conditions). If x∗ is a local mini-

mizer of f(x) subject to c(x) ≥ 0 and f and c are continuously differentiable in

open neighbourhoods of x∗, then, so long as the LICQ holds at x∗, there exists

a vector of Lagrange multipliers y∗ such that

c(x∗) ≥ 0 (primal feasibility),

g(x∗)− AT (x∗)y∗ = 0 (dual feasibility),

ci(x
∗)[y∗]i = 0 (complementary slackness).

The primal/dual feasibility and complementary slackness conditions are

known collectively as the Karush-Kuhn-Tucker (KKT) conditions.

Theorem 1.4.11 (Second-Order Necessary Conditions). If x∗ is a local min-

imizer of f(x) subject to c(x) ≥ 0 and ∇2f and ∇2c are continuous in open

neighbourhoods of x∗, then, so long as the LICQ holds at x∗, there exists a

vector of Lagrange multipliers y∗ such that primal/dual feasibility and comple-

mentary slackness hold as well as

〈s,H(x∗, y∗)s〉 ≥ 0 for all s ∈ N+,

where

N+ =

{
s ∈ R

n

∣∣∣∣∣
〈s, ai(x

∗)〉 = 0 if ci(x
∗) = 0 & [y∗]i > 0 and

〈s, ai(x
∗)〉 ≥ 0 if ci(x

∗) = 0 & [y∗]i = 0

}
.

The corresponding sufficient condition also holds:

Theorem 1.4.12 (Second-Order Sufficient Conditions). Suppose ∇2f and ∇2c

are continuous in open neighbourhoods of x∗ and that there exists a vector of

Lagrange multipliers y∗ such that c(x∗) = 0, g(x∗)− AT (x∗)y∗ = 0 and

〈s,H(x∗, y∗)s〉 > 0 for all s ∈ N+,
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where

N+ =

{
s ∈ R

n

∣∣∣∣∣
〈s, ai(x

∗)〉 = 0 if ci(x
∗) = 0 & [y∗]i > 0 and

〈s, ai(x
∗)〉 ≥ 0 if ci(x

∗) = 0 & [y∗]i = 0

}
,

then x∗ is an isolated local minimizer of f(x) subject to c(x) ≥ 0.

1.4.4 Optimality Conditions For Mixed Constraints Min-
imization

Suppose that x∗ is a minimizer of the inequality-constrained minimization

problem

min
x∈Rn

f(x)

subject to ci(x) = 0, i = 1, 2, . . . ,m;

ci(x) ≥ 0, i = m+ 1, . . . ,m′.

The necessary optimality conditions are as follows.

Theorem 1.4.13 (First-Order Necessary Conditions). If x∗ is a local min-

imizer of f(x) subject to ci(x) = 0, i = 1, 2, . . . ,m and ci(x) ≥ 0, i =

m + 1, . . . ,m′, and f and c are continuously differentiable in open neighbour-

hoods of x∗, then, so long as the LICQ holds at x∗, there exists a vector of

Lagrange multipliers y∗ such that

ci(x
∗) = 0 i = 1, . . . ,m (primal feasibility (a)),

ci(x
∗) ≥ 0 i = m+ 1, . . . ,m′ (primal feasibility (b)),

g(x∗)− AT (x∗)y∗ = 0 (dual feasibility),

ci(x
∗)[y∗]i = 0 (complementary slackness).

Theorem 1.4.14 (Second-Order Necessary Conditions). If x∗ is a local min-

imizer of f(x) subject to ci(x) = 0, i = 1, 2, . . . ,m and ci(x) ≥ 0, i =

m + 1, . . . ,m′, and ∇2f and ∇2c are continuous in open neighbourhoods of

x∗, then, so long as the LICQ holds at x∗, there exists a vector of Lagrange

multipliers y∗ such that primal/dual feasibility and complementary slackness

hold as well as

〈s,H(x∗, y∗)s〉 ≥ 0 for all s ∈ N+,

where

N+ =

{
s ∈ R

n

∣∣∣∣∣
〈s, ai(x

∗)〉 = 0 if ci(x
∗) = 0 & [y∗]i > 0 and

〈s, ai(x
∗)〉 ≥ 0 if ci(x

∗) = 0 & [y∗]i = 0

}
.
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The corresponding sufficient condition also holds:

Theorem 1.4.15 (Second-Order Sufficient Conditions). Suppose ∇2f and ∇2c

are continuous in open neighbourhoods of x∗ and that there exists a vector of

Lagrange multipliers y∗ such that ci(x) = 0, i = 1, 2, . . . ,m and ci(x) ≥ 0,

i = m+ 1, . . . ,m′, g(x∗)− AT (x∗)y∗ = 0 and

〈s,H(x∗, y∗)s〉 > 0 for all s ∈ N+,

where

N+ =

{
s ∈ R

n

∣∣∣∣∣
〈s, ai(x

∗)〉 = 0 if ci(x
∗) = 0 & [y∗]i > 0 and

〈s, ai(x
∗)〉 ≥ 0 if ci(x

∗) = 0 & [y∗]i = 0

}
,

then x∗ is an isolated local minimizer of f(x) subject to c(x) ≥ 0.

We shall make use of some of these optimality conditions in Chapter 2 when

we derive some of the interior point methods.



Chapter 2

Interior Point Methods

From this chapter onwards we shall restrict ourselves to constrained optimiza-

tion problems. We shall also simplify the equality constraints to be linear

constraints which can consequently be written as

Ax− d = 0, (2.0.1)

where A ∈ R
m×n is of full rank, d ∈ R

m, and m ≤ n. For the treatment of

more general problems refer to [39, 62, 87].

In the 1980s there was a large leap made in the solving of constrained

optimization problems. The discovery originally came about by considering

linear objective functions, i.e. f(x) = bTx for some vector b, and formulating

them as nonlinear problems. These are then solved with various modifications

of nonlinear algorithms such as Newton’s method [54, 62]. In these methods

all of the iterates are required to satisfy the inequality constraints strictly, so

they soon became known as interior point methods. This idea has since been

generalized to other forms of objective function.

2.1 Equality Constrained Problems

Suppose we wish to solve an equality constrained minimization problem of the

form

min
x∈Rn

f(x) =
1

2
xTQx+ bTx subject to Ax− d = 0,

where A ∈ R
m×n is of full rank, Q ∈ R

n×n is symmetric, positive semidefinite,

b ∈ R
n and d ∈ R

m.

11
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If x∗ is a local minimizer of this problem, then the second-order necessary

conditions (Section 1.4.2) imply that

Ax∗ − d = 0, (2.1.1)

Qx∗ + b− ATy∗ = 0. (2.1.2)

These equations can be expressed as

[
Q AT

A 0

][
x∗

−y∗

]
=

[
−b
d

]
. (2.1.3)

The system (2.1.3) is known as the Karush-Kuhn-Tucker (KKT) system and

is an example of a saddle point problem. We need only solve this system to

find x∗; no interior point method is required.

2.2 Inequality Constrained Problems

Consider the convex nonlinear optimization problem

min f(x) such that c(x) ≥ 0, (2.2.1)

where x ∈ R
n, and f : R

n 7→ R and c : R
n 7→ R

m′

are convex and twice

differentiable. Interior point methods introduce slack variables, s, into (2.2.1)

to transform the problem into

min f(x) such that c(x)− s = 0 and s ≥ 0. (2.2.2)

We then replace the non-negativity constraints of (2.2.2) with a logarithmic

barrier term in the objective function, resulting in

min f(x)− µ
m′∑

i=1

ln si such that c(x)− s = 0. (2.2.3)

The first-order optimality conditions for this problem are

g(x)− A(x)Ty = 0,

y − µS−1e = 0,

c(x)− s = 0,

s ≥ 0, y ≥ 0,

(2.2.4)
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where S = diag {s1, s2, . . . , sm′} , y is a vector of Lagrange multipliers, and e is

as defined in Section 1.3. Primal-dual methods modify (2.2.4) by multiplying

the second equation by S, resulting in the system

g(x)− A(x)Ty = 0,

SY e− µe = 0,

c(x)− s = 0,

s ≥ 0, y ≥ 0,

(2.2.5)

where Y = diag {y1, y2, . . . , ym′} . The following system is solved to find the

Newton direction:


H(x, y) 0 −AT (x)

0 Y S

−A(x) I 0







∆x

∆s

∆y


 =



−g(x) + AT (x)y

µe− SY e
c(x)− s


 . (2.2.6)

By eliminating ∆s from (2.2.6) we obtain the saddle point system

[
H(x, y) −A(x)T

−A(x) −SY −1

]

︸ ︷︷ ︸
H

[
∆x

∆y

]
=

[
−g(x) + A(x)Ty

c(x)− µY −1e

]
, (2.2.7)

with

∆s = −s+ Y −1(µe− S∆y).

This gives us Algorithm 2.2.1: an interior point method for solving inequality

constrained optimization problems of the form given in (2.2.1). The positive

barrier parameter, µ, is gradually reduced to guarantee the convergence to the

optimal solution of the original problem (2.2.1). In practice, this parameter is

generally reduced to be of the order 10−8.

At an optimal point, x∗, s∗i y
∗
i = 0 for i = 1, . . . ,m′. As we draw near to

optimality we find that at the kth iterate of the interior point method when

i ∈ A(x), where A(x∗) is the active set defined in Section 1.4.3, [sk]i/[y
k]i =

O(µk); for i /∈ A(x∗), [sk]i/[y
k]i = O(µ−1

k ). The O(µ−1
k ) behaviour of some of

the entries in SY −1 will result in H being very ill-conditioned when we draw

close to optimality. One way that the optimization community combats this

is to split the matrix SY −1 such that

SY −1 =

[
SAY

−1
A 0

0 SIY
−1
I

]
,
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Algorithm 2.2.1 Interior Point Method for Inequality Constrained Problems

Require: x0 and (s0, y0) > 0
for k = 0, 1, 2, . . . do

Choose σk ∈ (0, 1) and set µk = σk

(
[sk]

T
yk

m

)

Solve the following linear system

[
H(xk, yk) −A(xk)T

−A(xk) −[Sk][Y k]−1

]

︸ ︷︷ ︸
H

[
∆xk

∆yk

]
=

[
−g(xk) + A(xk)Tyk

c(xk)− µk[Y k]−1e

]

Set ∆sk = −sk + [Y k]−1(µke− [Sk]∆yk)
Choose χk ∈ (0, 1)
Choose αk as the first element in the sequence

{
1, [χk], [χk]2, [χk]3, . . .

}

such that (sk + αk∆sk, yk + αk∆yk) > 0
Form the new iterate

(sk+1, xk+1, yk+1) = (sk, xk, yk) + αk(∆sk,∆xk,∆yk)

end for

where SA[YA]−1
k = O(µkI) and SI [YI ]

−1
k = O( 1

µk
I). System (2.2.7) becomes



H(x, y) −AA(x)T −AI(x)

T

−AA(x) −SAY
−1
A 0

−AI(x) 0 −SIY
−1
I







∆x

∆yA

∆yI


 =



−g(x) + AA(x)TyA + AI(x)

TyI

cA(x)− µY −1
A e

cI(x)− µY −1
I e


 ,

where A(x)T =
[
AA(x)T AI(x)

T

]
. Eliminating ∆yI we obtain

[
H + AT

IS
−1
I YIAI −AT

A

−AA −SAY
−1
A

][
∆x

∆yA

]
=

[
−g + AT

AyA + µAT
IS

−1
I e

cA − µY −1
A e

]
.

As we approach the optimal solution the entries of SA(x)Y −1
A become small, as

do the entries of AT
IS

−1
I (x)YIAI ; the system is well behaved in the limit [45].

2.2.1 The Central Path

The above method can also be considered in terms of the central path. Suppose

that we consider the inequality problem as defined in (2.2.2):

min f(x) such that c(x)− s = 0 and s ≥ 0.
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Figure 2.1: Central path, projected into space of primal variables x, showing
a typical neighbourhood.

Theorem 1.4.13 gives the following first-order necessary conditions:

c(x)− s = 0,

g(x)− AT (x)y = 0,

siyi = 0, i = 1, . . . ,m′,

(s, y) ≥ 0.

The central path C is parameterized by a scalar τ > 0 such that each point

(xτ , yτ , sτ ) ∈ C solves the system

c(x)− s = 0,

g(x)− AT (x)y = 0,

siyi = τ, i = 1, . . . ,m′,

(s, y) > 0.

We note that these conditions differ from the first-order necessary conditions

only in the term τ on the right hand side and the inequality sign becoming a

strict inequality. The central path is defined as

C = {(xτ , yτ , sτ )} .

In Figure 2.1 we see a plot of C for a typical problem, projected into the space

of primal variables x.
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Instead of taking Newton steps directly onto C, interior point methods take

Newton steps towards points on C for which τ > 0. To achieve this, a centering

parameter σ ∈ (0, 1) and a duality measure µ̃ defined by

µ̃ =
1

m′

m′∑

i=1

yisi =
yT s

m′

are introduced. We then solve the system

c(x)− s = 0,

g(x)− AT (x)y = 0,

SY e = σµ̃e,

(s, y) > 0.

Note that by setting µ = σµ̃ we exactly obtain (2.2.5). Thus, Algorithm 2.2.1

is equivalently given by this central path idea.

2.3 Mixed Constraints Optimization Problems

Let us consider how to solve constrained optimization problems of the following

form:
min

x
f(x)

subject to Ax− d = 0 and x ≥ 0,
(2.3.1)

where f(x) has continuous first and second derivatives, x ∈ R
n, d ∈ R

m and

A ∈ R
m×n has full row rank m. As in the previous section, interior point

methods usually replace the inequality constraints with logarithmic barriers

to obtain
min

x
f(x)− µ∑n

j=1 lnxj

subject to Ax− d = 0,
(2.3.2)

where µ is a barrier parameter [34, 39, 62, 87]. Any finite solution of (2.3.2) is

a stationary point of the Lagrangian function

L(x, y, µ) = f(x)− yT (Ax− d)− µ
n∑

j=1

lnxj.

For the conditions of the stationary point we write

∇xL(x, y, µ) = ∇xf(x)− ATy − µX−1e = 0, (2.3.3)

∇yL(x, y, µ) = Ax− d = 0, (2.3.4)
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where X−1 = diag{x−1
1 , x−1

2 , . . . , x−1
n }.

Let s = µX−1e, i.e. XSe = µe, where S = diag{s1, s2, . . . , sn}. The

first-order optimality conditions for the barrier problem are therefore given by

Ax = d, (2.3.5)

∇xf(x)− ATy = s, (2.3.6)

XSe = µe. (2.3.7)

The interior point algorithm applies the Newton method to solve this sys-

tem of nonlinear equations. We obtain the Newton direction by solving the

system of linear equations:



A 0 0

∇xxf(x) AT −I
−S 0 −X







∆x

−∆y

∆s


 =




ξp

ξd

ξµ


 , (2.3.8)

where

ξp = d− Ax,
ξd = s−∇xf + ATy,

ξµ = XSe− µe.

This gives us Algorithm 2.3.1 which is an interior point method for solving

mixed constraints optimization problems of the form given in (2.3.1).

By eliminating ∆s from (2.3.8) and rearranging we obtain the symmetric

indefinite system of linear equations
[
∇xxf(x) + SX−1 AT

A 0

][
∆x

−∆y

]
=

[
ξd −X−1ξµ

ξp

]
. (2.3.9)

The system (2.3.9) is a KKT/saddle point problem. Once this system has

been solved a positive step length α is chosen such that (x+α∆x, y+α∆y) ≥ 0,

and the variables are updated according to x ← x + α∆x, y ← y + α∆y and

µ← τµ, where τ ∈ (0, 1). (Sometimes a different α may be used for x and y.)

2.3.1 The Quadratic Programming Problem

If the function f(x) is a quadratic function, then the associated optimization

problem is known as a quadratic programming problem. Suppose f is expressed

as

f(x) =
1

2
xTQx+ bTx,
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Algorithm 2.3.1 Interior Point Method for Mixed Constraint Problems

Require: y0 and (x0, s0) > 0
for k = 0, 1, 2, . . . do

Choose σk ∈ (0, 1) and set µk = σk
(

[xk]T [sk]
n

)

Solve the following linear system




A 0 0

∇xxf(xk) AT −I
−[Sk] 0 −[Xk]







∆xk

−∆yk

∆sk


 =




d− Axk

sk −∇xf(xk) + ATyk

−µe+ [Xk][Sk]e




Choose χk ∈ (0, 1)
Choose αk as the first element in the sequence

{
1, [χk], [χk]2, [χk]3, . . .

}

such that (sk + αk∆sk, xk + αk∆xk) > 0
Form the new iterate

(sk+1, xk+1, yk+1) = (sk, xk, yk) + αk(∆sk,∆xk,∆yk)

end for

where Q ∈ R
n×n is a positive semi-definite matrix and b ∈ R

n. The corre-

sponding KKT/saddle point system is

[
Q+ SX−1 AT

A 0

][
∆x

−∆y

]
=

[
ξd −X−1ξµ

ξp

]
, (2.3.10)

where

ξp = d− Ax,
ξd = s− b−Qx− ATy,

ξµ = XSe− µe.

2.3.2 Mehrotra’s Predictor-Corrector Method

The interior point method introduced in Section 2.3 is no longer the most

commonly used version in practice. Soon after its appearance, Mehrotra’s

predictor-corrector variant [57] became a very popular method. The main

difference between the predictor-corrector approach and the previous algorithm

is the choice of search direction. In the predictor-corrector method the new

search directions are selected by the solution of two linear systems. Firstly we
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solve



A 0 0

∇xxf(xk) AT −I
−[Sk] 0 −[Xk]







∆x̃k

−∆ỹk

∆s̃k


 =




d− Axk

sk −∇xf(xk) + ATyk

[Xk][Sk]e


 ,

and ∆s̃k, ∆x̃k, ∆ỹk are called affine directions. The search directions are then

given by




A 0 0

∇xxf(xk) AT −I
−[Sk] 0 −[Xk]







∆xk

−∆yk

∆sk


 =




d− Axk

sk −∇xf(xk) + ATyk

−µe+ [Xk][Sk]e+ [∆X̃k][∆S̃k]e


 .

As in the original variant, the variables ∆s̃k and ∆sk are usually eliminated

from these linear systems and saddle point problems are obtained.

This variant significantly reduces the number of iterations of the interior

point method. Although this reduction is at the cost of us needing to solve

two linear systems instead of one, we note that the matrix is the same in both

the systems. It has been found in practice that the reduction in iterations

easily compensates the requirement of solving these two systems, particularly

because we need only factorize the coefficient matrix once.

2.4 General Structure of the Linear Systems

In the previous sections of this chapter we have shown the need to be to able

to solve an important class of indefinite linear systems. These systems are of

a saddle point structure

[
H AT

A −C

]

︸ ︷︷ ︸
H

[
x

y

]
=

[
b

d

]
, (2.4.1)

where H ∈ R
n×n, C ∈ R

m×m are symmetric and A ∈ R
m×n. We shall assume

that m ≤ n and A is of full rank. Another reasonable assumption for us to

make is that H and C are positive semi-definite. More shall be said about this

assumption in Chapter 5.
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2.4.1 Invertibility Conditions

If H is invertible, the saddle point matrix can be factored into block triangular

factors:

H =

[
H AT

A −C

]
=

[
I 0

AH−1 I

][
H 0

0 S

][
I H−1AT

0 I

]
, (2.4.2)

where S = −(C + AH−1AT ) is the Schur complement of H in H. We are

able to derive a number of important properties about the saddle point matrix

from this factorization, as well as it forming the basis of many popular solution

algorithms.

Assuming H is nonsingular, it is clear from (2.4.2) that H is nonsingular

if and only if S is also nonsingular. Unfortunately this is a very general state-

ment and it may be difficult to say much about the invertibility of the Schur

complement S.

We shall firstly consider the case C = 0. When H is symmetric positive

semidefinite, we have the following result, [8].

Theorem 2.4.1. Assume that H is symmetric positive semidefinite, A has

full rank, and C = 0. Then a necessary and sufficient condition for the saddle

point matrix H to be nonsingular is that ker(A) ∩ ker(H) = {0}.

Proof. Let u =

[
x

y

]
be such that Hu = 0. Hence Hx+ATy = 0 and Ax = 0.

It follows that xTHx = −xTATy = −(Ax)Ty = 0. Since H is symmetric

positive semidefinite, xTHx = 0 implies that Hx = 0, and therefore x ∈
ker(A)∩ker(H), thus x = 0. Also, y = 0 since ATy = 0 and AT has full column

rank. Therefore u = 0, and H is nonsingular. This proves the sufficiency of

the condition.

Assume now that ker(A) ∩ ker(H) 6= {0}. Taking x ∈ ker(A) ∩ ker(H),

x 6= 0 and letting u =

[
x

0

]
we have Hu = 0, implying that H is singular.

Hence, the condition is necessary.

This is easily extended to the case of C symmetric positive semidefinite,

[8].

Theorem 2.4.2. Assume that H is symmetric positive semidefinite, A has full

rank, and C is symmetric positive semidefinite (possibly zero). Then a neces-

sary and sufficient condition for the saddle point matrix H to be nonsingular

is that ker(A) ∩ ker(H) = {0}.
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2.4.2 Spectral properties of saddle point matrices

As will be seen in later chapters, the spectral properties of saddle point matrices

are relevant when solving the equations by direct and iterative methods. We

shall assume that H is symmetric positive definite, A has full rank, and C is

symmetric positive semidefinite (possibly zero). Then from (2.4.2) we obtain
[

I 0

−AH−1 I

][
H AT

A −C

][
I −H−1AT

0 I

]
=

[
H 0

0 S

]
, (2.4.3)

where S = −(C + AH−1AT ) is symmetric negative semidefinite. It therefore

follows from the Sylvester Law of Inertia [41, p. 403] that H is indefinite, with

n positive and m negative eigenvalues.

The following result from [71] establishes eigenvalue bounds for the case

C = 0.

Theorem 2.4.3. Assume H is symmetric positive definite, A has full rank,

and C = 0. Let λ1 and λn denote the largest and smallest eigenvalues of H

respectively, and let σ1 and σm denote the largest and smallest singular values

of A respectively. Let λ(H) denote the spectrum of H. Then

λ(H) ⊂ I− ∪ I+,

where

I− =

[
1

2

(
λn −

√
λ2

n + 4σ2
1

)
,
1

2

(
λ1 −

√
λ2

1 + 4σ2
m

)]

and

I+ =

[
λn,

1

2

(
λ1 +

√
λ2

1 + 4σ2
1

)]
.

This theorem can be extended to the case C 6= 0 [77]:

Theorem 2.4.4. Assume H is symmetric positive definite and A has full rank.

Let λ1 and λn denote the largest and smallest eigenvalues of H respectively, and

let σ1 and σm denote the largest and smallest singular values of A respectively.

Let λ(H) denote the spectrum of H. Then

λ(H) ⊂ I− ∪ I+,

where

I− =

[
1

2

(
λn − ‖C‖ −

√
(λn + ‖C‖)2 + 4σ2

1

)
,
1

2

(
λ1 −

√
λ2

1 + 4σ2
m

)]

and

I+ =

[
λn,

1

2

(
λ1 +

√
λ2

1 + 4σ2
1

)]
.
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2.4.2.1 Quadratic programming problem

As we saw in Section 2.3.1, in each iteration of the interior point method we

are required to solve a system involving a saddle point matrix of the form

[
Q+ SX−1 AT

A 0

]
.

At the optimal point x∗i s
∗
i = 0 for i = 1, . . . , n. Let us define two index sets A

and I as follows.

A =
{
j ∈ {1, 2, . . . , n}|s∗j 6= 0

}
, (2.4.4)

I =
{
j ∈ {1, 2, . . . , n}|x∗j 6= 0

}
. (2.4.5)

These two sets form a partition of the index set {1, 2, . . . , n}. It is easy enough

to prove that the two sets are disjoint: if there were an index j that belonged

to both sets, then we would have x∗js
∗
j > 0, contradicting the complementarity

condition x∗i s
∗
i = 0 for i = 1, . . . , n. Hence A ∩ I = ∅.

The result A∪I = {1, 2, . . . , n} is known as the Goldman-Tucker theorem

[87]. Note, as for inequality constrained problems, the set A is often known as

the active set (see Section 1.4.3).

For the interior point methods given in Section 2.3 we have sk
i /x

k
i = O(µ−1

k )

for i ∈ A, and sk
i /x

k
i = O(µk) for i ∈ I as we draw close to the optimal point.

Therefore, for small values of µ, we are able to approximate H by

H̃ =

[
Q+ 1

µ
(diag(s∗))2 AT

A 0

]
.

We can conclude that the eigenvalues {λi} of Q+ SX−1 can be approximated

by

|λi| ≈
̺i

µ
, i = 1, . . . , n̂,

|λi| ≈ ̺i, i = n̂+ 1, . . . , n,

where {̺i} are positive constants.

Using Theorem 2.4.3, an interval that the spectrum of H, λ(H), lies in can

be approximated for small µ by

λ(H) ⊂ I− ∪ I+ ≈ Ĩ− ∪ Ĩ+,
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where

Ĩ− =


̺n

2µ


1−

√

1 +

(
2µσ1

̺n

)2

 ,

̺1

2µ


1−

√

1 +

(
2µσm

̺1

)2





≈
[
−α,−2µσ2

m

̺1

]
,

and

Ĩ+ =

[
λn,

1

2

(
λ1 +

√
λ2

1 + 4σ2
1

)]

≈
[
̺n,

̺1

µ

]
,

where α is a positive constant. As µ grows smaller, both the intervals Ĩ− and

Ĩ+ grow in length but one end of each of the intervals remains fixed. It is

therefore theoretically possible that the eigenvalues of H remain the same as

µ approaches zero, however, we can use Gerschgorin’s Theorem to prove that

n̂ of the eigenvalues grow proportionally to 1
µ
.

Theorem 2.4.5 (Gerschgorin’s Theorem). Every eigenvalue of a matrix A lies

in at least one of the circular discs with centers aii and radii
∑

j 6=i |aij|. If k

of the circular discs form a connected domain which is isolated from the other

discs, then there are precisely k eigenvalues within this connected domain.

Suppose we let Di denote the Gerschgorin disc associated with row i of our

matrix H̃, then for i ∈ A

Di = {z ∈ C :

∣∣∣∣z − qii −
1

µ
[s∗i ]

2

∣∣∣∣ ≤
n∑

j=1,j 6=i

|qij|+
m∑

j=1

|aji|}, (2.4.6)

for i ∈ I

Di = {z ∈ C :
∣∣z − qii − µ[x∗i ]

−2
∣∣ ≤

n∑

j=1,j 6=i

|qij|+
m∑

j=1

|aji|}, (2.4.7)

and for i = n+ 1, . . . , n+m we have

Di = {z ∈ C : |z| ≤
n∑

j=1

ai−n,j}, (2.4.8)

where Q = {qij} and A = {aij}. For small µ we can therefore conclude that

the eigenvalues {λi} of H can be approximated by

|λi| ≈
ρi

µ
, i ∈ A

|λi| ≈ ρi, i ∈ I ∪ {n+ 1, . . . , n+m},
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Figure 2.2: Maximum and minimum values of |λ| associated with the KKT
matrix for problem CVXQP2 S (m=25, n=100) plotted against the inverse of
the barrier parameter, µ, as Mehrotra’s Predictor-Corrector Method for finding
x∗ progresses.

where {ρi} are positive constants. Therefore, as we draw near to optimality

the saddle point systems will become very ill-conditioned.

We shall consider a small subset of problems from the CUTEr collection of

quadratic programming problems [47] and use Mehrotra’s Predictor-Corrector

Method to find the optimal value x∗. When solving the saddle point system

we shall use the backslash operator in Matlab R©7.0 for the few examples in

this section. We shall store the matrices in the sparse format of Matlab R©,

see [36].

Figure 2.2 shows how the maximum and minimum absolute eigenvalues

vary with the barrier parameter, µ, as we run our algorithm for finding x∗

for the problem CVXQP2 S. We observe that initially the value of µ increases

because the starting choices of s0 = e, x0 = e and y0 = e are far from s∗, x∗,

and y∗. Once the values of sk, xk, and yk have been modified enough by the

algorithm, the value of µ starts to decrease and we start to converge towards

the optimal solution. We find that, as expected, the maximum eigenvalue has

the expected Θ( 1
µ
) behaviour as we approach optimality. The eigenvalue of
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Figure 2.3: Maximum and minimum values of |λ| associated with the KKT
matrix for problem DUAL1 (m=1, n=85) plotted against the inverse of the
barrier parameter, µ, as Mehrotra’s Predictor-Corrector Method for finding x∗

progresses.

minimum absolute value also has the predicted Θ(1) behaviour. This behaviour

starts to occur almost immediately once the value of µ starts to decrease in

this problem. The problem CVXQP2 S has m = 25, n = 100 and a KKT

matrix with 820 non-zero entries. This corresponds to just 5.2% of the entries

in the KKT matrix being filled with non-zero values — a density of 0.052.

Figure 2.3 shows how the maximum and minimum absolute eigenvalues

vary with the barrier parameter, µ, as we run our algorithm for finding x∗

for the problem DUAL1. This problem has n = 85 and just one equality

constraint (m = 1). The corresponding KKT matrix has 7201 non-zero entries

giving a density of 0.97. For µ < 10−7 we obtain the expected Θ( 1
µ
) behaviour

of the maximum eigenvalue and Θ(1) behaviour of the eigenvalue of minimum

absolute value.
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2.5 Other applications requiring the solution

of saddle point problems

Saddle point problems also arise in a variety of other applications. We shall

indicate a couple of these applications here, but they will not be covered in

the remainder of the work. The first example comes from an application in

incompressible fluid dynamics:

Example 2.5.1 (Stokes). Mixed finite element (and other) discretization of

the Stokes equations

−∇2~u+∇p = ~f in Ω

∇ · ~u = 0 in Ω,

for the fluid velocity ~u and pressure p in the domain Ω ⊂ R
2 or R

3 yields

linear systems in the saddle-point form (2.4.1) (for derivation and the following

properties of this example see [28]). The symmetric block H arises from the

diffusion terms −∇2~u and AT represents the discrete gradient operator whilst

A represents its adjoint, the (negative) divergence. When (inf-sup) stable

mixed finite element spaces are employed, C = 0, however for equal order

and other spaces which are not inherently stable, stabilized formulations yield

symmetric and positive semi-definite matrices C which typically have a large-

dimensional kernel – for example, for the famous Q1–P0 element which has

piecewise bilinear velocities and piecewise constant pressures in 2-dimensions,

C typically has a kernel of dimension m/4.

The following example comes from image reconstruction and nonlinear im-

age restoration applications [30]:

Example 2.5.2 (Weighted Toeplitz least squares). Consider the weighted

Toeplitz least squares problem

min
y
‖By − c‖22 , (2.5.1)

where the rectangular coefficient matrix B and the right-hand side c are of the

form

B =

[
DAT

µI

]
and c =

[
Db

0

]
. (2.5.2)
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Here, A is a Toeplitz matrix, D is a non-constant diagonal matrix with real

positive entries, b a given right-hand side and µ > 0 a regularization parameter.

If A is m by n (m ≤ n), then it is straightforward to see that the problem

(2.5.1) with B and c as in (2.5.2) is equivalent to the saddle point problem

[
D−2 AT

A −µ2I

]
,

where the auxiliary variable x = D(b− ATy) represents a weighted residual.

A comprehensive list of other applications can be found in [8].



Chapter 3

Direct Solution Algorithms for
Saddle Point Problems

Suppose we use one of the interior point methods described in the previous

chapter to solve a constrained optimization problem. The most expensive part

of the algorithm is finding the solution of the KKT system

[
H AT

A −C

]

︸ ︷︷ ︸
H

[
x

y

]
=

[
b

d

]

︸ ︷︷ ︸
c

, (3.0.1)

where H ∈ R
n×n, C ∈ R

m×m are symmetric and A ∈ R
m×n, for each value of

µ, the barrier parameter. In this chapter we shall consider how we might solve

these systems by the use of direct methods. In the following chapter we will

look at a different class of methods that could be used: iterative methods.

3.1 Gaussian Elimination

One of the most widely known direct methods is that of Gaussian Elimination.

This method transforms a linear system into an upper triangular one; in order

to do this it applies simple linear transformations on the left. Suppose that

we wish to solve a system

Hu = c,

where H ∈ C
N×N is a square matrix. The main idea is to transform H into

an N ×N upper triangular matrix U by introducing zeros below the diagonal,

first in column 1, then column 2, and so on. To do this we subtract multiples

of each row with subsequent rows. We can think of this as being equivalent to

28
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premultiplying H by a sequence of lower triangular matrices Lk:

Lm−1 . . . L2L1︸ ︷︷ ︸
L−1

H = U.

We can then obtain an LU factorization of H,

H = LU,

where U is upper triangular and L is unit lower triangular. Backward and

forward substitutions are then used to solve the linear system.

In practical Gaussian elimination methods the matrices Lk are not formed

and multiplied together. Instead, the multipliers ℓjk are computed and stored

directly into L [81]. To increase the stability of the Gaussian elimination

method a pivoting procedure is often added into the algorithm: this may be

in the form of complete pivoting [81] or threshold pivoting [23]. We can view

this as there being a permutation matrix P such that PH = LU. A column

permutation may also be applied to increase the stability: this can be viewed

as there also being a permutation matrix Q such that PHQ = LU.

The computation cost of this method can be expressed as

work =
2

3
N3 +O

(
N2
)

flops,

where each addition, subtraction, multiplication, division or square root counts

as a flop (floating point operation) [81].

3.2 Cholesky-Type Factorization

It is a basic belief that structure should be exploited when solving a prob-

lem. In the previous section we introduced Gaussian elimination as a possible

method for solving systems of linear equations; this is a very general method

which can be used to solve nonsingular systems of equations. A variant of the

LU factorization is the LDMT factorization whereH is factored as LDMT with

D diagonal, and L,M are unit lower triangular matrices. We observe that the

LDMT factorization can be found by using Gaussian elimination to compute

H = LU and then determining D and M from the equation U = DMT . An

alternative algorithm for computing L, D, and M can be found in [41, Section

4.1.1]. If H is symmetric, then we have the following theorem:
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Theorem 3.2.1. If H = LDMT is the LDMT factorization of a nonsingular

symmetric matrix H, then L = M.

Proof. The matrix M−1HM−T = M−1LD is both symmetric and lower trian-

gular and therefore diagonal. Since D is nonsingular, this implies that M−1L

is also diagonal. But M−1L is unit lower triangular and so M−1L = I.

This result halves the amount of work required to carry out an LDMT

factorization when it is applied to a symmetric matrix. If H is symmetric and

not positive definite, then pivoting may be necessary (see Section 3.2.2).

3.2.1 Symmetric Positive Definite Systems

If H is positive definite, then the factorization H = LDLT exists and D has

positive diagonal entries [41]. If H is also symmetric then we can factor it

such that H = LD
1
2

(
LD

1
2

)T

, where D = diag (d1, d2, . . . , dm) is given by

the factorization H = LDLT and D
1
2 = diag

(√
d1,
√
d2, . . . ,

√
dm

)
. Suppose

we set L̂ = LD
1
2 , then the factorization H = L̂L̂T is known as the Cholesky

factorization.

More efficient algorithms for computing the Cholesky factorization are

available than that suggested by the construction of L̂ above, see [41].

3.2.2 Symmetric Indefinite Systems

If a matrix, H, is symmetric and indefinite, then, although it may have an

LDLT factorization, the entries in the factors can have arbitrary magnitude.

A well known example for this can be found in [41]:

[
ǫ 1

1 0

]
=

[
1 0
1
ǫ

1

][
ǫ 0

0 −1
ǫ

][
1 1

ǫ

0 1

]
.

The difference in magnitudes of the entries in the factors can cause stability

problems. When carrying out Gaussian elimination a pivoting strategy is

applied to try to improve the stability of the method. However, many of

the pivoting strategies suggested would destroy the symmetry of the problem

if we were to use them, and, hence, we would lose the “Cholesky speed” of

our proposed algorithm; symmetric pivoting must be used, i.e., H ←− PHP T ,

to maintain the symmetry. Unfortunately this does not always stabilize the
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LDLT computation because small entries on the diagonal will not be removed

and so large numbers will be found in the factorization.

Fortunately this sort of factorization can be modified to give a stable fac-

torization for symmetric indefinite systems. This factorization takes the form

H = P TLDLTP,

where P is a permutation matrix, L is unit lower triangular, and D is a block

diagonal matrix with blocks of dimension 1 and 2. This factorization was de-

veloped by Bunch and Parlett [13] after initial ideas suggested by W. Kahan

(1965) (in correspondence with R. de Meersman and L. Schotsman) using the

work of Lagrange (1759). The algorithm of Bunch and Parlett is stable with

a cost comparible to that of a Cholesky factorization for symmetric positive

definite matrices. They use a pivoting strategy which is like that of com-

plete pivoting [11, 12]. Alternative pivoting strategies have subsequently been

developed which generally require fewer comparisons. The Bunch-Kaufman

pivoting strategy is now widely accepted to be the algorithm of choice with

many implementations available (for example, MA27 and MA57 from the HSL

library [24, 22] are based on such algorithms but additionally take sparsity

into account).

3.3 Schur Complement

Let us assume that H and H are nonsingular, then by (2.4.2) the matrix

S = −
(
C + AH−1AT

)
is also nonsingular. Expanding the saddle point system

gives

Hx+ ATy = b, (3.3.1)

Ax− Cy = d. (3.3.2)

Premultiplying both sides of (3.3.1) by AH−1 we obtain

Ax+ AH−1ATy = AH−1b.

Using (3.3.2) and rearranging gives

(
C + AH−1AT

)
y = AH−1b− d. (3.3.3)
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This is a reduced system involving the (negative) Schur complement −S =

C + AH−1AT . Once we know y∗ we can use (3.3.1) to obtain x∗ :

Hx∗ = b− ATy∗. (3.3.4)

This method is really just block Gaussian elimination applied to (3.0.1). Ob-

serve that using block LU factorization we get the system

[
I 0

−AH−1 I

][
H AT

A −C

][
x

y

]
=

[
I 0

−AH−1 I

][
b

d

]
,

i.e., [
H AT

0 S

][
x

y

]
=

[
b

d− AH−1b

]
.

We can solve this system by the use of block back substitution. This leads

to the two reduced systems (3.3.3) and (3.3.4). If H and −S are symmetric

positive definite then we can use methods such as Cholesky factorization or

preconditioned conjugate gradients to solve these systems (see Sections 3.2 and

4.2.2 respectively).

In structural mechanics this method is known as the displacement method .

In electrical engineering it is called the nodal analysis method , whilst in opti-

mization it is the range-space method . In all these applications H is symmetric

positive (semi)definite and C = 0.

If m is sufficiently small and if the linear systems involving the coefficient

matrix H can be solved efficiently, then this method will be attractive. Its

main disadvantages are that H must be nonsingular and S may be full and

too expensive to compute or factor (even though the saddle point system was

originally assumed to be sparse).

In cases where H is positive semidefinite and singular, the Schur com-

plement reduction method may still be applied by firstly making use of the

augmented Lagrangian technique (Section 5.2) to produce an equivalent saddle

point system in which the (1,1) block is nonsingular.

3.4 Nullspace Methods

In this section we shall assume that C = 0, kerA ∩ kerH = {0}, and H is

symmetric and positive definite in the nullspace of A. The nullspace method

assumes that we have
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• A matrix Z ∈ R
n×(n−m) such that AZ = 0; that is range(Z) = kerA,

• A matrix Y ∈ R
n×m such that

[
Y Z

]
spans R

n; that is range(Y ) =

range(AT ).

Any solution x̂ of the linear equations Ax = d can be written as

x̂ = Y x
Y

+ Zx
Z
. (3.4.1)

The saddle point system (3.0.1) can therefore be expressed as

[
H AT

A 0

][
Y Z 0

0 0 I

]

︸ ︷︷ ︸
Y



x

Y

x
Z

y


 =

[
b

d

]
.

Premultiplying this expression by YT gives



Y THY Y THZ Y TAT

ZTHY ZTHZ 0

AY 0 0






x

Y

x
Z

y


 =



Y T b

ZT b

d


 . (3.4.2)

In practice Y is often set to be equal to AT . In this case we observe that an

m×m system determines x∗
Y
:

AATx∗
Y

= d. (3.4.3)

Since A is of full rank, AAT is symmetric, positive definite; we could there-

fore solve this system using the Cholesky factorization method on AAT if the

dimension of the system is small enough [41, p. 143]. From (3.4.2), having

found x∗
Y

we can find x∗
Z

by solving

H
ZZ
x∗

Z
= −b

Z
, (3.4.4)

where

H
ZZ

= ZTHZ, b
Z

= ZT (HATx∗
Y
− b).

The matrix H is symmetric and positive definite in the nullspace of A, hence

ZTHZ is symmetric and positive definite. A Cholesky factorization could be

used to solve this system or the conjugate gradient method applied to compute

an approximate solution to the system (3.4.4). We will look at the application

of the conjugate gradient method in Chapter 5.
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Substituting x∗
Z

into (3.4.1) will give us a (possibly approximate) solution

for x∗. Using (3.4.2) with (3.4.1) we obtain a system that can be solved to

give a (approximate) solution for y∗:

AATy∗ = A(b−Hx∗). (3.4.5)

If we used a Cholesky factorization to find x∗
Y
, then this same factorization

could be employed to solve (3.4.5).

Nullspace methods are quite popular in optimization, where they are usu-

ally referred to as reduced (or projected) Hessian methods [39, 62]. The nullspace

method is also used extensively in structural mechanics where it is known as

the force method , since x, the vector of internal forces, is calculated first. In

fluid mechanics this method is called the dual variable method, and in electrical

engineering it goes under the name of loop analysis [8].

Nullspace methods are particularly attractive when n−m is small. If Z is

sparse then it may be possible to factor ZTHZ explicitly, otherwise iterative

methods might be used. This method is less attractive if n −m is large, and

it cannot be directly applied to the case C 6= 0 (see Section 5.3). However, its

main difficulty lies in the necessity of needing a nullspace basis Z. Different

nullspace bases can be used implying that there is a whole family of nullspace

methods.

One possible candidate for Z is known as the fundamental basis. Let P̃

denote a permutation matrix such that AP̃ =
[
A1 A2

]
, where A1 is m×m

and nonsingular. It is straightforward to verify that the matrix

Z = P̃

[
−A−1

1 A2

I

]
(3.4.6)

is a nullspace basis for A.

In principle there are many possible choices for P̃ such that the resulting

A1 is nonsingular. One possibility for selecting P̃ is to carry out an LU fac-

torization with pivoting of AT , i.e., use Gaussian elimination to find P̃ , L and

U such that AT = P̃LU, L is unit lower triangular, and U is upper triangular.

We shall consider other possible methods for choosing P̃ in Chapter 8.

Backward stability of the nullspace method for two different choices of Z

is shown in [1, 2].
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3.5 Solving ill-conditioned systems

The effects of changes in the c and H on the exact solution of Hu = c are

well known [41, 52]. Let ũ denote the exact solution of Hũ = c + ∆c, and let

∆u = ũ− u. Then

‖∆u‖ ≤
∥∥H−1

∥∥ ‖∆c‖ and
‖∆u‖
‖u‖ ≤ κ(H)

‖∆c‖
‖c‖ , (3.5.1)

where κ(H) = ‖H‖ ‖H−1‖ is called the condition number of H. Equality can

be achieved in both of these inequalities.

When the matrix is perturbed by ∆H, the exact solution ũ of the perturbed

system satisfies

(H + ∆H) ũ = Hu = c, or ũ− u = − (H + ∆H)−1 ∆Hu. (3.5.2)

Ignoring second order terms, an approximation to (3.5.2) is satisfied by ∆u ≈
ũ− u :

H∆u = −∆Hu, or ∆u = −H−1∆Hu, (3.5.3)

giving the bounds

‖∆u‖ ≤
∥∥H−1

∥∥ ‖∆H‖‖u‖ and
‖∆u‖
‖u‖ ≤ κ(H)

‖∆H‖
‖H‖ . (3.5.4)

Equality can hold in these relations for any vector c [52]. Since these bounds in

(3.5.1) and (3.5.4) can be achieved, when H is ill-conditioned we might expect

substantial relative inaccuracy in the computed solution.

Most of the widely used numerical methods provide a computed solution of

a linear system which is typically the exact solution of a nearby problem (see,

for example, [41, 52]). In particular, when solving the symmetric system Hu =

c in finite precision with any backward-stable method, the computed solution

ũ is the exact solution of a nearby system involving a perturbed symmetric

matrix H̃ :

H̃ũ = c,

where H̃ = H + ∆H and ∆H = (∆H)T . The most common backward-stable

methods performed on a machine with unit roundoff u will produce a pertur-

bation ∆H which satisfies

‖∆H‖ ≤ uγN ‖H‖ ,
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where γN is a function involving a low-order polynomial in N and characteris-

tics of H (such as the growth factor). This function γN is known under various

conditions for different classes of problems [52].

We have seen in Chapter 2 how H can become ill-conditioned as we draw

near to the optimal point when solving a quadratic programming problem with

an interior point method. However, the structure of H means that the singular

values split into two well behaved groups. Wright [86] shows that this, along

with the way errors form in the right hand side c, results in ũ having absolute

error comparable to machine precision. Thus, the ill-conditioning of H does

not noticeably impair the accuracy of the computed search direction.

The size and structure of some of the constrained optimization problems

have started to outgrow the software packages available for solving saddle point

problems through direct methods [9]. In the following chapter we shall consider

how such systems may be solved via iterative methods.



Chapter 4

Iterative Solution Algorithms
for Saddle Point Problems

Direct methods for sparse linear systems are often unsuitable for solving large

saddle point problems of the form

[
H AT

A −C

]

︸ ︷︷ ︸
H

[
x

y

]
=

[
b

d

]
, (4.0.1)

where H ∈ R
n×n, C ∈ R

m×m are symmetric and A ∈ R
m×n with m ≤ n. As

we assumed in Chapter 1, the coefficient matrix is sparse, so the linear system

(4.0.1) may be solved efficiently with iterative solvers. We shall firstly consider

stationary schemes and then go on to look at Krylov subspace methods.

4.1 Stationary Iterations

Stationary iterations are now more commonly used as preconditioners for

Krylov subspace methods, but they have also been popular for many years as

“standalone” solvers. Another common use for these methods is as smoothers

for multigrid methods, see [8, Section 11].

4.1.1 Arrow-Hurwicz and Uzawa methods

Arrow, Hurwicz and Uzawa developed one of the first iterative schemes for

the solution of a general type of saddle point system [3]. The Arrow-Hurwicz

and Uzawa methods use simultaneous iterations for both x and y, and can be

expressed in terms of splittings of the coefficient matrix H.

37
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Uzawa’s method is particularly well known in fluid dynamics, especially for

solving the (steady) Stokes problem [72]. For simplicity we assume that H is

invertible and C = 0, but generalization is straightforward. Uzawa’s method

is given in Algorithm 4.1.1: the parameter ω > 0 is a relaxation parameter.

Algorithm 4.1.1 Uzawa’s method.

Choose x0 and y0.
for k = 0, 1, . . . do
xk+1 = H−1(b− ATyk),
yk+1 = yk + ω(Axk+1 − d).

end for

The iteration in Algorithm 4.1.1 can be written in terms of a matrix split-

ting H = P −Q as the fixed-point iteration

uk+1 = P−1Quk + P−1c,

where

P =

[
H 0

A − 1
ω
I

]
, Q =

[
0 −AT

0 − 1
ω
I

]
, c =

[
b

d

]
, and uk =

[
xk

yk

]
.

(4.1.1)

If, instead, we eliminate xk from the iteration in Algorithm 4.1.1, then we

obtain

yk+1 = yk + ω
(
AH−1(b− ATyk)− d

)
. (4.1.2)

This is nothing but a Richardson iteration for solving the linear system

AH−1ATy = AH−1b− d.

If H is symmetric and positive definite, then the Schur complement AH−1AT

is also positive definite. If λmax is the largest eigenvalue of AH−1AT , then it

is known that the Richardson’s iteration (4.1.2) converges for all ω such that

0 < ω <
2

λmax

,

see [72].

Solves with the system H may be too expensive, so the Arrow-Hurwicz

method can be used instead. This method may be regarded as an inexpensive

alternative to Uzawa’s method.
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In Uzawa’s method, Algorithm 4.1.1, finding xk+1 by solving a system

involving H is equivalent to finding the minimum of the quadratic function

min
x∈Rn

fk(x) =
1

2
〈x,Hx〉+ 〈x, b− Ayk〉 . (4.1.3)

We can therefore derive a less expensive method by taking one step in the

direction of the (negative) gradient of fk(x) with a fixed step length α. The

resulting Arrow-Hurwicz method is given in Algorithm 4.1.2.

Algorithm 4.1.2 Arrow-Hurwicz method.

Choose x0 and y0.
for k = 0, 1, . . . do
xk+1 = xk + α(b−Hxk − ATyk),
yk+1 = yk + ω(Axk+1 − d).

end for

As we did for the Uzawa method, we can recast the Arrow-Hurwicz iteration

into a fixed-point iteration induced by the splitting

P =

[
1
α
I 0

A − 1
ω
I

]
, Q =

[
1
α
I −H −AT

0 − 1
ω
I

]
, c =

[
b

d

]
, and uk =

[
xk

yk

]
.

(4.1.4)

Convergence of this method is usually rather slow, so various improvements

have been suggested, including the idea of a preconditioned variant. For more

details see [8].

4.2 Krylov Subspace Methods

In this section we will consider Krylov subspace methods for solving (precon-

ditioned) saddle point problems. Rather than discussing all existing methods

and implementations, we will describe the main properties of the most com-

monly used methods.

4.2.1 General Krylov Subspace Theory

Suppose we wish to solve a system of the form

Hu = c. (4.2.1)
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Let u0 be an initial guess for the solution u and define the initial residual to

be r0 = c − Hu0. Krylov subspace methods are iterative methods whose kth

iterate uk satisfies

uk ∈ u0 +Kk(H, r0), k = 1, 2, . . . , (4.2.2)

where

Kk(H, r0) ≡ span{r0,Hr0, . . . ,Hk−1r0} (4.2.3)

denotes the kth Krylov subspace generated by H and r0. Krylov subspace

methods are typically used to solve large sparse systems. They involve finding

an “optimal” solution in a given space, augmenting the space, and repeating

the procedure. The basis for Kk(H, r0) given in (4.2.3) is not used: an orthog-

onal basis for the Krylov subspace is usually created instead. More complete

descriptions of Krylov subspace methods can be found in [49, 72, 84].

4.2.2 Preconditioned Conjugate Gradient Method

The conjugate gradient (CG) method is one of the best known iterative tech-

niques for solving sparse symmetric positive definite linear systems. The

method converges to the solution via the minimization of the H-norm of the

error as the Krylov subspace is increased at each step [51]. If H ∈ R
N×N ,

then the method will take at most N steps to calculate the exact solution but

rounding errors may prevent this. The systems being solved also frequently

had N being prohibitively large. However, in practice, convergence to accept-

able accuracy often occurs after only a few steps [69]. The CG method is given

in Algorithm 4.2.1.

Algorithm 4.2.1 Conjugate Gradient Method.

Choose u0.
Set r0 = c−Hu0 and p0 = r0.
for k = 0, 1, . . . do
αk = 〈rk, rk〉 / 〈Hpk, pk〉 ,
uk+1 = uk + αkpk,
rk+1 = rk − αkHpk,
βk = 〈rk+1, rk+1〉 / 〈rk, rk〉 ,
pk+1 = rk+1 + βkpk.

end for

This method uses a 3-term recurrence relation, so as we increase the sub-

space from which we seek a solution, we need only recall the approximations
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from the two most recent subspaces to produce the uk that minimizes ‖ek‖H ,
where ek = u − uk is the error at the kth step. Hence, the memory require-

ments will be small and so is the computation for each iteration. The error

can be bounded from above by the following (classical) convergence theorem

[41, 72, 81, 84]:

Theorem 4.2.1. After k steps of the conjugate gradient method, the iteration

error ek = u− uk satisfies the bound

‖ek‖H ≤ 2

(√
κ− 1√
κ+ 1

)k

‖e0‖H , (4.2.4)

where κ = λmax(H)/λmin(H).

The bound (4.2.4) intuitively leads to the notion that if a matrix has small

condition number κ, then the convergence of CG will be rapid. However, the

converse isn’t true. Using this observation, we consider the idea of precon-

ditioning. The basic idea is to construct a matrix K that approximates the

coefficient matrix H but such that little work is required for carrying out K−1v

for some given vector v. We can then consider solving

K−1Hu = K−1c (4.2.5)

instead of Hu = c. If K is a good approximation to H, then we might expect

the convergence of the CG method to be more rapid for the preconditioned

system (4.2.5) than the original problem.

The preconditioned coefficient matrix must be symmetric for us to apply

the CG method, so suppose that we choose a symmetric positive definite matrix

K, let K = MMT , and consider the system

M−1HM−Tv = K−1c, v = MTu. (4.2.6)

The coefficient matrix M−1HM−T is symmetric positive definite, so the CG

method can be applied. We note that at the kth iteration, the preconditioned

method and the original CG method will (in exact arithmetic) produce the

same uk because we have

‖v − vk‖2M−1HM−T =
∥∥MT (u− uk)

∥∥2

M−1HM−T

= (u− uk)
TM(M−1HM−T )MT (u− uk)

= ‖u− uk‖2H .
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Theorem 4.2.1 shows that the convergence of the preconditioned conjugate

gradient (PCG) iteration depends on the eigenvalues of M−1HM−T , which

are identical to the eigenvalues of K−1H because of the similarity transforma-

tion M−T (M−1HM−T )MT = K−1H. The preconditioned conjugate gradient

(PCG) method is given in Algorithm 4.2.2.

Algorithm 4.2.2 Preconditioned Conjugate Gradient Method.

Choose u0.
Set r0 = c−Hu0.
Solve Kz0 = r0.
p0 = z0.
for k = 0, 1, . . . do
αk = 〈zk, rk〉 / 〈Hpk, pk〉 ,
uk+1 = uk + αkpk,
rk+1 = rk − αkHpk,
Solve Kzk+1 = rk+1,
βk = 〈zk+1, rk+1〉 / 〈zk, rk〉 ,
pk+1 = zk+1 + βkpk.

end for

The requirement that H and K are symmetric positive definite is needed

to prevent the possible breakdown in the calculation of αk and βk in Algo-

rithms 4.2.1 and 4.2.2. If our matrices do not fulfil this requirement, then we

will normally need to use another method. If the matrix is indefinite but sym-

metric, then we could use the MINRES or SYMMLQ algorithms [64]. Instead

of minimizing the H-norm of the error, the solution using MINRES is found

via minimization of the 2-norm of the residual in Krylov subspaces of increas-

ing dimension. SYMMLQ minimizes the 2-norm of the error over a different

Krylov space, and is based on the LQ factorization of the tridiagonal matrices

formed in the Lanczos method.

4.2.3 Generalized Minimum Residual Method

If our coefficient matrix, H ∈ R
N×N , is unsymmetric we can still seek to find

an approximation in a particular subspace which minimizes the 2-norm of the

residual. The Generalized Minimum Residual (GMRES) Method [73] is one

such procedure that is also robust. The algorithm generates an orthogonal

basis for the Krylov subspace via the Arnoldi method, Algorithm 4.2.3. Al-

gorithm 4.2.4 then gives the GMRES method which makes use of the Arnoldi

process.
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Algorithm 4.2.3 Arnoldi Method.

Given q1 such that ‖q1‖ = 1.
for j = 1, 2, . . . do
q̃k+1 = Hqk,
for i = 1, 2, . . . , j do
hij = 〈q̃j+1, qi〉 ,
q̃j+1 = q̃j+1 − hijqi,

end for
hj+1,j = ‖q̃j+1‖ ,
qj+1 = q̃j+1/hj+1,j.

end for

Algorithm 4.2.4 GMRES Method.

Choose u0.
Set r0 = c−Hu0.
Set q1 = r0/ ‖r0‖ .
for k = 1, 2, . . . do

Compute qk+1 and hi,k, i = 1, 2, . . . , k + 1 using Arnoldi,
Solve the least squares problem min

y
‖βe1 −Hk+1,ky‖ to find yk, where

β = ‖r0‖ ,
Set uk = u0 + Qkyk, where Qk ∈ R

N×k has as columns the orthogonal
basis vectors qi.

end for
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The convergence of GMRES is not as clear as it is in the case of symmetric

problems. See [72, Section 6.11.4] for a concise description of the convergence

properties for this method. In a similar manner to the conjugate gradient

method, preconditioners are often used in conjunction with GMRES to im-

prove the rate of convergence. Left preconditioning, right preconditioning, or

a mixture of both may be employed. With left preconditioning we solve the

problem

K−1Hu = K−1c

instead of the original problem, where K is the chosen preconditioner. For

right preconditioning the problem

HK−1v = c

is solved and then we solve Ku = v to find u. If K1 and K2 are the left and

right preconditioners, respectively, then the mixed preconditioning means that

the problem

K−1
1 HK−1

2 v = K−1
1 c

is solved and then K2u = v is solved to give u. It is important to note that left

preconditioning will change the norm in which we are minimizing the residual

when we apply GMRES or MINRES:

∥∥K−1Hu−K−1c
∥∥2

2
=

∥∥K−1(Hu− c)
∥∥2

2

= (Hu− c)TK−TK−1(Hu− c)
= ‖Hu− c‖2(KKT )−1 .

4.2.4 Other Krylov Subspace Methods

Although GMRES is the “ideal” choice of iterative solver for large unsymmetric

problems, in terms of it producing the “optimal” solution in a Krylov subspace

at each iteration, it is often not used in practice. The GMRES method does

not have a short recurrence that can be exploited as in CG and MINRES, so

another vector must be stored at each iteration of the GMRES method and an

increasing amount of work has to be performed. This can result in the method

becoming prohibitively expensive to use if an acceptably accurate solution isn’t

found rapidly. We shall outline some methods which have been developed to

try to overcome this problem.
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Restarted GMRES

As we just noted, the GMRES method can have excessive computational and

storage needs. One way to try to curb this is the restarted GMRES method,

GMRES(m), which restarts the algorithm every m iterations with um being

used as the new initial guess. Although this can be successful, the problem of

finding a good m can be difficult because the convergence behaviour is not well

known. It is also not always the case that GMRES(m) performs better as m

increases. Indeed, it was shown by Embree [29] that there are some problems

which can be solved by GMRES(1) for which GMRES(2) stagnates!

Bi-Conjugate Gradient Method

Symmetric problems do not suffer from this ever increasing workload and stor-

age need because we can use a 3-term recurrence relation to form the or-

thogonal basis. Hence, one idea is to reinterpret the unsymmetric problem

as symmetric problem. Suppose that instead of considering the unsymmetric

problem

Hu = c,

we instead solve

H̃
[
ũ

u

]
=

[
0 H
HT 0

][
ũ

u

]
=

[
c̃

c

]

with preconditioner

K̃ =

[
0 K

KT 0

]
,

where K is a preconditioner for H, via the conjugate gradient method, see

Section 4.2.2. This leads to the Bi-CG method for H.
An extension to Bi-CG is the Bi-CGSTAB method [83]: this method is

really a combination of Bi-CG and GMRES(1). Further variations have been

developed from this idea to produce Bi-CGSTAB(l), l > 1, which in essence is

a combination of Bi-CG and GMRES(l).

We have only touched on the subject of Krylov subspace methods in this

section. Table 4.1 summarizes the methods that we have introduced.
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Method Required H Type Recurrence Required K

CG symm. def. optimal 3-term symm. def.

MINRES/SYMMLQ symm. indef. optimal 3-term symm. def.

GMRES general optimal full general

Bi-CGSTAB general nonoptimal 3-term general

Table 4.1: Summary of Krylov subspace methods discussed in Section 4.2



Chapter 5

The Preconditioned Conjugate
Gradient Method Applied to
Saddle Point Problems

In Section 2.4.2 we saw that the linear systems (saddle point problems) we wish

to solve are indefinite. It, therefore, cannot be assumed that the preconditioned

conjugate gradient method can be immediately applied to solve the saddle

point problems. If we are able to use a conjugate gradient style method to

solve these systems, then we can use the known convergence theorems of PCG

to help us choose effective preconditioners. In the first two sections we shall

consider saddle point systems with C = 0, but this will then be extended to

the case C 6= 0.

5.1 Projected Conjugate Gradient Method for

the Case C = 0

Let us assume that C = 0; as is the case in the mixed constraints optimization

problems of Section 2.3. The resulting systems take the form

[
H AT

A 0

]

︸ ︷︷ ︸
H

[
x

y

]
=

[
b

d

]
, (5.1.1)

where H ∈ R
n×n is symmetric and A ∈ R

m×n (m ≤ n) has full rank. We shall

assume that H is positive definite in the nullspace of A.

47
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5.1.1 CG method for the reduced system

We wish to solve the system (5.1.1) to find [x∗Ty∗T ]T . We start in a similar

manner to Section 3.4 and go on to derive the projected conjugate gradient

method as found in [44]. Let Z be an n×(n−m) matrix spanning the nullspace

of A; then AZ = 0. The columns of AT together with the columns of Z span

R
n and any solution x∗ of linear equations Ax = d can be written as

x∗ = ATx∗
A

+ Zx∗
Z
. (5.1.2)

Substituting this into (5.1.1) gives

[
H AT

A 0

][
ATx∗

A
+ Zx∗

Z

y∗

]
=

[
b

d

]
. (5.1.3)

Let us split the matrix H into a block 3 × 3 structure where each corner

block is of dimension m by m. We can also expand out the vector [x∗Ty∗T ]T

into a matrix-vector product, Yρ∗. Let Z = [ ZT
1 ZT

2 ]T . Expression (5.1.3)

then becomes


H1,1 H1,2 AT

1

H2,1 H2,2 AT
2

A1 A2 0






AT

1 Z1 0

AT
2 Z2 0

0 0 I




︸ ︷︷ ︸
Y



x∗

A

x∗
Z

y∗




︸ ︷︷ ︸
ρ∗

=



b1

b2

d


 . (5.1.4)

To maintain symmetry of our system we premultiply (5.1.4) by YT . Multi-

plying out the matrix expression YTHY and simplifying, we obtain the linear

system 


AHAT AHZ AAT

ZTHAT ZTHZ 0

AAT 0 0






x∗

A

x∗
Z

y∗


 =




Ab

ZT b

d


 . (5.1.5)

We observe that an m×m system determines x∗
A
:

AATx∗
A

= d. (5.1.6)

Since A is of full rank, AAT is symmetric and positive definite. We could solve

this system using the Cholesky factorization of AAT if the dimension of the

system is small enough, [41, p. 143]. From (5.1.5), having found x∗
A

we can

find x∗
Z

by solving

H
ZZ
x∗

Z
= −b

Z
, (5.1.7)
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where

H
ZZ

= ZTHZ, b
Z

= ZT (HATx∗
A
− b).

The matrix H is symmetric and positive definite in the nullspace of A, hence

ZTHZ is symmetric and positive definite. Anticipating our technique, we

can apply the CG method to compute an approximate solution to the system

(5.1.7). Substituting this into (5.1.2) will give us an approximate solution for

x∗. Using (5.1.5) with (5.1.2) we obtain a system that can be solved to give

an approximate solution for y∗:

AATy∗ = A(b−Hx∗). (5.1.8)

If we used a Cholesky factorization to find x∗
A
, then this same factorization

could be employed to solve (5.1.8).

Let us consider the practical application of the CG method to the system

(5.1.7). As we noted in Section 4.2, the use of preconditioning can improve the

rate of convergence of the CG iteration. Let us assume that a preconditioner

W
ZZ

is given, where W
ZZ

is a symmetric, positive definite matrix of dimension

n−m. Let us consider the class of preconditioners of the form W
ZZ

= ZTGZ,

where G is a symmetric matrix such that ZTGZ is positive definite. The

PCG method applied to the (n − m)-dimensional reduced system H
ZZ
x∗

Z
=

−b
Z
, is as given in Algorithm 5.1.1 [41, p. 532]: the arbitrary choice of left

preconditioning is used.

Algorithm 5.1.1 Projected PCG for reduced systems

Choose an initial point x∗
Z
.

Compute r
Z

= ZTHZx∗
Z

+ b
Z
, g

Z
= (ZTGZ)−1r

Z
and p

Z
= −g

Z
.

repeat
α = r

Z

Tg
Z
/p

Z

TZTHZp
Z
,

x
Z
← x

Z
+ αp

Z
,

r+
Z

= r
Z

+ αZTHZp
Z
,

g+
Z

= (ZTGZ)−1r+
Z
,

β = (r+
Z
)Tg+

Z
/r

Z

Tg
Z
,

p
Z
← −g+

Z
+ βp

Z
,

g
Z
← g+

Z
,

r
Z
← r+

Z
,

until a termination step is satisfied.

Gould, Hribar and Nocedal [44] suggest terminating this iteration when

r
Z

T (ZTGZ)−1r
Z

is sufficiently small. In the next section we modify this algo-

rithm to avoid operating with the nullspace basis Z.
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5.1.2 CG method for the full system

Explicit use of Algorithm 5.1.1 would require knowledge of Z and the solution

of systems involving WZZ . The algorithm may, however, be rewritten to make

explicit use of a preconditioner which has no need for Z at all. In the following

algorithm, the n-vectors x, r, g, p satisfy x = Zx
Z
+ATx∗

A
, ZT r = r

Z
, g = Zg

Z
,

and p = Zg
Z
. We also define the scaled projection matrix

P = Z(ZTGZ)−1ZT . (5.1.9)

We will later see that P is independent of the choice of nullspace basis Z.

Algorithm 5.1.2 Projected PCG in expanded form

Choose an initial point x satisfying Ax = d.
Compute r = Hx− b, g = Pr, and p = −g.
repeat
α = rTg/pTHp,
x← x+ αp,
r+ = r + αHp,
g+ = Pr+,
β = (r+)Tg+/rTg,
p← −g+ + βp,
g ← g+,
r ← r+,

until a convergence test is satisfied.

Note that the definition of g+ via the projection step g+ = Pr+. Following

the terminology of [44], the vector g+ will be called the preconditioned residual .

It is defined to be in the nullspace of A. We now wish to be able to apply the

projection operator Z(ZTGZ)−1ZT without a representation of the nullspace

basis Z. From [39, section 5.4.1] we find that if G is nonsingular, then P can

be expressed as

P = G−1(I − AT (AG−1AT )−1AG−1), (5.1.10)

and we can find g+ by solving the system
[
G AT

A 0

][
g+

v+

]
=

[
r+

0

]
(5.1.11)

whenever zTGz 6= 0 for all nonzero z for which Az = 0. The idea in Algorithm

5.1.3 below is to replace g+ = Pr+ with the solution of (5.1.11) to define the

same g+.
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Discrepancy in the magnitudes of g+ and r+ can cause numerical difficul-

ties for which Gould, Hribar and Nocedal [44] suggest using a residual update

strategy that redefines r+ so that its norm is closer to that of g+. This dra-

matically reduces the roundoff errors in the projection operation in practice.

Algorithm 5.1.3 Projected PCG with residual update (PPCG)

Choose an initial point x satisfying Ax = d
Compute r = Hx− b

Solve

[
G AT

A 0

][
g

v

]
=

[
r

0

]

Set p = −g, y = v and r ← r − ATy
repeat
α = rTg/pTHp
x← x+ αp
r+ = r + αHp

Solve

[
G AT

A 0

][
g+

v+

]
=

[
r+

0

]

β = (r+)Tg+/rTg
p← −g+ + βp
g ← g+

r ← r+ − ATv+

until a convergence test is satisfied

The key point is that Algorithm 5.1.3 does not require the computation of

any nullspace basis but is a CG procedure for a symmetric and positive definite

system which yields the solution of the indefinite system (5.1.1).

5.2 Constraint Preconditioners

In Algorithm 5.1.3 a preconditioner of the form

K =

[
G AT

A 0

]
,

where G ∈ R
n×n, is required. Such preconditioners are known as constraint

preconditioners [8, 55]. The term constraint preconditioner was introduced

in [55] because the (1,2) and (2,1) matrix blocks of the preconditioner are

exactly the same as those in H, Equation (5.1.1), where these blocks represent

constraints.
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For K to be a meaningful preconditioner for Algorithm 5.1.3, it is vital

that its inertia satisfies

In(K) = (n,m, 0), (5.2.1)

see [42, Theorem 2.1].

The preconditioned system K−1H has very specific eigenvalues as given in

the following theorem. The proof can be found in [55].

Theorem 5.2.1. Let H ∈ R
(n+m)×(n+m) be a symmetric and indefinite matrix

of the form

H =

[
H AT

A 0

]
,

where H ∈ R
n×n is symmetric and A ∈ R

m×n is of full rank. Assume Z is an

n× (n−m) basis for the nullspace of A. Preconditioning H by a matrix of the

form

K =

[
G AT

A 0

]
,

where G ∈ R
n×n is symmetric, and A ∈ R

m×n is as above, implies that the

matrix K−1H has

1. an eigenvalue at 1 with multiplicity 2m;

2. n−m eigenvalues λ which are defined by the generalized eigenvalue prob-

lem

ZTHZxz = λZTGZxz. (5.2.2)

This accounts for all of the eigenvalues.

Assume, in addition, that ZTGZ is positive definite. Then K−1H has the

following m+ i+ j linearly independent eigenvectors:

1. m eigenvectors of the form [0T , yT ]T corresponding to the eigenvalue 1 of

K−1H;

2. i (0 ≤ i ≤ n) eigenvectors of the form [wT , yT ]T corresponding to the

eigenvalue 1 of K−1H, were the components w arise from the generalized

eigenvalue problem Hw = Gw;

3. j (0 ≤ j ≤ n − m) eigenvectors of the form [xT
z , 0

T , yT ]T corresponding

to the eigenvalues of K−1H not equal to 1, where the components xz

arise from the generalized eigenvalue problem ZTHZxz = λZTGZxz with

λ 6= 1.
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From the above theorem we observe that there are at most n − m + 1

distinct eigenvalues but we cannot guarantee the eigenvectors of the precondi-

tioned system, K−1H, to form a set of n+m linearly independent eigenvectors.

Indeed, it is often the case that G−1H has no unit eigenvalues, so i in the above

theorem is zero.

Example 5.2.2 (Minimum bound). Consider the matrices

H =




1 2 0

2 2 1

0 1 0


 , K =




1 3 0

3 4 1

0 1 0


 ,

so that m = 1 and n = 2. The preconditioned matrix K−1H has an eigenvalue

at 1 with multiplicity 3, but only one eigenvector arising from case (1) of

Theorem 5.2.1. This eigenvector may be taken to be
[

0 0 1
]T
.

This implies that classical results for the dimension of the Krylov subspace

cannot be applied. However, it is possible to show that the nonnormality does

not hurt us considerably [55]:

Theorem 5.2.3. Let H, K ∈ R
(n+m)×(n+m) and their sub-blocks be as defined

in Theorem 5.2.1 (using the same notation and assumptions). If ZTGZ is

positive definite, where Z is an n× (n−m) basis for the nullspace of A, then

the dimension of the Krylov subspace K(K−1H, b) is at most n−m+ 2.

This decrease in the upper bound of the Krylov subspace from n + m to

n−m+2 can make the difference between an iterative method being practical

or impractical to apply. The eigenvalues of (5.2.2) are real since (5.2.1) implies

that ZTGZ is positive definite [14, 42].

Although we are not expecting or requiring that G (or H) be positive

definite, it is well known that this is often not a significant handicap.

Theorem 5.2.4 ([4, 20] for example). The inertial requirement (5.2.1) holds

for a given G if and only if there exists a positive semi-definite matrix ∆̄ such

that G+AT ∆A is positive definite for all ∆ for which ∆− ∆̄ is positive semi-

definite.

Since any preconditioning system
[
G AT

A 0

][
u

v

]
=

[
r

s

]
(5.2.3)
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may equivalently be written as

[
G+ AT ∆A AT

A 0

][
u

w

]
=

[
r

s

]
(5.2.4)

where w = v−∆Au, there is little to be lost (save sparsity inG) in using (5.2.4),

with its positive-definite leading block, rather than (5.2.3). This observation

allowed Golub, Greif and Varah [40, 50] to suggest1 a variety of methods for

solving (5.1.1) in the case that H is positive semi-definite, although the scope

of their suggestions does not appear fundamentally to be limited to this case.

Lukšan and Vlček [56] make related suggestions for more general G. Replacing

the original system by the equivalent system (5.2.4) is known as an augmented

Lagrangian technique.

Note, however, that although Theorem 5.2.4 implies the existence of a

suitable ∆, it alas does not provide a suitable value. In [50], the authors

propose heuristics to use as few nonzero components of ∆ as possible (on

sparsity grounds) when G is positive semidefinite, but it is unclear how this

extends for general G. Golub, Greif and Varah’s methods aim particularly to

produce well-conditioned G + AT ∆A. Notice, though, that perturbations of

this form do not change the eigenvalue distribution given by Theorem 5.2.1,

since if H(∆H) = H + AT ∆HA and G(∆G) = G + AT ∆GA, for (possibly

different) ∆H and ∆G,

ZTH(∆H)Z = ZTHZv = λZTGZv = λZTG(∆G)Zv,

and thus the generalized eigenvalue problem (5.2.2), and hence eigenvalues of

K(∆G)−1H(∆H), are unaltered.

5.2.1 Improved eigenvalue bounds for the reduced-space
basis

Constraint preconditioners are often used with little consideration of the spec-

tral properties of the resulting preconditioned system. In this section we con-

sider several natural choices for constraint preconditioners and analyze the

1They actually propose the alternative

[
G + AT ∆A AT

A 0

][
u

v

]
=

[
r + AT ∆s

s

]

although this is not significant.
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spectral properties; the aim is to use the results to guide us in our choice of

preconditioner. This analysis is new and has recently been published in the

work of Dollar, Gould and Wathen [21].

As in Section 3.4 when we considered the fundamental null space basis, we

shall suppose that we may partition the columns of A so that

A = [A1 A2] ,

and that its leading m by m sub-matrix A1 and its transpose are easily invert-

ible. We reiterate that since there is considerable flexibility in choosing the

“basis” A1 from the rectangular matrix A by suitable column interchanges,

the assumption that A1 and its transpose are easily invertible is often easily,

and sometimes trivially, satisfied. Note that the problem of determining the

“sparsest” A1 is NP hard [16, 17], while numerical considerations must be

given to ensure that A1 is not badly conditioned if at all possible [38]. We

shall consider in detail how to choose A1 in Chapter 8. More generally, we do

not necessarily assume that A1 is sparse or has a sparse factorization, merely

that there are effective ways to solve systems involving A1 and AT
1 . For exam-

ple, for many problems involving constraints arising from the discretization of

partial differential equations, there are highly effective iterative methods for

such systems [10].

Given our assumption about A1, we shall be particularly concerned with

the fundamental basis matrix

Z =

[
R

I

]
, where R = −A−1

1 A2. (5.2.5)

Such basis matrices play vital roles in Simplex (pivoting)-type methods for lin-

ear programming [7, 32], and more generally in active set methods for nonlinear

optimization [38, 59, 60].

Let us partition G and H such that

G =

[
G11 GT

21

G21 G22

]
and H =

[
H11 HT

21

H21 H22

]
, (5.2.6)

where G11 and H11 are (respectively) the leading m by m sub-matrices of G

and H. Equations (5.2.5) and (5.2.6) give

ZTGZ = G22 +RTGT
21 +G21R +RTG11R

and ZTHZ = H22 +RTHT
21 +H21R +RTH11R.
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To improve the eigenvalue distribution resulting from preconditioning H by K

we consider what happens if we pick G to reproduce certain portions of H.
Let us consider the case where

G22 = H22, but G11 = 0 and G21 = 0. (5.2.7)

Theorem 5.2.5. Suppose that G and H are as in (5.2.6) and that (5.2.7)

holds. Suppose furthermore that H22 is positive definite, and let

ρ = min [ rank(A2), rank(H21) ]+min [ rank(A2), rank(H21) + min [rank(A2), rank(H11)] ] .

Then K−1H has at most

rank(RTHT
21 +H21R+RTH11R)+1 ≤ min(ρ, n−m)+1 ≤ min(2m,n−m)+1

distinct eigenvalues.

Proof. Now,

rank(ZTHZ − ZTGZ)

= rank(RTHT
21 +H21R +RTH11R)

≤ min
[
rank(H21R) + rank(RT

(
HT

21 +H11R
)
), n−m

]
,

and

rank(RT
(
rank(H21R) +HT

21 +H11R
)
)

≤ min [rank(R), rank(H21)] + min
[
rank(R), rank(HT

21 +H11R)
]

≤ min [rank(A2), rank(H21)] + min
[
rank(A2), rank(HT

21) + min [rank(R), rank(H11)]
]

= ρ.

Since ZTGZ is, by assumption, positive definite, we may write ZTGZ =

W TW for some nonsingular W . Thus

W−1ZTHZW−T = I +W−1(RTHT
21 +H21R +RTH11R)W−T

differs from the identity matrix by a matrix of rank at most min(ρ, n−m), and

hence the generalized eigenvalue problem (5.2.2) has at most min(ρ, n − m)

non-unit eigenvalues.
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As we have seen in Theorem 5.2.4, the restriction that H22 be positive

definite is not as severe as it first might seem, particularly if we entertain the

possibility of using positive definite H22 + AT
2 ∆A2 instead.

The eigenvalue situation may be improved if we consider the case

G11 = H11 and G22 = H22, but G21 = 0. (5.2.8)

Theorem 5.2.6. Suppose that G and H are as in (5.2.6) and that (5.2.8)

holds. Suppose furthermore that H22 +RTHT
11R is positive definite, and that

ν = 2 min [ rank(A2), rank(H21) ] .

Then K−1H has at most

rank(RTHT
21 +H21R) + 1 ≤ ν + 1 ≤ min(2m,n−m) + 1

distinct eigenvalues.

Proof. The result follows as in the proof of Theorem 5.2.5 since now ZTHZ −
ZTGZ = RTHT

21 +H21R is of rank at most ν.

Similarly when

G21 = H21 and G22 = H22, but G11 = 0. (5.2.9)

Theorem 5.2.7. Suppose that G and H are as in (5.2.6) and that (5.2.9)

holds. Suppose furthermore that H22 +RTHT
21 +H21R is positive definite, and

that

µ = min [ rank(A2), rank(H11) ] .

Then K−1H has at most

rank(RTH11R) + 1 ≤ µ+ 1 ≤ min(m,n−m) + 1

distinct eigenvalues.

Proof. The result follows as before since now ZTHZ−ZTGZ = RTH11R is of

rank at most µ.
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In Tables 5.1 and 5.2 we illustrate these results by considering a subset of

linear and quadratic programming examples from the Netlib [35] and CUTEr

[47] test sets. Tables containing results for the complete set of test problems

from Netlib and CUTEr can be found in Appendix A.

All inequality constraints have been converted to equations by adding slack

variables, and a suitable “barrier” penalty term (in this case, 1.0) is added to

the diagonal of H for each bounded or slack variable to simulate systems that

might arise during an iteration of an interior point method for such problems,

see Chapter 2.

Given A, a suitable basis matrix A1 can be found by finding a sparse LU fac-

torization of AT using the HSL [53] packages MA48 and MA51 [25]. An attempt

to correctly identify rank is controlled by tight threshold column pivoting, in

which any pivot may not be smaller than a factor τ = 2 of the largest entry in

its (uneliminated) column [38]. The rank is estimated as the number of pivots,

ρ(A), completed before the remaining uneliminated submatrix is judged to be

numerically zero, and the indices of the ρ(A) pivotal rows and columns of A

define A1—if ρ(A) < m, the remaining rows of A are judged to be dependent,

and are discarded2. Although such a strategy may not be as robust as, say,

a singular value decomposition or a QR factorization with pivoting, both our

and others’ experience [38] indicate it to be remarkably reliable and successful

in practice. Further discussion on the computation of a stable fundamental

basis can be found in Chapter 8.

Having found A1, the factors are discarded, and a fresh LU decomposition

of A1, with a looser threshold column pivoting factor τ = 100, is computed

in order to try to encourage sparse factors. All other estimates of rank in Ta-

bles 5.1 and 5.2 are obtained in the same way. The columns headed “iteration

bounds” illustrate Theorems 5.2.1 (“any G”), 5.2.5 (“exact H22”) and 5.2.7

(“exact H22 & H21”). Note that in the linear programming case, H21 ≡ 0, so

we have omitted the “exact H22” statistics from Tables 5.1, since these would

be identical to those reported as “exact H22 & H21”.

We observe that in some cases there are useful gains to be made from trying

to reproduce H22 and, less often, H21. Moreover, the upper bounds on rank

obtained in Theorems 5.2.5 and 5.2.7 can be significantly larger than even the

estimates ρ + 1 and µ + 1 of the number of distinct eigenvalues. However

2Note that if this happens, the right-hand inequalities in Theorems 5.2.5–5.2.7 will depend
on n− rank(A) not n−m.
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the trend is far from uniform, and in some cases there is little or no apparent

advantage to be gained from reproducing portions of H. We will carry out

numerical tests with the projected preconditioned conjugate gradient method

in the following chapter.

Table 5.1: NETLIB LP problems

iteration bound

rank any G exact H22 & H21

name n m A A2 H11 H12 µ + 1 upper

80BAU3B 12061 2262 2262 2231 2262 0 9800 2232 2263

BLEND 114 74 74 37 74 0 41 38 41

D6CUBE 6184 415 404 403 404 0 5781 404 416

FIT2P 13525 3000 3000 3000 3000 0 10526 3001 3001

GROW7 301 140 140 140 140 0 162 141 141

MAROS-R7 9408 3136 3136 3136 3136 0 6273 3137 3137

MODEL 1557 38 38 11 38 0 1520 12 39

PILOT4 1123 410 410 367 333 0 714 334 411

QAP15 22275 6330 6285 5632 6285 0 15991 5633 6331

SCSD1 760 77 77 77 77 0 684 78 78

SIPOW2 2002 2000 2000 2 1999 0 3 3 3

WOODW 8418 1098 1098 1098 1098 0 7321 1099 1099

Table 5.2: CUTEr QP problems

iteration bound

rank any G exact H22 exact H22 & H21

name n m A A2 H11 H12 ρ + 1 upper µ + 1 upper

AUG2DCQP 20200 10000 10000 10000 10000 0 10201 10001 10201 10001 10001

BLOCKQP1 10011 5001 5001 5001 5001 5000 5011 5011 5011 5002 5002

CONT-300 90597 90298 90298 299 90298 0 300 300 300 300 300

CVXQP1 10000 5000 5000 2000 5000 2000 5001 4001 5001 2001 5001

KSIP 1021 1001 1001 20 1001 0 21 21 21 21 21

PRIMAL1 410 85 85 85 85 0 326 86 171 86 86

STCQP2 8193 4095 4095 0 4095 1191 4099 1 4099 1 4096

UBH1 9009 6000 6000 3003 6 0 3010 7 3010 7 3010

5.3 Projected Conjugate Gradient Method for

the Positive Semidefinite C

We would like to extend the ideas of Sections 5.1 and 5.2 to the more general

form of saddle point problem. Given a symmetric n by n matrix H, a second

symmetric m by m matrix C and a full rank m by n (m ≤ n) matrix A, we
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are interested in solving structured linear systems of equations
[
H AT

A −C

]

︸ ︷︷ ︸
H

[
x

y

]
=

[
r

0

]
, (5.3.1)

by iterative methods. There is little loss of generality in assuming the right-

hand side of (5.3.1) has the form given rather than with the more general

form [
H AT

A −C

]

︸ ︷︷ ︸
H

[
x

y

]
=

[
b

d

]
. (5.3.2)

For, so long as we have some mechanism for finding an initial (x0, y0) for which

Ax0 −Cy0 = d, linearity of (5.3.1) implies that (x̄, ȳ) = (x0 − x, y0 − y) solves

(5.3.2) when b = Hx0 + ATy0 − r.
In Section 2.2 we saw how such systems arise when solving inequality con-

strained optimization problems. While it would be perfectly possible to apply

a general-purpose preconditioned iterative method like GMRES or QMR to

(5.3.1), in a similar manner to Section 5.1 when C = 0, it is often possible

to use the more effective preconditioned conjugate gradient (PCG) method

instead. Such a method is already known for the case of C being symmetric

and positive definite [43], but we reveal that there is a projected conjugate

gradient method which can be used when C is symmetric and positive semi-

definite; when C = 0 or C is symmetric and positive definite, this new method

encompasses the two previously known methods.

Suppose that C is of rank l, and that we find a decomposition

C = EDET , (5.3.3)

where E is m by l and D is l by l and invertible—either a spectral decomposi-

tion or an LDLT factorization with pivoting are suitable, but the exact form

is not relevant. In this case, on defining the additional variable z = −DETy,

we may rewrite (5.3.1) as


H 0 AT

0 D−1 ET

A E 0






x

z

y


 =



r

0

0


 . (5.3.4)

By noting the trailing zero block in the coefficient matrix of (5.3.4) we observe

that the required (x, z) components of the solution lie in the nullspace of

[A E] .
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Let the columns of the matrix

Z =

[
Z1

Z2

]

form a basis for this nullspace. Then

[
x

z

]
=

[
Z1

Z2

]
w (5.3.5)

for some w, and (5.3.4) implies

HZw = ZT
1 r, (5.3.6)

where

HZ = ZT
1 HZ1 + ZT

2 D
−1Z2. (5.3.7)

Since we would like to apply the PCG method to solve (5.3.6), our fundamental

assumption is then that HZ is positive definite. Fortunately this assumption

is often easy to verify. For we have

Theorem 5.3.1. Suppose that the coefficient matrix H of (5.3.1) is non-

singular and has mH− negative eigenvalues and that C has c− negative ones.

Then HZ is positive definite if and only if

mH− + c− = m. (5.3.8)

Proof. It is well known [42, Thm. 2.1] that under the assumption that HZ is

positive definite the coefficient matrix EH of (5.3.4) has inertia (n + l,m, 0).

We can use the Schur complement, Section 2.4.2, to factor EH :

EH =




I 0 0

0 I 0

AH−1 ED I







H 0 0

0 D−1 0

0 0 −
(
AH−1AT + C

)







I 0 H−1AT

0 I DET

0 0 I


 .

The result then follows directly from Sylvester’s law of inertia, since then

In(EH) = In(D−1) + In(H) and D−1 has as many negative eigenvalues as C

has negative eigenvalues by construction (5.3.3).

Under the assumption that HZ is positive definite, we may apply the PCG

method to (5.3.6) to find w, and hence recover (x, z) from (5.3.5). Notice that
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such an approach does not determine y, and additional calculations may need

to be performed to recover it if it is required.

More importantly, it has been shown in Section 5.1 and [15, 18, 44, 67] that

rather than computing the iterates explicitly within the nullspace via (5.3.5),

it is possible to perform the iteration in the original (x, z) space so long as the

preconditioner is chosen carefully. Specifically, let G be any symmetric matrix

for which the matrix

GZ = ZT
1 GZ1 + ZT

2 D
−1Z2 (5.3.9)

is positive definite, which we can check using Theorem 5.3.1. Then the ap-

propriate projected preconditioned conjugate gradient (PPCG) algorithm is as

given in Algorithm 5.3.1 below - in this case y is not required.

Algorithm 5.3.1 Projected Preconditioned Conjugate Gradients (variant 1)

Given x = 0, z = 0 and s = 0

Solve



G 0 AT

0 D−1 ET

A E 0






g

h

v


 =



r

s

0




Set (p, q) = −(g, h) and σ = gT r + hT s
repeat

Form Hp and D−1q
α = σ/(pTHp + qTD−1q)
x← x + αp
z ← z + αq
r ← r + αHp
s← s + αD−1q

Solve



G 0 AT

0 D−1 ET

A E 0






g

h

v


 =



r

s

0




σnew = gT r + hT s
β = σnew/σ
σ ← σnew
p← −g + βp
q ← −h+ βq

until a termination step is satisfied

The scalar σ in Algorithm 5.3.1 gives an appropriate optimality measure

[44], and a realistic termination rule is to stop when σ is small relative to its

original value.
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While this method is acceptable when a decomposition (5.3.3) of C is

known, it is preferable to be able to work directly with C. To this end, suppose

that at each iteration

s = −ETa, q = −DETd and h = −DET t

for unknown vectors a, d and t—this is clearly the case at the start of the

algorithm. Then, letting w = Ca, it is straightforward to show that t = v+ a,

and that we can replace our previous algorithm with Algorithm 5.3.2.

Algorithm 5.3.2 Projected Preconditioned Conjugate Gradients (variant 2)

Given x = 0, and a = w = 0

Solve

[
G AT

A −C

][
g

v

]
=

[
r

w

]

Set p = −g, d = −v and σ = gT r.
repeat

Form Hp and Cd
α = σ/(pTHp + dTCd)
x← x + αp
a← a + αd
r ← r + αHp
w ← w + αCd

Solve

[
G AT

A −C

][
g

v

]
=

[
r

w

]

t = a+ v
σnew = gT r + tTw
β = σnew/σ
σ ← σnew
p← −r + βp
d← −t+ βd

until a termination step is satisfied

Notice now that z no longer appears, and that the preconditioning is carried

out using the matrix

K =

[
G AT

A −C

]
. (5.3.10)

Also note that although this variant involves two more vectors than its prede-

cessor, t is simply used as temporary storage and may be omitted if necessary,

while w may also be replaced by Ca if storage is tight.

When C = 0, this is essentially the algorithm given by [44], but for this

case the updates for a, d and w are unnecessary and may be discarded. At the
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other extreme, when C is nonsingular the algorithm is precisely that proposed

by [43, Alg. 2.3], and is equivalent to applying PCG to the system

(H + ATC−1A)x = r

using a preconditioner of the form G+ ATC−1A.

Which of the two variants is preferable depends on whether we have a

decomposition (5.3.3) and whether l is small relative to m: the vectors h and

s in the first variant are of length l, while the corresponding a and d in the

second are of length m. Notice also that although the preconditioning steps in

the first variant require that we solve



G 0 AT

0 D−1 ET

A E 0






g

h

v


 =



r

s

0


 , (5.3.11)

this is entirely equivalent to solving

[
G AT

A −C

][
g

v

]
=

[
r

w

]
, (5.3.12)

where w = −EDs, and recovering

h = D(s− ETv).

5.4 Extending Constraint Preconditioners for

Positive Semidefinite C

As we have already noted, the term constraint preconditioner was introduced

in [55] because the (1,2) and (2,1) matrix blocks of the preconditioner are

exact representations of those in H, where these blocks represent constraints.

However, we observe that the (2,2) matrix block is also an exact representation

when C = 0 : this motivates us to generalize the term constraint preconditioner

to take the form

K =

[
G AT

A −C

]
, (5.4.1)

where G ∈ R
n×n approximates, but is not the same as H. We note that this is

the exact form of the preconditioner used in the previous section.
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We recall that it is the distribution of the generalized eigenvalues λ for

which

HZ v̄ = λGZ v̄ (5.4.2)

that determines the convergence of the preceding PPCG algorithms, and thus

we will be particularly interested in preconditioners which cluster these eigen-

values. We will firstly look at the spectral properties of K−1H and afterwards

focus on the distribution of the eigenvalues of (5.4.2).

5.4.1 Spectral Properties of K−1H
For symmetric (and in general normal) matrix systems, the convergence of an

applicable iterative method is determined by the distribution of the eigenvalues

of the coefficient matrix. It is often desirable for the number of distinct eigen-

values to be small so that convergence (termination) is guaranteed to occur

quickly. For nonnormal systems the convergence is not so readily described,

see [49, page 6], [61] and [82].

Theorem 5.4.1. Let H ∈ R
(n+m)×(n+m) be a symmetric and indefinite matrix

of the form

H =

[
H AT

A −C

]
,

where H ∈ R
n×n, C ∈ R

m×m are symmetric and A ∈ R
m×n is of full rank.

Assume that C has rank l > 0. Let Z ∈ R
n×(n−m) be a basis for the nullspace

of A. Preconditioning H by a matrix of the form

K =

[
G AT

A −C

]
,

where G ∈ R
n×n is symmetric, and A ∈ R

m×n, C ∈ R
m×m are as above,

implies that the matrix K−1H has at most i+ j + 1 distinct eigenvalues which

satisfy

• at least m eigenvalues at 1,

• i (0 ≤ i ≤ n− l) non-unit eigenvalues that satisfy

λ(K−1H) =
xT

ZZ
THZxZ

xT
ZZ

TGZxZ

for some xZ 6= 0,
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• j (0 ≤ j ≤ l) non-unit eigenvalues that satisfy

λ(K−1H) =
xTHx+ yTCy

xTGx+ yTCy
,

for some y 6= 0, and Ax = Cy.

If C is non-singular, then the j (0 ≤ j ≤ m) non-unit eigenvalues also satisfy

λ(K−1H) =
xT (H + ATC−1A)x

xT (G+ ATC−1A)x

for some x 6= 0.

Proof. The eigenvalues of the preconditioned coefficient matrix K−1H may be

derived by considering the generalized eigenvalue problem
[
H AT

A −C

][
x

y

]
= λ

[
G AT

A −C

][
x

y

]
. (5.4.3)

Expanding this out we obtain

Hx+ ATy = λGx+ λATy, (5.4.4)

and

Ax− Cy = λAx− λCy. (5.4.5)

Suppose that λ = 1. Then (5.4.5) will trivially hold, and (5.4.4) implies

that

Hx = Gx.

Hence, for any y ∈ R
m and x = 0, Equations (5.4.4) and (5.4.5) will hold when

λ = 1. Therefore, there are m linearly independent eigenvectors of the form

[0T , yT ]T associated with the eigenvalue at 1. This implies that there are at

least m eigenvalues at 1.

If λ 6= 1 and Cy = 0, then (5.4.5) implies thatAx = 0. Hence, x ∈ Null(A),

so we can write x = ZxZ for some xZ ∈ R
n−m. Premultiplying (5.4.4) by x

and substituting in x = ZxZ gives

λ(K−1H) =
xT

ZZ
THZxZ

xT
ZZ

TGZxZ

. (5.4.6)

Therefore, if Cy = 0, then there are at most (n − m) + (m − l) linearly

independent eigenvectors of the form [xT
ZZ

T , yT ]T associated with the non-unit

eigenvalues.
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If λ 6= 1 and Cy 6= 0, then (5.4.5) implies that Ax 6= 0. We can write

x = ATxA + ZxZ , where xA ∈ R
m and xZ ∈ R

n−m, since A is of full rank.

Equation 5.4.5 implies that xA = (AAT )−1Cy and x = AT (AAT )−1Cy + ZxZ .

Premultiplying (5.4.4) by xT and substituting in Ax = Cy gives

λ(K−1H) =
xTHx+ yTCy

xTGx+ yTCy
. (5.4.7)

There are at most l linearly independent eigenvectors of the form [xT
AA +

xT
ZZ

T , yT ]T , where Cy 6= 0, associated with these eigenvalues.

If, in addition, C is non-singular, then l = m. Equation (5.4.5) along with

the non-singularity of C implies that y = C−1Ax. Substituting this into (5.4.7)

gives the required result.

Remark 5.4.2. In the case of symmetric positive definite matrices C and G,

Theorem 5.4.1 is not new, see [6] and [9].

We can improve on the above theorem by considering the case of C being

symmetric positive definite and the case of C being symmetric positive semi-

definite separately. In the latter case we will assume that C is of rank l with

0 < l < m, and that we can find a decomposition C = EDET , where E is m

by l with orthogonal columns and D is l by l and invertible. A singular value

decomposition is suitable for this (but is also clearly not unique).

Theorem 5.4.3. Assume that A ∈ R
m×n (m ≤ n) has full rank, C ∈ R

m×m is

symmetric and positive definite, and G,H ∈ R
n×n are symmetric. Let H, K ∈

R
(n+m)×(n+m) be as defined in Theorem 5.4.1. Then the matrix K−1H has

• an eigenvalue at 1 with multiplicity m, and

• n eigenvalues which are defined by the generalized eigenvalue problem

(H + ATC−1A)x = λ(G+ ATC−1A)x.

This accounts for all of the eigenvalues.

Proof. The eigenvalues of the preconditioned coefficient matrix K−1H may be

derived by considering the generalized eigenvalue problem

[
H AT

A −C

][
x

y

]
= λ

[
G AT

A −C

][
x

y

]
. (5.4.8)
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Expanding this out we obtain

Hx+ ATy = λGx+ λATy, (5.4.9)

and

Ax− Cy = λAx− λCy. (5.4.10)

Equation (5.4.10) implies that either λ = 1 or Ax − Cy = 0. If the former

holds then (5.4.9) becomes

Hx = Gx. (5.4.11)

Equation (5.4.11) is trivially satisfied by x = 0 and, hence, there are m lin-

early independent eigenvectors of the form
[

0T yT

]
associated with the unit

eigenvalue. If there exist any x 6= 0 which satisfy (5.4.11), then there will be a

i (0 ≤ i ≤ n) linearly independent eigenvectors of the form
[
xT yT

]
where

the components x arise from the generalized eigenvalue problem Hx = Gx.

If λ 6= 1, then (5.4.10) implies that

y = C−1Ax.

Substituting this into (5.4.9) yields the generalized eigenvalue problem

(
H + ATC−1A

)
x = λ

(
G+ ATC−1A

)
x. (5.4.12)

Thus, the non-unit eigenvalues ofK−1H are defined as the non-unit eigenvalues

of (5.4.12). Noting that if (5.4.12) has any unit eigenvalues, then the values

of x(6= 0) which satisfy this are exactly those which arise from the generalized

eigenvalue problem Ax = Gx, we complete our proof.

If H + ATC−1A or G + ATC−1A are positive definite, then the precondi-

tioned system has real eigenvalues.

Theorem 5.4.4. Assume that A ∈ R
m×n (m ≤ n) has full rank, C ∈

R
m×m is symmetric and positive definite, G,H ∈ R

n×n are symmetric and

G + ATC−1AT . Let H, K ∈ R
(n+m)×(n+m) be as defined in Theorem 5.4.1.

Then the matrix K−1H has n + m eigenvalues as defined in Theorem 5.4.3

and m+ i+ j linearly independent eigenvectors. There are

• m eigenvectors of the form
[

0T yT

]T
that correspond to the case λ =

1,
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• i (0 ≤ i ≤ n) eigenvectors of the form
[
xT yT

]T
arising from Hx =

σGx for which the i vectors are linearly independent, σ = 1, and λ = 1,

and

• j (0 ≤ j ≤ n) eigenvectors of the form
[
xT yT

]T
that correspond to

the case λ 6= 1.

Proof. The form of the eigenvectors follows directly from the proof of Theo-

rem 5.4.3. It remains for us to show that the m+ i+j eigenvectors are linearly

independent, that is, we need to show that




0
...

0


 =

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]

a

(1)
1
...

a
(1)
m


+

[
x

(2)
1 · · · x

(2)
i

y
(2)
1 · · · y

(2)
i

]

a

(2)
1
...

a
(2)
i




+

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]

a

(3)
1
...

a
(3)
j


 (5.4.13)

implies that the vectors a(k) (k = 1, 2, 3) are zero vectors. Multiplying (5.4.13)

by K−1H, and recalling that in the previous equation the first matrix arises

from the case λk = 1 (k = 1, . . . ,m), the second matrix from the case λk = 1

and σk = 1 (k = 1, . . . , i), and the last matrix from λk 6= 1 (k = 1, . . . , j), gives




0
...

0


 =

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]

a

(1)
1
...

a
(1)
m


+

[
x

(2)
1 · · · x

(2)
i

y
(2)
1 · · · y

(2)
i

]

a

(2)
1
...

a
(2)
i




+

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]

λ1a

(3)
1

...

λja
(3)
j


 . (5.4.14)

Subtracting (5.4.13) from (5.4.14) we obtain




0
...

0


 =

[
x

(3)
1 · · · x

(3)
j

y
(3)
1 · · · y

(3)
j

]


(λ1 − 1)a
(3)
1

...

(λj − 1)a
(3)
j


 .

The assumption that G + ATC−1A is positive definite implies that x
(3)
k (k =

1, . . . , j) are linearly independent and thus that (λk−1)a
(3)
1 = 0, (k = 1, . . . , j).
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The eigenvalues λk (k = 1, . . . , j) are non-unit which implies that a
(3)
k = 0

(k = 1, . . . , j). We also have linear independence of x
(2)
k (k = 1, . . . , i) and thus

a
(2)
k = 0 (k = 1, . . . , i). Equation (5.4.13) simplifies to




0
...

0


 =

[
0 · · · 0

y
(1)
1 · · · y

(1)
m

]

a

(1)
1
...

a
(1)
m


 .

However, y
(1)
k (k = 1, . . . ,m) are linearly independent and thus a

(1)
k = 0 (k =

1, . . . ,m).

We shall now consider the case of C being symmetric and positive semidef-

inite.

Theorem 5.4.5. Assume that A ∈ R
m×n (m ≤ n) has full rank, C ∈ R

m×m

is symmetric and positive semidefinite with rank l where 0 < l < m, and

G,H ∈ R
n×n are symmetric. Also assume that C is factored as EDET , where

E ∈ R
m×l and D ∈ R

l×l is nonsingular, F ∈ R
m×(m−l) is a basis for the

nullspace of ET and
[
E F

]
∈ R

m×m is orthogonal. Let the columns of

N ∈ R
n×(n−m+l) span the nullspace of F TA, and H, K ∈ R

(n+m)×(n+m) be as

defined in Theorem 5.4.1. Then the matrix K−1H has

• an eigenvalue at 1 with multiplicity 2m− l, and

• n − m + l eigenvalues which are defined by the generalized eigenvalue

problem NT (H + ATED−1ETA)Nz = λN(G+ ATED−1ETA)Nz.

This accounts for all of the eigenvalues.

Proof. Any y ∈ R
m can be written as y = Eye + Fyf . Substituting this into

the generalized eigenvalue problem (5.4.8) and premultiplying by



I 0

0 ET

0 F T




we obtain



H ATE ATF

ETA −D 0

F TA 0 0






x

ye

yf


 = λ




G ATE ATF

ETA −D 0

F TA 0 0






x

ye

yf


 .

(5.4.15)

Noting that the (3,3) block has dimension (m − l) × (m − l) and is a zero

matrix in both coefficient matrices, we can apply Theorem 2.1 from [55] to

obtain that K−1H has
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• an eigenvalue at 1 with multiplicity 2(m− l), and

• n −m + 2l eigenvalues which are defined by the generalized eigenvalue

problem

N
T

[
H ATE

ETA −D

]
Nwn = λN

T

[
G ATE

ETA −D

]
Nwn, (5.4.16)

where N is an (n+ l)× (n−m+ 2l) basis for the nullspace of
[
F TA 0

]
∈

R
(m−l)×(n+l), and [

x

ye

]T

= Nwn +

[
ATF

0

]
wa.

Letting N =

[
N 0

0 I

]
, then (5.4.16) becomes

[
NTHN NTATE

ETAN −D

][
wn1

wn2

]
= λ

[
NTGN NTATE

ETAN −D

][
wn1

wn2

]
. (5.4.17)

This generalized eigenvalue problem is exactly that of the form considered in

Theorem 5.4.3, so (5.4.17) has an eigenvalue at 1 with multiplicity l and the

remaining eigenvalues are defined by the generalized eigenvalue problem

NT
(
H + ATED−1ETA

)
Nwn1 = λNT

(
G+ ATED−1ETA

)
Nwn1. (5.4.18)

Hence, K−1H has an eigenvalue at one with multiplicity 2m − l and the

other eigenvalues are defined by the generalized eigenvalue problem (5.4.18).

If NT (H +ATED−1ETA)N or NT (G+ATED−1ETA)N are positive def-

inite, then the preconditioned system has real eigenvalues.

Theorem 5.4.6. Assume that A ∈ R
m×n (m ≤ n) has full rank, C ∈ R

m×m

is symmetric and positive semidefinite with rank l where 0 < l < m, and

G,H ∈ R
n×n are symmetric. Also assume that C is factored as EDET , where

E ∈ R
m×l and D ∈ R

l×l is nonsingular, F ∈ R
m×(m−l) is a basis for the

nullspace of ET and
[
E F

]
∈ R

m×m is orthogonal. Let the columns of

N ∈ R
n×(n−m+l) span the nullspace of F TA, and H, K ∈ R

(n+m)×(n+m) be as

defined in Theorem 5.4.1. Additionally, assume NT (G + ATED−1ETA)N is

positive definite. Then the matrix K−1H has n +m eigenvalues as defined in

Theorem 5.4.5 and m+ i+ j linearly independent eigenvectors. There are
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• m eigenvectors of the form
[

0T yT

]
that correspond to the case λ = 1,

• i (0 ≤ i ≤ n) eigenvectors of the form
[
xT yT

]
arising from Hx =

σGx for which the i vectors x are linearly independent, σ = 1, and λ = 1,

and

• j (0 ≤ j ≤ n) eigenvectors of the form
[
xT yT

]
that correspond to the

case λ 6= 1.

Proof. Proof of the form and linear independence of the m+ i+ j eigenvalues

obtained in a similar manner to the proof of Theorem 5.4.4.

Remark 5.4.7. The condition that NT (G+ATED−1ETA)N is positive defi-

nite will be hard to verify for general symmetric matrices C and G. However, C

has been assumed to be positive semidefinite, so ATED−1ETA is also positive

semidefinite. Many simple choices of G will be positive definite, for example,

G = I. It is then trivial to show that NT (G + ATED−1ETA)N is positive

definite.

Example 5.4.8. The CUTEr test set [47] provides a set of quadratic pro-

gramming problems. We shall use the problem CVXQP1 S in the following

examples. This problem is very small with n = 100 and m = 50. We shall

set G = diag{H}, C = diag{0, . . . , 0, 1, . . . , 1} and vary the number of zeros

on the diagonal of C so as to change its rank. In Figure 5.1, we illustrate

the change in the eigenvalues of the preconditioned system K−1H for three

different choices of C. The eigenvalues are sorted such that

λ1 ≥ λ2 ≥ . . . ≥ λn+m.

When C = 0, we expect there to be at least 2m unit eigenvalues [55]. We

observe that our example has exactly 2m eigenvalues at 1. From Theorem 5.4.3,

when C = I, there will be at least m unit eigenvalues. Our example has

exactlym unit eigenvalues, Figure 5.1. When C has rank m
2
, the preconditioned

system K−1H has at least 3m
2

unit eigenvalues, Theorem 5.4.5. Once again the

number of unit eigenvalues for our example is exactly the lower bound given by

Theorem 5.4.5. When the rank of C is greater than zero, the largest eigenvalue
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Figure 5.1: Distribution of the eigenvalues of K−1H for various choices of C.

of K−1H, λ1, is defined by the generalized eigenvalue problem (5.4.18). As the

rank of C varies, this clearly affects the eigenvalues of (5.4.18) and, hence, the

largest eigenvalue is changing.

To show that both the lower and upper bounds on the number of linearly

independent eigenvectors can be attained we need only consider variations on

Examples 2.5 and 2.6 from [55].

Example 5.4.9 (minimum bound). Consider the matrices

H =




1 2 1 0

2 2 0 1

1 0 −1 0

0 1 0 0


 , K =




1 3 1 0

3 4 0 1

1 0 −1 0

0 1 0 0


 ,

such that m = 2, n = 2 and l = 1. The preconditioned matrix K−1H has an

eigenvalue at 1 with multiplicity 4, but only two linearly independent eigen-

vectors which arise from case (1) of Theorem 5.4.6. These eigenvectors may

be taken to be
[

0 0 1 0
]T

and
[

0 0 0 1
]T
.
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Example 5.4.10 (maximum bound). Let H ∈ R
3×3 be as defined in Example

5.4.9, but assume that G = H. The preconditioned matrix K−1H has an

eigenvalue at 1 with multiplicity 4 and clearly a complete set of eigenvectors.

These may be taken to be the columns of the identity matrix.

In the context of the use of constraint preconditioners, the convergence of an

iterative method under preconditioning is not only influenced by the spectral

properties of the coefficient matrix, but also by the relationship between m, n

and l. We can determine an upper bound on the number of iterations of an

appropriate Krylov subspace method by considering minimum polynomials of

the coefficient matrix.

Definition 5.4.11. Let A ∈ R
(n+m)×(n+m). The monic polynomial f of mini-

mum degree such that f(A) = 0 is called the minimum polynomial of A.

Krylov subspace theory states that iteration with any method with an

optimality property, e.g. GMRES, will terminate when the degree of the min-

imum polynomial is attained [73]. In particular, the degree of the minimum

polynomial is equal to the dimension of the corresponding Krylov subspace

(for general c) [72, Proposition 6.1]. Again, we shall consider the cases of C

symmetric positive definite and C symmetric positive semidefinite separately.

Theorem 5.4.12. Let the assumptions of Theorem 5.4.4 hold. Then the di-

mension of the Krylov subspace K(K−1H, c) is at most min{n+ 2, n+m}.

Proof. As in the proof of Theorem 5.4.3, the generalized eigenvalue problem is

[
H AT

A −C

][
x

y

]
= λ

[
G AT

A −C

][
x

y

]
. (5.4.19)

Suppose that the preconditioned matrix K−1H takes the form

K−1H =

[
Θ1 Θ3

Θ2 Θ4

]
, (5.4.20)

where Θ1 ∈ R
n×n, Θ2 ∈ R

m×n, Θ3 ∈ R
n×m, and Θ4 ∈ R

m×m. Using the facts

that K (K−1H) = H and A has full row rank, we obtain Θ3 = 0 and Θ4 = I.

The precise forms of Θ1 and Θ2 are irrelevant for the argument that follows.
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From the earlier eigenvalue derivation, it is evident that the characteristic

polynomial of the preconditioned linear system (5.4.20) is

(
K−1H− I

)m n∏

i=1

(
K−1H− λiI

)
.

In order to prove the upper bound on the Krylov subspace dimension, we need

to show that the order of the minimum polynomial is less than or equal to

min{n+2, n+m}. Expanding the polynomial (K−1H− I)∏n

i=1 (K−1H− λiI)

of degree n+ 1, we obtain

[
(Θ1 − I)

∏n

i=1 (Θ1 − λiI) 0

Θ2

∏n

i=1 (Θ1 − λiI) 0

]
.

Since Θ1 has a full set of linearly independent eigenvectors, Θ1 is diagonal-

izable. Hence,

(Θ1 − I)
n∏

i=1

(Θ1 − λiI) = 0.

We therefore obtain

(
K−1H− I

) n∏

i=1

(
K−1H− λiI

)
=

[
0 0

Θ2

∏n

i=1 (Θ1 − λiI) 0

]
. (5.4.21)

If Θ2

∏n

i=1 (Θ1 − λiI) = 0, then the order of the minimum polynomial ofK−1H
is less than or equal to min{n+1, n+m}. If Θ2

∏n

i=1 (Θ1 − λiI) 6= 0, then the

dimension of K (K−1H, c) is at most min{n+2, n+m} since multiplication of

(5.4.21) by another factor (K−1H− I) gives the zero matrix.

Theorem 5.4.13. Let the assumptions of Theorem 5.4.6 hold. Then the di-

mension of the Krylov subspace K (K−1H, c) is at most min{n−m+ l+2, n+

m}.

Proof. As in the proof of Theorem 5.4.12, the preconditioned matrix K−1H
takes the form

K−1H =

[
Θ1 0

Θ2 I

]
, (5.4.22)

where Θ1 ∈ R
n×n, and Θ2 ∈ R

m×n. The precise forms of Θ1 and Θ2 are

irrelevant for the argument that follows.



CHAPTER 5. CONJUGATE GRADIENT METHOD 76

From the earlier eigenvalue derivation, it is evident that the characteristic

polynomial of the preconditioned linear system (5.4.22) is

(
K−1H− I

)2m−l
n−m+l∏

i=1

(
K−1H− λiI

)
.

In order to prove the upper bound on the Krylov subspace dimension, we need

to show that the order of the minimum polynomial is less than or equal to

min{n−m+ l + 2, n+m}. Expanding the polynomial

(
K−1H− I

) n−m+l∏

i=1

(
K−1H− λiI

)

of degree n−m+ l + 1, we obtain
[

(Θ1 − I)
∏n−m+l

i=1 (Θ1 − λiI) 0

Θ2

∏n−m+l

i=1 (Θ1 − λiI) 0

]
.

Since G+ATED−1ETA is positive definite, Θ1 has a full set of linearly inde-

pendent eigenvectors and is diagonalizable. Hence, (Θ1 − I)
∏n−m+l

i=1 (Θ1 − λiI) =

0. We therefore obtain

(
K−1H− I

) n−m+l∏

i=1

(
K−1H− λiI

)
=

[
0 0

Θ2

∏n−m+l

i=1 (Θ1 − λiI) 0

]
. (5.4.23)

If Θ2

∏n−m+l

i=1 (Θ1 − λiI) = 0, then the order of the minimum polynomial of

K−1H is less than or equal to min{n−m+l+1, n+m}. If Θ2

∏n−m+l

i=1 (Θ1 − λiI) =

0, then the dimension of K (K−1H, c) is at most min{n −m + l + 2, n + m}
since multiplication of (5.4.23) by another factor (K−1H− I) gives the zero

matrix.

So Theorems 5.2.3, 5.4.12 and 5.4.13 tells us that with preconditioner

K =

[
G AT

A −C

]

for

H =

[
H AT

A −C

]

the dimension of the Krylov subspace is no greater than min{n−m+ l+2, n+

m} (under suitable assumptions). Hence termination (in exact arithmetic) is

guaranteed in a number of iterations smaller than this.
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5.4.2 Improving the eigenvalue bounds for the reduced-
space basis

We recall from (5.4.2) that it is the distribution of the generalized eigenvalues

λ for which

HZ v̄ = λGZ v̄

that determines the convergence of the Algorithms 5.3.1 and 5.3.2. Suppose

that we denote the coefficient matrices of (5.3.4) and (5.3.11) by

H =



H 0 AT

0 D−1 ET

A E 0


 and K =



G 0 AT

0 D−1 ET

A E 0




respectively. If we recall the definitions (5.3.7) and (5.3.9), the following result

is the direct consequence of Theorem 5.2.1.

Corollary 5.4.14. Suppose that Z is any n by n−m+ l basis matrix for the

nullspace of [A E]. Then K
−1H has 2m unit eigenvalues, and the remaining

eigenvalues are those of the generalized eigenvalue problem (5.4.2) (or, equiv-

alently, the generalized eigenvalue problem (5.4.18)).

As in Section 5.2.1, we can improve on Corollary 5.4.14 (that is reduce

the upper bound on the number of distinct eigenvalues) by applying Theo-

rems 5.2.5, 5.2.6 and 5.2.7. To do so, let

R = −A−1
1 [A2 E],

and note that

H =




H11 HT
21 0 AT

1

H21 H22 0 AT
2

0 0 D−1 ET

A1 A2 E 0




and K =




G11 GT
21 0 AT

1

G21 G22 0 AT
2

0 0 D−1 ET

A1 A2 E 0



.

We therefore have the following consequences.

Corollary 5.4.15. Suppose that G and H are as in (5.2.6) and that (5.2.7)

holds. Suppose furthermore that

[
H22 0

0 D−1

]
(5.4.24)
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is positive definite, and let

ρ = min [ η, rank(H21) ] + min [ η, rank(H21) + min[η, rank(H11)] ] ,

where η = rank([A2 E]). Then K
−1H has at most

rank(R
T
HT

21+H21R+R
T
H11R)+1 ≤ min(ρ, n−m+l)+1 ≤ min(2m,n−m+l)+1

distinct eigenvalues.

Corollary 5.4.16. Suppose that G and H are as in (5.2.6) and that (5.2.8)

holds. Suppose furthermore that

[
H22 0

0 D−1

]
+R

T
HT

11R (5.4.25)

is positive definite, and that

ν = 2 min [ η, rank(H21) ] ,

where η = rank([A2 E]). Then K
−1H has at most

rank(R
T
HT

21 +H21R) + 1 ≤ ν + 1 ≤ min(2m,n−m+ l) + 1

distinct eigenvalues.

Corollary 5.4.17. Suppose that G and H are as in (5.2.6) and that (5.2.9)

holds. Suppose furthermore that

[
H22 0

0 D−1

]
+R

T
HT

21 +H21R (5.4.26)

is positive definite, and that

µ = min [η, rank(H11) ] ,

where η = rank([A2 E]). Then K
−1H has at most

rank(R
T
H11R) + 1 ≤ µ+ 1 ≤ min(m,n−m+ l) + 1

distinct eigenvalues.
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As in Section 5.2, the requirements that (5.4.24)—(5.4.26) are positive

definite are not as severe as it might first seem, for we have the following

corollary to Theorem 5.2.4.

Corollary 5.4.18. The inertial requirement (5.2.1) holds for a given H if and

only if there exists a positive semi-definite matrix ∆̄ such that
[
H 0

0 D−1

]
+

[
AT

ET

]
∆
[
A E

]

is positive definite for all ∆ for which ∆ − ∆̄ is positive semi-definite. In

particular, if (5.2.1) holds, H +AT ∆A and ET ∆E +D−1 are positive definite

for all such ∆.

As we did for (5.2.3) and (5.2.4), we can rewrite (5.3.11) as the equivalent


H + AT ∆A AT ∆E AT

ET ∆A ET ∆E +D−1 ET

A E 0






x

z

w


 =



r

0

0


 ,

where w = y −∆(Ax+Ez) = y −∆(Ax− Cy) = y. Eliminating the variable

z, we find that
[
H + AT (∆−∆W∆)A ATP T

PA −W

][
x

y

]
= −

[
r

0

]
,

where

P = I −W∆ and W = E(ET ∆E +D−1)−1ET .

Hence [
H + AT (∆−∆W∆)A AT

A −C

][
x

y

]
= −

[
r

0

]
,

where

C = P−1WP−T = (I −W∆)−1W (I −∆W )−1 and y = P Ty.

Note that C is diagonal whenever C is.

In this section and the previous one we have seen how we can apply a

projected PCG method to solve saddle point problems of the form given in

(5.3.1) and how we can use specific constraint preconditioners to improve the

spectral properties of the preconditioned system, and hence improve the rate

of convergence of the PPCG method. We will carry out numerical tests with

these methods in the following chapters.
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5.5 Standard Constraint Preconditioners and

Positive Semidefinite C

In our derivation of Algorithm 5.3.1 we firstly added a variable z and then

applied the PPCG method for the case C = 0 to the system



H 0 AT

0 D−1 ET

A E 0






x

z

y


 =



r

0

0


 .

We chose to apply a preconditioner of the form



G 0 AT

0 D−1 ET

A E 0


 ,

but it is possible to relax the preconditioner to take the form



G 0 AT

0 D̃−1 ET

A E 0


 ,

where D̃ ∈ R
l×l is symmetric, positive definite but does not necessarily satisfy

C = ED̃ET . The requirement of (5.3.9) being positive definite now corresponds

to

G̃Z = ZT
1 GZ1 + ZT

2 D̃
−1Z2

being positive definite. Suppose that we define

D̃ = γD, (5.5.1)

where γ ∈ (0, 1]. If GZ is positive definite and C positive semidefinite, then

G̃Z is guaranteed to be positive definite for all γ ∈ (0, 1]. Hence, we obtain

Algorithm 5.5.1.

As we have already mentioned, we can apply Algorithm 5.5.1 for any γ ∈
(0, 1] when HZ and GZ are both assumed to be symmetric, positive definite. In

particular, this is true for any positive γ approaching the limit 0. Unfortunately

we cannot apply Algorithm 5.5.1 for γ = 0 because of the requirement of 1
γ

in the preconditioner. However, suppose that, as in Section 5.3, it would be

preferable to work directly with C and that at each iteration

s = −ETa, q = −DETd and h = −DET t



CHAPTER 5. CONJUGATE GRADIENT METHOD 81

Algorithm 5.5.1 Projected Preconditioned Conjugate Gradients (variant 3)

Given x = 0, z = 0 and s = 0

Solve



G 0 AT

0 1
γ
D−1 ET

A E 0






g

h

v


 =



r

s

0




Set (p, q) = −(g, h) and σ = gT r + hT s
repeat

Form Hp and D−1q
α = σ/(pTHp + qTD−1q)
x← x + αp
z ← z + αq
r ← r + αHp
s← s + αD−1q

Solve



G 0 AT

0 1
γ
D−1 ET

A E 0






g

h

v


 =



r

s

0




σnew = gT r + hT s
β = σnew/σ
σ ← σnew
p← −r + βp
q ← −h+ βq

until a termination step is satisfied
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for unknown vectors a, d and t—this is clearly the case at the start of the

algorithm. Then, letting w = Ca, it is straightforward to show that t =

γ(v+a), and that we can replace our previous algorithm with Algorithm 5.5.2.

Algorithm 5.5.2 Projected Preconditioned Conjugate Gradients (variant 4)

Given x = 0, and a = w = 0

Solve

[
G AT

A −γC

][
g

v

]
=

[
r

γw

]

Set p = −g, d = −v and σ = gT r.
repeat

Form Hp and Cd
α = σ/(pTHp + dTCd)
x← x + αp
a← a + αd
r ← r + αHp
w ← w + αCd

Solve

[
G AT

A −γC

][
g

v

]
=

[
r

γw

]

t = γ(a+ v)
σnew = gT r + tTw
β = σnew/σ
σ ← σnew
p← −r + βp
d← −t+ βd

until a termination step is satisfied

Notice that, again, z no longer appears, and that the preconditioning is carried

out using the matrix

K̃ =

[
G AT

A −γC

]
. (5.5.2)

We can apply this algorithm for all γ ∈ (0, 1] and also the limiting case

γ = 0 because the transformation back to the original variables has removed

the singularity. The use of γ = 0 corresponds to use of a “standard” constraint

preconditioner on the system (5.3.4).

In Section 2.2 we noted that if an active set strategy is used along with the

described interior point method for solving an inequality constrained optimiza-

tion problem, then the entries in C converge towards zero, and the entries in

the (1,1) block of the saddle point system are also converging towards a matrix

with finite real entries. Hence, as we draw near to optimality we might like to

apply Algorithm 5.5.2 with γ = 0 and an unchanging choice of G instead of
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Algorithm 5.3.2. Clearly, any factorizations needed for applying the constraint

preconditioner would only need to be done once instead of each time that we

call Algorithm 5.5.2.

5.5.1 Spectral Properties of K̃−1H for γ = 0

As we discussed earlier in this chapter, the distribution of the eigenvalues can

determine the convergence of an applicable iterative method. We shall use

similar methods to those in the previous section proving the following results

about the eigenvalues and eigenvectors of the K̃−1H for γ = 0.

Theorem 5.5.1. Assume that A ∈ R
m×n (m ≤ n) has full rank, C ∈ R

m×m

is symmetric and positive definite, and G,H ∈ R
n×n are symmetric. Let

H ∈ R
(n+m)×(n+m) be as defined in Theorem 5.4.1 and the preconditioner K̃ be

defined to be a matrix of the form

K̃ =

[
G AT

A 0

]
,

where G ∈ R
n×n is symmetric, and A ∈ R

m×n is the same as occurs in H.
Then the matrix K̃−1H has n + m eigenvalues which are defined to be the

finite eigenvalues of the quadratic eigenvalue problem

λ2ATC−1A− λ
(
G+ 2ATC−1A

)
x+

(
H + ATC−1A

)
x = 0.

Proof. The eigenvalues of the preconditioned coefficient matrix K−1H may be

derived by considering the generalized eigenvalue problem
[
H AT

A −C

][
x

y

]
= λ

[
G AT

A 0

][
x

y

]
. (5.5.3)

Expanding this out we obtain

Hx+ ATy = λGx+ λATy, (5.5.4)

and

Ax− Cy = λAx. (5.5.5)

If λ = 1, then (5.5.5) implies that Cy = 0. Using the assumption that C is

nonsingular we obtain y = 0. Equation (5.5.4) x must satisfy Hx = Gx, but

there is no guarantee that there exists such an x.
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Suppose that λ 6= 1, then rearranging (5.5.5) gives

y = (1− λ)C−1Ax.

Substituting this into (5.5.4) and rearranging we obtain

λ2ATC−1Ax− λ
(
G+ 2ATC−1A

)
x+

(
H + ATC−1C

)
x = 0. (5.5.6)

Noting that any unit eigenvalues of K̃−1H will also satisfy this quadratic eigen-

value problem, we complete the proof.

Theorem 5.5.2. Assume that A ∈ R
m×n (m ≤ n) has full rank, C ∈ R

m×m

is symmetric and positive semidefinite with rank l where 0 < l < m, and

G,H ∈ R
n×n are symmetric. Also assume that C is factored as EDET , where

E ∈ R
m×l and D ∈ R

l×l is nonsingular, F ∈ R
m×(m−l) is a basis for the

nullspace of ET and
[
E F

]
∈ R

m×m is orthogonal. Let the columns of

N ∈ R
n×(n−m+l) span the nullspace of F TA, H be as defined in Theorem 5.4.1

and the preconditioner K̃ be defined to be a matrix of the form

K̃ =

[
G AT

A 0

]
,

where G ∈ R
n×n is symmetric, and A ∈ R

m×n is the same as occurs in H.
Then K̃−1H has

• an eigenvalue at 1 with multiplicity 2(m− l), and

• n−m+ 2l eigenvalues which are defined as the finite eigenvalues of the

quadratic eigenvalue problem

0 = λ2NTATED−1ETANwn1 − λNT
(
G+ 2ATED−1ETA

)
Nwn1

+NT
(
H + ATED−1EA

)
Nwn1 = 0.

This accounts for all of the eigenvalues.
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Proof. Any y ∈ R
m can be written as y = Eye + Fyf . Substituting this into

the generalized eigenvalue problem (5.5.3) and premultiplying by



I 0

0 ET

0 F T




we obtain



H ATE ATF

ETA −D 0

F TA 0 0






x

ye

yf


 = λ




G ATE ATF

ETA 0 0

F TA 0 0






x

ye

yf


 . (5.5.7)

Noting that the (3,3) block has dimension (m − l) × (m − l) and is a zero

matrix in both coefficient matrices, we can apply Theorem 2.1 from [55] to

obtain that K̃−1H has

• an eigenvalue at 1 with multiplicity 2(m− l), and

• n −m + 2l eigenvalues which are defined by the generalized eigenvalue

problem

N
T

[
H ATE

ETA −D

]
Nwn = λN

T

[
G ATE

ETA 0

]
Nwn, (5.5.8)

where N is an (n+ l)× (n−m+ 2l) basis for the nullspace of
[
F TA 0

]
∈

R
(m−l)×(n+l), and [

x

ye

]
=

[
ATF

0

]
wa +Nwn.

Letting N =

[
N 0

0 I

]
, then (5.4.16) becomes

[
NTHN NTATE

ETAN −D

][
wn1

wn2

]
= λ

[
NTGN NTATE

ETAN 0

][
wn1

wn2

]
. (5.5.9)

This generalized eigenvalue problem is exactly that of the form considered in

Theorem 5.5.1, so the eigenvalues of (5.5.9) are equivalently defined by the

quadratic eigenvalue problem

0 = λ2NTATED−1ETANwn1 − λNT
(
G+ 2ATED−1ETA

)
Nwn1

+NT
(
H + ATED−1EA

)
Nwn1 = 0. (5.5.10)

This defines 2(n−m+l) eigenvalues of which 2(n−m+l)−(n−m) = n−m+2l

are finite [79]. Hence, K̃−1H has an eigenvalue at 1 with multiplicity 2(m− l)
and the remaining eigenvalues are defined by the quadratic eigenvalue problem

(5.5.10).



CHAPTER 5. CONJUGATE GRADIENT METHOD 86

Corollary 5.5.3. Assume that A ∈ R
m×n (m ≤ n) has full rank, C ∈ R

m×m

is symmetric and positive semidefinite (possibly nonsingular) with rank l where

0 < l ≤ m, and G,H ∈ R
n×n are symmetric. Also assume that C is factored

as EDET , where E ∈ R
m×l and D ∈ R

l×l is nonsingular, F is a basis for

the nullspace of ET and
[
E F

]
∈ R

m×m is orthogonal. Let the columns of

N ∈ R
n×(n−m+l) span the nullspace of F TA, H be as defined in Theorem 5.4.1

and the preconditioner K̃ be defined to be a matrix of the form

K̃ =

[
G AT

A 0

]
,

where G ∈ R
n×n is symmetric, and A ∈ R

m×n is the same as occurs in H.
Then K̃−1H has

• an eigenvalue at 1 with multiplicity 2(m− l), and

• n−m+ 2l eigenvalues which are defined as the finite eigenvalues of the

quadratic eigenvalue problem

0 = λ2NTATED−1ETANwn1 − λNT
(
G+ 2ATED−1ETA

)
Nwn1

+NT
(
H + ATED−1EA

)
Nwn1. (5.5.11)

This accounts for all of the eigenvalues.

Proof. For the case of 0 < l < m the definition of the eigenvalues trivially

holds from Theorem 5.5.2.

Consider the case l = m. Then 2(m − l) = 0, so we need to show that

K̃−1H may have no eigenvalues. This is trivially true from Theorem 5.5.1.

If C is nonsingular, then N will also be nonsingular and can be arbitrarily

defined as N = I. The assumptions imply that E is an orthogonal matrix.

Hence,

ED−1ET = E−TD−1E−1 = (EDET )−1 = C−1.

Also, from the proof of Theorem 5.5.2, x = wn1 when N = I. Thus

0 = λ2NTATED−1ETANwn1 − λNT
(
G+ 2ATED−1ETA

)
Nwn1

+NT
(
H + ATED−1EA

)
Nwn1

= λ2ATC−1ANx− λ
(
G+ 2ATC−1A

)
x+

(
H + ATC−1A

)
x.
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This is exactly the same quadratic eigenvalue problem as given in Theo-

rem 5.5.1 and, hence, the eigenvalues of K̃−1 can be equivalently defined by

either of the quadratic eigenvalue problems.

We note that the quadratic eigenvalue problem (5.5.11) can have negative

and complex eigenvalues. The following theorem gives sufficient conditions for

general quadratic eigenvalue problems to have real and positive eigenvalues

and a full set of linearly independent eigenvectors.

Theorem 5.5.4. Consider the quadratic eigenvalue problem

(
λ2K − λL+M

)
x = 0, (5.5.12)

where M,L,∈ R
n×n are symmetric positive definite, and K ∈ R

n×n is sym-

metric positive semidefinite. Define γ(M,L,K) to be

γ(M,L,K) = min
{
(xTLx)2 − 4(xTMx)(xTKx) : ‖x‖2 = 1

}
.

If γ(M,L,K) > 0, then the eigenvalues λ are real and positive, and there are

n linearly independent eigenvectors associated with the n largest (n smallest)

eigenvalues.

Proof. From [79, Section 1] we know that under our assumptions the quadratic

eigenvalue problem (
µ2M + µL+K

)
x = 0

has real and negative eigenvalues, and that there are n linearly independent

eigenvectors associated with the n largest (n smallest) eigenvalues.. Suppose

we divide this equation by µ2 and set λ = −1/µ. The quadratic eigenvalue

problem (5.5.12) is obtained, and since µ is real and negative, λ is real and

positive.

We would like to be able to use the above theorem to show that, under

suitable assumptions, all the eigenvalues of K̃−1H are real and positive. Let

D̃ = NTATED−1ETAN, (5.5.13)
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where D and E are as defined in Corollary 5.5.3. If we assume that NTHN+D̃

is positive definite, then we may writeNTHN+D̃ = RTR for some nonsingular

matrix R. The quadratic eigenvalue problem (5.5.11) is similar to

(
λ2R−T D̃R−1 − λR−T (NTGN + 2D̃)R−1 + I

)
z = 0,

where z = Rwn1. Thus, if we assume that NTGN + 2D̃ and NTHN + D̃ are

positive definite, and can show that

γ(I, R−T (NTGN + 2D̃)R−1, R−T D̃R−1) > 0,

where γ(·, ·, ·) is as defined in Theorem 5.5.4, then we can apply the above

theorem to show that (5.5.11) has real and positive eigenvalues.

Let us assume that ‖z‖2 = 1. Then

(
zTR−T

(
NTGN + 2D̃

)
R−1z

)2

− 4zT zzTR−T D̃R−1z

=
(
zTR−TNTGNR−1z + 2zTR−T D̃R−1z

)2

− 4zTR−T D̃R−1z

=
(
zTR−TNTGNR−1z

)2
+ 4zTR−T D̃R−1z

(
zTR−TNTGNR−1z + zTR−T D̃R−1z − 1

)

=
(
wT

n1N
TGNwn1

)2
+ 4wT

n1D̃wn1

(
wT

n1N
TGNwn1 + wT

n1D̃wn1 − 1
)
, (5.5.14)

where 1 = ‖z‖2 = ‖Rwn1‖2 = ‖wn1‖NT HN+ eD . Clearly, we can guarantee that

(5.5.14) is positive if

wT
n1N

TGNwn1 + wT
n1D̃wn1 > 1 for all wn1 such that ‖wn1‖NT HN+ eD = 1,

that is

wT
n1N

TGNwn1 + wT
n1D̃wn1

wT
n1

(
NTHN + D̃

)
wn1

>
wT

n1

(
NTHN + D̃

)
wn1

wT
n1

(
NTHN + D̃

)
wn1

for all wn1 6= 0.

Rearranging we find that we require

wT
n1N

TGNwn1 > wT
n1N

THNwn1

for all Nwn1 6= 0. Thus we need only scale any positive definite G such that
wT

n1NT GNwn1

wT
n1NT Nwn1

> ‖H‖22 for all Nwn1 6= 0 to guarantee that (5.5.14) is positive for

all wn1 such that ‖wn1‖NT HN+ eD = 1. For example, we could choose G = αI,

where α > ‖H‖22 .
Using the above in conjunction with Corollary 5.5.3 we obtain:
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Theorem 5.5.5. Suppose that A, C, D, E, G, H and N are as defined in

Corollary 5.5.3 and D̃ is as defined in (5.5.13). Further, assume that NTHN+

D̃ and NTGN + 2D̃ are symmetric positive definite, D̃ is symmetric positive

semidefinite and

min
{

(zTNTGNz)2 + 4(zT D̃z)(zTNTGNz + zT D̃z − 1) : ‖z‖NT HN+ eD = 1
}
> 0,

then all the eigenvalues of K̃−1H are real and positive. The matrix K̃−1H also

has m− l + i+ j linearly independent eigenvectors. There are

1. m − l eigenvectors of the form
[

0T yT
f

]T
that correspond to the case

λ = 1,

2. i (0 ≤ i ≤ n) eigenvectors of the form
[
xT 0T yT

f

]T
arising from

Hx = σGx for which the i vectors x are linearly independent, σ = 1,

and λ = 1, and

3. j (0 ≤ j ≤ n−m+ 2l) eigenvectors of the form
[

0T wT
n1 wT

n2 yT
f

]T

corresponding to the eigenvalue of K̃−1H not equal to 1, where the com-

ponents wn1 arise from the quadratic eigenvalue problem

0 = λ2NTATED−1ETANwn1 − λNT
(
G+ 2ATED−1ETA

)
Nwn1

+NT
(
H + ATED−1EA

)
Nwn1,

with λ 6= 1, and wn2 = (1− λ)D−1ETANwn1.

Proof. It remains for us to prove the form of the eigenvectors and that they

are linearly independent. We will consider the case l = m and 0 < l < m

separately.

Consider l = m. Then, from the proof of Theorem 5.5.1, when λ = 1 the

eigenvectors must take the form
[
xT 0T

]T
, where Hx = σGx for which

the i vectors x are linearly independent, σ = 1. Hence, any eigenvectors cor-

responding to a unit eigenvalue fall into the second statement of the theorem

and there are i (0 ≤ i ≤ n) such eigenvectors which are linearly independent.

The proof of Theorem 5.5.1 also shows that the eigenvectors corresponding to

λ 6= 1 take the form
[
xT yT

]T
, where x corresponds to the quadratic eigen-

value problem (5.5.11) and y = (1− λ)C−1Ax = (1− λ)D−1EANx (since we

can set D = C and E = I). Clearly, there are at most n+m such eigenvectors.
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By our assumptions, all of the vectors x defined by the quadratic eigenvalue

problem (5.5.11) are linearly independent. Also, if x is associated with two

eigenvalues, then these eigenvalues must be distinct [79]. By setting wn1 = x

and wn2 = y we obtain j (0 ≤ j ≤ n + m) eigenvectors of the form given in

statement 3 of the proof.

It remains for us to prove that the i + j eigenvectors defined above are

linearly independent. Hence, we need to show that

[
x

(1)
1 · · · x

(1)
i

0 · · · 0

]

a

(1)
1
...

a
(1)
i


+

[
x

(2)
1 · · · x

(2)
j

y
(2)
1 · · · y

(2)
j

]

a

(2)
1
...

a
(2)
j


 =




0
...

0


 (5.5.15)

implies that the vectors a(1) and a(2) are zero vectors. Multiplying (5.5.15) by

K̃−1H, and recalling that in the previous equation the first matrix arises from

λp = 1 (p = 1, · · · , i) and the second matrix from λp 6= 1 (p = 1, · · · , j) gives

[
x

(1)
1 · · · x

(1)
i

0 · · · 0

]

a

(1)
1
...

a
(1)
i


+

[
x

(2)
1 · · · x

(2)
j

y
(2)
1 · · · y

(2)
j

]

λ

(2)
1 a

(2)
1

...

λ
(2)
j a

(2)
j


 =




0
...

0


 .

(5.5.16)

Subtracting (5.5.15) from (5.5.16) we obtain

[
x

(2)
1 · · · x

(2)
j

y
(2)
1 · · · y

(2)
j

]


(λ
(2)
1 − 1)a

(2)
1

...

(λ
(2)
j − 1)a

(2)
j


 =




0
...

0


 . (5.5.17)

Some of the eigenvectors x(= wn1) defined by the quadratic eigenvalue problem

(5.5.11) will be associated with two (non-unit) eigenvalues; let us assume that

there are k such eigenvectors. By our assumptions, these eigenvalues must be

distinct. Without loss of generality, assume that x
(2)
p = x

(2)
k+p for p = 1, . . . , k.

The vectors x
(2)
p (p = k + 1, . . . , j) are linearly independent and λ

(2)
p 6= 1

(p=2k+1,. . . ,j), which gives rise to a
(2)
p = 0 for p = 2k + 1, . . . , j. Equation

(5.5.17) becomes

[
x

(2)
1 · · · x

(2)
k x

(2)
1 · · · x

(2)
k

y
(2)
1 · · · y

(2)
k y

(2)
k+1 · · · y

(2)
2k

]


(λ
(2)
1 − 1)a

(2)
1

...

(λ
(2)
j − 1)a2k

(2)


 =




0
...

0


 . (5.5.18)

The vectors x
(2)
p (p = 1, . . . , k) are linearly independent. Hence

(λ
(2)
1 − 1)a(2)

p x(2)
p + (λ

(2)
1 − 1)a

(2)
p+kx

(2)
p = 0, p = 1, . . . , k,
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and

a(2)
p = −a(2)

p+k

1− λ(2)
p+k

1− λ(2)
p

, p = 1, . . . , k.

Now y
(2)
p = (1− λ(2)

p )C−1Ax
(2)
p for p = 1, . . . , 2k. Hence, we require

(λ
(2)
1 − 1)2a(2)

p C−1Ax(2)
p + (λ

(2)
1 − 1)2a

(2)
p+kC

−1Ax(2)
p = 0, p = 1, . . . , k.

Substituting in a
(2)
p = −a(2)

p+k

1−λ
(2)
p+k

1−λ
(2)
p

and rearranging gives (λ
(2)
p − 1)a

(2)
p =

(λ
(2)
p+k−1)a

(2)
p+k for p = 1, . . . , k. Since these eigenvalues are non-unit and λ

(2)
p 6=

λ
(2)
p+k for p = 1, . . . , k we conclude that a

(2)
p = 0 (p = 1, . . . , j).

We also have linear independence of x
(1)
p (p = 1, . . . , i), and thus a

(1)
p = 0

(p = 1, . . . , i).

Consider the case 0 ≤ l ≤ m. From the proof of Theorem 5.5.2, the gener-

alized eigenvalue problem can be expressed as



H ATE ATF

ETA −D 0

F TA 0 0






x

ye

yf


 = λ




G ATE ATF

ETA 0 0

F TA 0 0






x

ye

yf


 .

we can apply Theorem 2.3 from [55] to obtain that K̃−1H has the following

m− l + i+ j linearly independent eigenvectors:

1. m− l eigenvectors of the form
[

0T yT
f

]T
corresponding to the eigen-

value 1 of K̃−1H;

2. i (0 ≤ i ≤ n+ l) eigenvectors of the form
[
xT yT

e yT
f

]T
corresponding

to the eigenvalue 1 of K̃−1H, where the components x and ye arise from

the generalized eigenvalue problem
[

H ATE

ETA −D

][
x

ye

]
=

[
G ATE

ETA −D

][
x

ye

]
;

3. j (0 ≤ j ≤ n−m+ 2l) eigenvectors of the form
[

0T wT
n yT

f

]T
corre-

sponding to the eigenvalues of K̃−1H not equal to 1, where the compo-

nents wn arise from the generalized eigenvalue problem

N
T

[
H ATE

ETA −D

]
Nwn = λN

T

[
G ATE

ETA 0

]
Nwn, (5.5.19)

whereN is an (n+ l)× (n−m+ 2l) basis for the nullspace of
[
F TA 0

]
∈

R
(m−l)×(n+l), with λ 6= 1.
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Let us consider the i (0 ≤ i ≤ n + l) eigenvectors defined in the second

statement above. If λ = 1, then ye = 0 since D is nonsingular. Thus, there will

be a maximum of n linearly independent eigenvectors taking this form which

correspond to the generalized eigenvalue problem Hx = σGx, where σ = 1.

Thus 0 ≤ i ≤ n.

Consider the j (0 ≤ j ≤ n−m+2l) eigenvectors defined in the third state-

ment above. From the proof of Theorem 5.5.2 the eigenvalues are equivalently

defined by (5.5.11) and

wn =

[
wn1

(1− λ)D−1ETANwn1

]
.

Hence, the j (0 ≤ j ≤ n−m+ 2l) eigenvectors corresponding to the non-unit

eigenvalues of K̃−1H take the form
[

0T wT
n1 wT

n2 yT
f

]T
.

Proof of the linear independence of these eigenvectors follows similarly to

the case of l = m.

We discussed in Sections 5.2 and 5.4.1 the fact that the convergence of

an iterative method when a constraint preconditioner is used is influenced by

the relationship between m, n, and l, as well as the spectral properties of

the coefficient matrix. This is also the case for the dimension of the Krylov

subspace K(K̃−1H, c) for all c :

Theorem 5.5.6. Let the assumptions of Theorem 5.5.5 hold. Then the dimen-

sion of the Krylov subspace K(K̃−1H, c) is at most min{n−m+2l+2, n+m}.

Proof. As in the proof to Theorem 5.5.2, the generalized eigenvalue problem

can be written as



H ATE ATF

ETA −D 0

F TA 0 0






x

ye

yf


 = λ




G ATE ATF

ETA 0 0

F TA 0 0






x

ye

yf


 .

Hence, the preconditioned matrix K̃−1H is similar to

K̂−1Ĥ =

[
Θ1 0

Θ2 I

]
, (5.5.20)

where the precise forms of Θ1 ∈ R
(n+l)×(n+l) and Θ2 ∈ R

(m−l)×(n+l) are ir-

relevant here. The remainder of the proof follows similarly to that of Theo-

rem 5.4.13.
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5.5.2 Clustering of eigenvalues when ‖C‖ is small

When using interior point methods to solve inequality constrained optimization

problems, the matrix C is diagonal and of full rank. In this case, Theorem 5.5.6

would suggest that there is little advantage in using a constraint preconditioner

of the form K̃ over using any other preconditioner. However, when an active

set strategy is used, the entries of C also become small as we draw near to

optimality and, hence, ‖C‖ is small. In the following we shall assume that the

norm considered is the ℓ2 norm, but the results could be generalized to other

norms.

Lemma 5.5.7. Let ζ > 0, δ ≥ 0, ε ≥ 0 and δ2 +4ζ(δ − ε) ≥ 0. Then the roots

of the quadratic equation

λ2ζ − λ(δ + 2ζ) + ε+ ζ = 0

satisfy

λ = 1 +
δ

2ζ
± µ, µ ≤

√
2 max

{
δ

2ζ
,

√
|δ − ε|
ζ

}
.

Proof. The roots of the quadratic equation satisfy

λ =
δ + 2ζ ±

√
(δ + 2ζ)2 − 4ζ(ε+ ζ)

2ζ

= 1 +
δ

2ζ
±
√
δ2 + 4ζ(δ − ε)

2ζ

= 1 +
δ

2ζ
±
√(

δ

2ζ

)2

+
δ − ε
ζ

If δ−ε
ζ
≥ 0, then

√(
δ

2ζ

)2

+
δ − ε
ζ

≤

√√√√2 max

{(
δ

2ζ

)2

,
δ − ε
ζ

}

=
√

2 max

{
δ

2ζ
,

√
δ − ε
ζ

}
.

If δ−ε
ζ
≤ 0, then the assumption δ2 + 4ζ(δ − ε) ≥ 0 implies that

(
δ

2ζ

)2

≥ ε− δ
ζ
≥ 0.
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Hence,
√(

δ

2ζ

)2

+
δ − ε
ζ

≤ δ

2ζ

<
√

2 max

{
δ

2ζ
,

√
ε− δ
ζ

}
.

Remark 5.5.8. The important point to notice is that if ζ ≫ δ and ζ ≫ ε,

then λ ≈ 1 in Theorem 5.5.7.

Theorem 5.5.9. Let H, K̂ ∈ R
(n+m)×(n+m) and their sub-blocks be as defined

in Theorem 5.5.5 using the same notation and assumptions. We shall assume

that A, G, and H remain fixed, but C may change so long as E also remains

fixed. Further, assume that NTGN + 2D̃ and NTHN + D̃ are symmetric

positive definite, D̃ is symmetric positive semidefinite and

min
{

(zTNTGNz)2 + 4(zT D̃z)(zTNTGNz + zT D̃z − 1) : ‖z‖NT HN+ eD = 1
}
> 0.

Then all the eigenvalues of K̃−1H are real and positive.

The eigenvalues λ of (5.5.11) subject to ETANwn1 6= 0, will also satisfy

|λ− 1| ≈ c
√
‖C‖ for small ‖C‖ ,

where c is a constant.

Proof. That the eigenvalues of K̃−1H are real and positive follows directly

from Theorem 5.5.5.

Suppose that C = EDET is a reduced singular value decomposition of C,

where the columns of E ∈ R
m×l are orthogonal and D ∈ R

l×l is diagonal with

entries dj that are non-negative and in non-increasing order.

In the following, ‖·‖ = ‖·‖2 , so that

‖C‖ = ‖D‖ = d1.

Premultiplying the quadratic eigenvalue problem (5.5.11) by wT
n1 gives

0 = λ2wT
n1D̃wn1 − λ(wT

n1N
TGNwn1 + 2wT

n1D̃wn1)

+(wT
n1N

THNwn1 + wT
n1D̃wn1). (5.5.21)
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Assume that v = ETANwn1 and ‖v‖ = 1, where wn1 is an eigenvalue of

the above quadratic eigenvector problem. Then

wT
n1D̃wn1 = vTD−1v

=
v2

1

d1

+
v2

2

d2

+ . . .+
v2

m

dm

≥ vTv

d1

=
1

‖C‖ .

Hence,
1

wT
n1D̃wn1

≤ ‖C‖ .

Let ζ = wT
n1D̃wn1, δ = wT

n1N
TGNwn1 and ε = wT

n1N
THNwn1. Then

(5.5.21) becomes

λ2ζ − λ(δ + 2ζ) + ε+ ζ = 0.

From Lemma 5.5.7, λ must satisfy

λ = 1 +
δ

2ζ
± µ, µ ≤

√
2 max

{
δ

2ζ
,

√
|δ − ε|
ζ

}
.

Now δ ≤ c
∥∥NTGN

∥∥ , ε ≤ c
∥∥NTHN

∥∥ , where c is an upper bound on

‖wn1‖ and wn1 are eigenvectors of (5.5.11) subject to ETANwn1 6= 0 and∥∥ETANwn1

∥∥ = 1. Hence, the eigenvalues of (5.5.11) subject to ETANwn1 6= 0

satisfy

|λ− 1| ≈ c
√
‖C‖

for small ‖C‖ , where c is a constant.

This clustering of part of the spectrum of K̃−1H will often translate into

a speeding up of the convergence of a selected Krylov subspace method [5,

Section 1.3]. We can therefore see the advantage of Algorithm 5.5.2 when we

the interior point method is drawing near to the optimal point.

5.5.3 Numerical Examples

We shall verify our theoretical results by considering some simple saddle point

systems.
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Example 5.5.10 (C nonsingular). Consider the matrices

H =




1 0 1

0 1 0

1 0 −1


 , K̃ =




2 0 1

0 2 0

1 0 0


 ,

so thatm = l = 1 and n = 2. The preconditioned matrix K̃−1H has eigenvalues

at 1
2
, 2 −

√
2 and 2 +

√
2. The corresponding eigenvectors are

[
0 1 0

]T
,

[
1 0 (

√
2− 1)

]T
and

[
1 0 −(

√
2 + 1)

]T
respectively. The precondi-

tioned system K̃−1H has all non-unit eigenvalues, but this does contradict

Corollary 5.5.3 because m− l = 0. With our choices of H and K̃, and setting

D = I and E = I (C = EDET ), the quadratic eigenvalue problem (5.5.11) is
(
λ2

[
1 0

0 0

]
− λ

[
4 0

0 2

]
+

[
2 0

0 1

])[
x1

x2

]
= 0.

This quadratic eigenvalue problem has three finite eigenvalues which are λ =

2−
√

2, λ = 2 +
√

2 and λ = 1
2
.

Example 5.5.11 (C semidefinite). Consider the matrices

H =




1 0 1 0

0 1 0 1

1 0 0 0

0 1 0 −1


 , K̃ =




2 0 1 0

0 2 0 1

1 0 0 0

0 1 0 0


 ,

so that m = 2, n = 2 and l = 1. The preconditioned matrix K̃−1H has two unit

eigenvalues and a further two at λ = 2−
√

2 and λ = 2+
√

2. There is just one

linearly independent eigenvector associated with the unit eigenvector; specif-

ically this is
[

0 0 1 0
]T
. For the non-unit eigenvalues, the eigenvectors

are
[

0 1 0 (
√

2− 1)
]T

and
[

0 1 0 −(
√

2 + 1)
]T

respectively.

Since 2(m − l) = 2, we correctly expected there to be at least two unit

eigenvalues, Corollary 5.5.3. The remaining eigenvalues will be defined by the

quadratic eigenvalue problem (5.5.11):

(
λ2 − 4λ+ 2

)
wn1 = 0,

where D = [1] and E =
[

0 1
]T

are used as factors of C. This quadratic

eigenvalue problem has two finite eigenvalues; these are λ = 2 −
√

2 and

λ = 2 +
√

2.
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Example 5.5.12 (C with small entries). Suppose that H and K̃ are as in

Example 5.5.10, but C = [10−a] for some positive real number a. Setting

D = 10−aI and E = I (C = EDET ), the quadratic eigenvalue problem

(5.5.11) is

(
λ2

[
10a 0

0 0

]
− λ

[
2 + 2× 10a 0

0 2

]
+

[
1 + 10a 0

0 1

])[
x1

x2

]
= 0.

This quadratic eigenvalue problem has three finite eigenvalues which are de-

fined as λ = 1+10−a±10−a
√

1 + 10a and λ = 1
2
. Just the first two eigenvalues

satisfy ETANx 6= 0. For large values of a, λ ≈ 1 + 10−a ± 10−
a
2 ; these eigen-

values will be close to 1.

We shall use the problem CVXQP2 M from the CUTEr test set [47] in the

following examples. This problem is very small with n = 1000 and m =

250. “Barrier” penalty terms (in this case 1.1) are added to the diagonal of

H to simulate systems that might arise during and iteration of an interior-

point method for such problems. We shall set G = diag{H}, and C = α ×
diag{0, . . . , 0, 1, . . . , 1}, where α is a positive, real parameter that we will

change.

All tests carried out in this chapter were performed on a dual Intel Xeon

3.20GHz machine with hyperthreading and 2GiB of RAM. It was running

Fedora Core 2 (Linux kernel 2.6.8) with Matlab R© 7.0. We use the projected

preconditioned conjugate gradient method, Algorithm 5.5.2, and terminate the

iteration when the value of residual is reduced by at least a factor of 10−8.

In Figure 5.2 we compare the performance (in terms of iteration count)

between using a preconditioner of the form K̃ with γ = 0 and one of the form

K, Equations (5.5.2) and (5.3.10) respectively. The matrix C used in this set

of results takes the form αI. As α becomes smaller, we expect the difference

between the number of iterations required to become less between the two

preconditioners. We observe that, in this example, once α ≤ 10−1 there is

little benefit in reproducing C in the preconditioner.

In Figure 5.3 we also compare the performance (in terms of iteration count)

between using a preconditioner of the form K̃ with γ = 0 and one of the form

K, Equations (5.5.2) and (5.3.10) respectively. However, we have now set

C = α × diag{0, . . . , 0, 1, . . . , 1}, where rank(C) = ⌊m/2⌋ . We observe that

the convergence is faster in the second figure — this is as we would expect
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Figure 5.2: Number of PPCG iterations when either (a) K̃ or (b) K are used as precondi-
tioners for C = αI.
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Figure 5.3: Number of PPCG iterations when either (a) K̃ or (b) K are used as precondi-
tioners for C = α× diag(0, . . . , 0, 1, . . . , 1), where rank(C) = ⌊m/2⌋ .
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because of there now being a guarantee of at least 250 unit eigenvalues in the

preconditioned system compared to the possibility of none.

5.6 Other possible ways to generate a precon-

ditioned conjugate gradient style method

to solve saddle point systems

In the previous sections of the chapter we have shown how we can use pro-

jected conjugate gradient methods to solve saddle point systems. Indefinite

preconditioners known as constraint preconditioners (or extended constraint

preconditioners) were used with these methods. To generate these methods

we used a nullspace projection and applied the preconditioned conjugate gra-

dient method to this reduced problem. By changes in variables we were able

to expand the method so that the full system instead of this reduced system

was used.

In this brief section, we explore another idea for generating preconditioned

conjugate gradient methods: this is motivated by the work of Rozložńık and Si-

moncini [70]. They showed that the preconditioned conjugate gradient method

can be applied to solve systems of the form

[
H AT

A 0

][
x

y

]
=

[
b

0

]
,

where H ∈ R
n×n is symmetric, A ∈ R

m×n and a preconditioner of the form

K =

[
I AT

A 0

]

is used. In Section 5.6.2 we will see the importance of the zero block in the

right-hand side.

We will be closely following the arguments of Rozložńık and Simoncini [70]

to show that the preconditioned conjugate gradient method can be applied to

solve systems of the form

[
H AT

A −C

]

︸ ︷︷ ︸
H

[
x

y

]
=

[
b

0

]
,
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where H ∈ R
n×n, C ∈ R

m×m are symmetric and positive semidefinite, A ∈
R

m×n and a constraint preconditioner of the form

K =

[
G AT

A −C

]

is used.

5.6.1 More properties of the constraint preconditioner

In the previous sections we arbitrarily assumed that the constraint precondi-

tioner was applied on the left, but let us consider what happens when we apply

it on the right. For simplicity we shall assume that G is symmetric positive

definite, but the idea can be extended to symmetric positive semidefinite G by

using the augmented Lagrangian ideas at the end of Section 5.4.2.

The eigenvalues of K−1H and HK−1 are equal, so from Theorem ?? and

appropriate assumptions, the eigenvalues of HK−1 are all real and positive.

We can use the Schur complement factorization to express the inverse of K :

K−1 =

[
I −G−1AT

0 I

][
G−1 0

0 −S−1

][
I 0

−AG−1 I

]

=

[
G−1 −G−1ATS−1AG−1 G−1ATS−1

S−1AG−1 −S−1

]
,

where S = C + AG−1AT , so that

HK−1 =

[
HG−1 + (I −HG−1)ATS−1AG−1 (HG−1 − I)ATS−1

0 I

]
.

When K−1 and HK−1 are applied to a vector of the form
[
vT 0T

]T
it

follows that

K−1

[
v

0

]
=

[ (
G−1 −G−1ATS−1AG−1

)
v

S−1AG−1v

]
(5.6.1)

and

HK−1

[
v

0

]
=

[ (
HG−1 + (I −HG−1)ATS−1AG−1

)
v

0

]
. (5.6.2)

Remark 5.6.1. It is important to note that the last m entries of HK−1w are

zero if the last m entries of w are zero.
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5.6.2 Application of the Bi-CG method and its relation-
ship to PCG

Let us consider the implementation of the simplified Bi-CG as a short re-

currence approach. The classical right preconditioned recurrence is as fol-

lows:

Given r0 and r̃0.

Set p0 = r0 and p̃0 = r̃0.

for k = 0, 1, . . . do

αk = 〈r̃k, rk〉 / 〈p̃k,HK−1pk〉 ,
tk+1 = tk + αkpk,

rk+1 = rk − αkHK−1pk,

r̃k+1 = r̃k − αkK
−1Hp̃k,

βk = 〈r̃k+1, rk+1〉 / 〈r̃k, rk〉 ,
pk+1 = rk+1 + βkpk,

p̃k+1 = r̃k+1 + βkp̃k.

end for

Using J-symmetry3 with J = K−1 and the initial settings of r̃0 = K−1r0

and r0 =
[
sT
0 0T

]T
we obtain that r̃k = K−1rk for all subsequent k ≥

1. Similarly, p̃k = K−1pk for all subsequent k ≥ 1. Since we can explicitly

compute p̃k and r̃k we can omit the “tilde” recurrence from the method. If

r0 =
[
sT
0 0T

]
, then using (5.6.2) it is straightforward to show that rk+1 can

be written in the form rk+1 =
[
sT

k+1 0T

]T
for all k ≥ 0. We can also show

that

Hp̃k+1 =

[
Hp̃

(1)
k+1 + AT p̃

(2)
k+1

0

]
.

Hence, we obtain theK−1-symmetric Bi-CG(HK−1) algorithm, Algorithm 5.6.1.

If a general choice of r0 was used, then the values of α̂k and β̂k may be

negative. However, fixing the bottom m entries of r0 (and, consequently for all

rk, k ≥ 1) to be zero, forces α̂k and β̂k to be positive. We observe that Algo-

rithm 5.6.1 is therefore equivalent to the PCG method for r0 =
[
sT
0 0T

]T
,

Algorithm 5.6.2, which in itself is an example of Algorithm 5.3.2. However,

as far as we are aware, there is no straightforward way to use this form of

derivation to reproduce Algorithm 5.5.2.

3A matrix H is called J-symmetric if there exists a nonsingular J such that HT J = JH.
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Algorithm 5.6.1 K−1-symmetric Bi-CG(HK−1) Algorithm

Given

[
x0

y0

]
such that

[
b

0

]
−H

[
x0

y0

]
=

[
s0

0

]
.

Set

[
u0

v0

]
=

[
s0

0

]
.

for k = 0, 1, . . . do

α̂k =

〈264 sk

0

375,K−1

264 sk

0

375〉
〈

HK−1

264 uk

vk

375,K−1

264 uk

vk

375〉 ,
[
xk+1

yk+1

]
=

[
xk

yk

]
+ α̂kK

−1

[
uk

vk

]
,

[
sk+1

0

]
=

[
sk

0

]
− α̂kHK−1

[
uk

vk

]
,

β̂k =

〈264 sk+1

0

375,K−1

264 sk+1

0

375〉
〈264 sk

0

375,K−1

264 sk

0

375〉 ,

K−1

[
xk+1

yk+1

]
= K−1

[
sk+1

0

]
+ β̂kK

−1

[
xk

yk

]
.

end for

Algorithm 5.6.2 PCG(H) Algorithm

Given t0 =

[
x0

y0

]
such that r0 =

[
b

0

]
−H

[
x0

y0

]
=

[
s0

0

]
.

Set p0 = K−1r0.
for k = 0, 1, . . . do

αk =
〈rk,K−1rk〉
〈pk,Hpk〉

,
tk+1 = tk + αkpk,
rk+1 = rk − αkHpk,

βk =
〈rk+1,K−1rk+1〉

〈rk,K−1rk〉
,

pk+1 = K−1rk+1 + βkpk.
end for



Chapter 6

The Schilders Factorization

In the projected preconditioned conjugate gradient algorithms presented in

Chapter 5, we observe the need to solve the preconditioning step
[
G AT

A −C

]

︸ ︷︷ ︸
K

[
g

v

]
=

[
r

w

]

during each iteration. There is no obvious reason why solving such systems

should be any easier than solving
[
H AT

A −C

][
x

y

]
=

[
b

d

]
,

the system for which our iterative method is trying to find an approximate

solution. In Table 7.5 we see that even simple choices such as G = I can

be prohibitive in terms of the memory requirements for sparse direct solu-

tion. The standard method for using constraint preconditioners, at least in

the optimization community [9, 37, 56], has been to choose G and then factor

the resulting constraint preconditioners with available codes such as the HSL

routines MA27 and MA57 [22, 24]. However, we propose an alternative to this:

implicit factorization constraint preconditioners, which we demonstrate to be

very effective as well as being cheap to apply.

Suppose that we consider constraint preconditioners of the form

K = PBP T ,

where solutions with each of the matrices P, B, and P T are easily obtained.

The key idea is that rather than obtaining P and B from a given K, K is

derived implicitly from specially chosen P and B.

103
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In this chapter we will consider the case of C = 0 and two possible implicit

factorization constraint preconditioners: the variable reduction method and

the Schilders factorization method. In the following chapter we will consider

the case C 6= 0.

6.1 Variable Reduction Method

As in Section 5.2.1, let us express the constraint preconditioner in a block 3

by 3 structure:

K =



G11 GT

21 AT
1

G21 G22 AT
2

A1 A2 0


 , (6.1.1)

where G11 ∈ R
m×m, G21 ∈ R

(n−m)×m, G22 ∈ R
(n−m)×(n−m), A1 ∈ R

m×m and

A2 ∈ R
m×(n−m).We shall assume that A1 and its transpose are easily invertible:

we shall consider how to reorder A to produce such an A1 in Chapter 8.

The variable reduction technique (sometimes called the reduced gradient

technique) uses an algebraic description of the nullspace method to factor the

constraint preconditioner. The fundamental basis is used to define a matrix,

Z, whose columns form a basis of the nullspace of A :

Z =

[
R

I

]
, where R = −A−1

1 A2.

In Section 3.4 we saw that a saddle point problem can be reduced to the

block triangular form

YTKY =



Y TGY Y TGZ Y TAT

ZTGY ZTGZ 0

AY 0 0


 , (6.1.2)

where

Y =

[
Y Z 0

0 0 I

]

for some Y ∈ R
n×m such that

[
Y Z

]
spans R

n. Note that when using the

fundamental basis we can choose Y = [I 0]T . With these choices, the matrix

Y is block triangular so its inverse can also be expressed in a block form:

Y−1 =

[
Y Z 0

0 0 I

]−1

=



I R 0

0 I 0

0 0 I




−1

=



I −R 0

0 I 0

0 0 I


 .
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We therefore obtain the following factorization for K :

K =




I 0 0

−RT I 0

0 0 I






Y TGY Y TGZ Y TAT

ZTGY ZTGZ 0

AY 0 0






I −R 0

0 I 0

0 0 I




=




I 0 0

−RT I 0

0 0 I




︸ ︷︷ ︸
P



G11 DT

21 AT
1

D21 D22 0

A1 0 0




︸ ︷︷ ︸
B



I −R 0

0 I 0

0 0 I




︸ ︷︷ ︸
P T

, (6.1.3)

where

D21 = G21 +RTG11,

D22 = G22 +RTG11R +G21R + (G21R)T .

Using this factorization we can solve preconditioning steps of the form


G11 GT

21 AT
1

G21 G22 AT
2

A1 A2 0






g1

g2

v


 =



r1

r2

w


 (6.1.4)

by carrying out the following steps:

ψ1 = r1,

ψ2 = r2 +RTψ1,

ψ3 = w,

ϕ1 = A−1
1 ψ3,

ϕ2 = D−1
22 (ψ2 −D21ϕ1),

ϕ3 = A−T
1 (ψ1 −G11ϕ1 −DT

21ϕ2),

g2 = ϕ2,

g1 = ϕ1 +Rg2,

v = ϕ3.

This can be simplified to just

ψ2 = r2 − AT
2A

−T
1 r1,

ϕ1 = A−1
1 w,

g2 = D−1
22 (ψ2 −D21ϕ1) ,

v = A−T
1 (r1 −G11ϕ1 −DT

21ϕ2),

g1 = ϕ1 − A−1
1 A2g2.
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If we assume that G is chosen and then D21 and D22 appropriately defined;

that all the sub-blocks in the factorization (6.1.3) are dense; and that Gaussian

Elimination is used to factor any of the blocks for which systems must be

solved, then the number of flops used will be

work = O
(

2

3
(m3 + (n−m)3) + 2(i+ 1)(n2 + 4mn+ 4m2)

)
,

where i is the number of iterations carried out by our iterative method. The

cost of forming D22 has been excluded from this calculation, but it is clearly

likely to be expensive in terms of CPU time and memory. We note that, in

practice, a symmetric factorization will be used for blocks such as D22 and

that many blocks will be sparse. This implies that the above expression for

the number of flops used by the preconditioning steps could be a lot higher

than what happens in reality.

As noted earlier, the standard method for using constraint preconditioners

involves the selection of a matrix G and then the factorization of the resulting

K. We can choose such a G and then use the factorization (6.1.3) but we

observe that even simple choices of G can result in the matrices D21 and D22

becoming dense. We only need carry out matrix-vector products with D21,

so we are not concerned about this matrix being dense because we will not

explicitly form D21. However, we need to solve systems involving D22 and,

hence, we would ideally like to keep D22 sparse.

Importantly, Equation (6.1.3) can be used to define a constraint precondi-

tioner implicitly. We choose a G11, D21 and D22 such that D22 is symmetric

and nonsingular. We then know that multiplying together the factors will

give us a constraint preconditioner. In this way, we can choose D22 such that

systems involving it can be efficiently solved.

If we assume that G11 and D21 are allowed to be dense, but D22 is diagonal

(and nonsingular), then the total work in solving the preconditioning steps

when i iterations are required can be expressed as

work = O
(

2

3
m3 + 2(i+ 1)(4mn+m2)

)
.

We note that this bound in the work is substantially lower than that given

earlier when G is chosen and K then factored with (6.1.3).

In the following section we shall propose an alternative implicit factoriza-

tion constraint preconditioner: the Schilders factorization.
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6.2 The Schilders Factorization

The Schilders factorization was originally derived by considering models for

electronic circuits. We will start by considering how it was derived and then

turn to how it can be used as an implicit factorization constraint precondi-

tioner.

6.2.1 Derivation of the Factorization

We shall firstly restrict ourselves to a special class of matrices A, namely those

which have the property

Ai,j ∈ {−1, 0, 1}, i = 1, . . . ,m, j = 1, . . . , n.

We shall also assume that each column of A contains at most two nonzero

elements which are of opposite sign:

m∑

i=1

|Ai,j| ≤ 2,

−1 ≤
m∑

i=1

Ai,j ≤ 1.

As previously, we assume that the matrix A has full rank. The matrix A can

be considered to be the difference of two incidence matrices.

Let Π : {1, . . . , n} → {1, . . . , n} be a permutation with the property that

Ai,Π(i) 6= 0,

and

Aj,Π(i) = 0 for j > i.

Hence, A is permuted to an upper trapezoidal form, meaning that the left m

by m sub-block of A is upper triangular. It is straight-forward to show that

such a permutation may not exist for such matrices A, but it is also relatively

easy to show that if a row permutation, Π̂, is also carried out, then A can

be permuted to be upper trapezoidal. In the following we will assume that

Π̂(i) = i, but the generalization is straightforward. Let us define a permutation

matrix Q by

Q =
[
eΠ(1), en+1, . . . , eΠ(m), en+m, . . . , eΠ(n)

]
.
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After the permutation of rows and columns, we obtain the matrix

H̃ = QTHQ.

In order to find a suitable preconditioner, Schilders proposes an incomplete

decomposition for the system H̃. Let us define the preconditioner, K̃, to be

K̃ = (L̃+ D̃)D̃−1(L̃+ D̃)T ,

where L̃ and D̃ take the following block forms:

L̃ =




0 · · · 0 0 · · · 0

L̃2,1
. . .

...
...

...
...

. . . 0 0 · · · 0

L̃m+1,1 · · · L̃m+1,m 0 · · · 0
...

...
. . . . . .

...

L̃n,1 · · · L̃n,m−1 · · · L̃n,n−1 0




,

(6.2.1)

D̃ =




D̃1,1 0 · · · 0 · · · 0

0
. . . . . .

...
...

...
. . . D̃m,m 0 · · · 0

0 · · · 0 D̃m+1,m+1
. . .

...
...

...
. . . . . . 0

0 · · · 0 · · · 0 D̃n,n




, (6.2.2)

(6.2.3)

Li,j ∈





R
2×2, 1 ≤ j < i ≤ m,

R
1×2, m < i ≤ n, 1 ≤ j ≤ m,

R
1×1, m < j < i ≤ n,

(6.2.4)

Di,i ∈
{

R
2×2, i = 1, . . . ,m,

R
1×1, i = m+ 1, . . . , n.

The non-zero sub-blocks of L̃ are defined to be the equal to the associated

sub-blocks in H̃, i.e., for 1 ≤ j < i ≤ m

L̃i,j =

[
HΠ(i),Π(j) AT

Π(i),j

Ai,Π(j) 0

]
.

We shall say that L̃ = “lower”(H̃).
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The matrices D̃1, . . . , D̃m and scalars D̃m+1, . . . , D̃n are required such that

“diag”
(
(L̃+ D̃)D̃−1(L̃+ D̃)T

)
= “diag”(H̃), (6.2.5)

where “diag” means the block diagonal in terms of the diagonal blocks given

in (6.2.2), i.e.,

H̃ = “diag”(H̃) + “lower”(H̃) +
(
“lower”(H̃)

)T

.

Theorem 6.2.1. Assume that A, Π and Q are as described at the beginning

of this section, L̃ = “lower”(H̃) and Equation 6.2.5 holds. Then

Q(L̃+ D̃)D̃−1(L̃+ D̃)TQT =

[
G AT

A 0

]
,

where G ∈ R
n×n is symmetric.

Proof. See [74] and [80, Section 3.3].

The assumption that A is the difference of two incidence matrices (where

both incidence matrices have at most one nonzero in each column) and upper

trapezoidal is a big restriction. However, Schilders [75] shows that this can

be generalized to any A that is of full rank. In particular, let us use a QR

decomposition of A :

AΠ = QT Â,

where Π is now an n by n permutation matrix, Q is an m by m orthogonal

matrix, and Â is of upper trapezoidal form. Furthermore, we assume that the

first m columns of Â are linearly independent. Note: such decompositions are

always available.

Suppose that

Q =

[
ΠT 0

0 Q

]
,

and

Ĥ = ΠTHΠ.

Then,

QHQT =

[
Ĥ ÂT

Â 0

]
,

and the following theorem holds:
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Theorem 6.2.2. Let Ĥ and Â be as above, and write Â =
[
Â1, Â2

]
, where

Â1 ∈ R
m×m is upper triangular and nonsingular. Assume that Ĥ is symmetric

and positive definite. Then there exists a diagonal matrix D1 ∈ R
m×m, a

diagonal matrix D2 ∈ R
(n−m)×(n−m), a strictly lower triangular matrix L1 ∈

R
m×m, a unit lower triangular matrix L2 ∈ R

(n−m)×(n−m), and a matrix M ∈
R

(n−m)×m such that

[
Ĥ ÂT

Â 0

]
=



ÂT

1 0 L1

ÂT
2 L2 M

0 0 I






D1 0 I

0 D2 0

I 0 0






Â1 Â2 0

0 LT
2 0

LT
1 MT I


 . (6.2.6)

Proof. From [75, Section 3]. Working out the expression in the right hand

side, and writing

Ĥ =

[
Ĥ11 ĤT

21

Ĥ21 Ĥ22

]
,

we find that the following must hold:

Ĥ11 = ÂT
1D1Â1 + L1Â1 + ÂT

1L
T
1 , (6.2.7)

Ĥ21 = ÂT
2D1Â1 +MÂ1 + ÂT

2L
T
1 , (6.2.8)

Ĥ22 = L2D2L
T
2 + ÂT

2D1Â2 + ÂT
2M

T +MÂ2. (6.2.9)

Multiplying equation (6.2.7) from the left by Â−T
1 and from the right by Â−1

1

gives

D1 + LT
1 Â

−1
1 + Â−T

1 L1 = Â−T
1 Ĥ11Â

−1
1 .

Using the fact that Â1 is upper triangular we obtain the following expressions

for D1 and L1 :

D1 = diag(Â−T
1 Ĥ11Â

−1
1 ),

L1 = ÂT
1 “lower”(Â−T

1 Ĥ11Â
−1
1 ).

Having found D1 and L1 and using (6.2.8), the matrix M is given by

M =
(
Ĥ21 − ÂT

2L
T
1

)
Â−1

1 − ÂT
2D1.

It remains for us to show that matrices D2 and L2 exist such that (6.2.9) is

satisfied. Firstly observe that

MÂ2 =
(
Ĥ21 − ÂT

2L1

)
Â−1

1 Â2 − ÂT
2D1Â2.



CHAPTER 6. THE SCHILDERS FACTORIZATION 111

Substituting this into (6.2.9) and making use of the expressions for D1 and L1,

we find that

L2D2L
T
2 = Ĥ22 + ÂT

2 Â
−T
1 Ĥ11Â

−1
1 Â2 − Ĥ21Â

−1
1 Â2 − ÂT

2 Â
−T
1 ĤT

21

=
[
−ÂT

2 Â
−T
1 I

] [ Ĥ11 ĤT
21

Ĥ21 Ĥ22

][
−Â−1

1 Â2

I

]
.

Now Ĥ is assumed to the symmetric and positive definite, so D2 and L2 of

appropriate forms can be found.

6.2.2 Generalization of the Factorization

We previously saw that by carrying out a transformation of A we can factor

the resulting saddle point problem using this Schilders factorization, Theo-

rem 6.2.2. However, some of the sub-blocks have been specifically chosen to be

diagonal and others upper triangular. This is not necessary, we only wish for

systems with coefficient matrix D2 to be easy to solve and for matrix-vector

multiplications with D1 to be reasonably cheap. As in Section 6.1, we would

also like to be able to use the factorization to implicitly define a constraint

preconditioner.

Theorem 6.2.3. Let A ∈ R
m×n (m ≤ n) be a full rank matrix which we can

partition as A = [A1, A2], where A1 ∈ R
m×m is nonsingular. Suppose that

D1 ∈ R
m×m and D2 ∈ R

(n−m)×(n−m) are symmetric, and, in addition, D2 is

nonsingular. Furthermore, assume that L1 ∈ R
m×m, L2 ∈ R

(n−m)×(n−m) and

M ∈ R
(n−m)×m, where L2 is assumed to be nonsingular. Then



G11 GT

21 AT
1

G21 G22 AT
2

A1 A2 0


 =



AT

1 0 L1

AT
2 L2 M

0 0 I




︸ ︷︷ ︸
P



D1 0 I

0 D2 0

I 0 0




︸ ︷︷ ︸
B



A1 A2 0

0 LT
2 0

LT
1 MT I




︸ ︷︷ ︸
P T

,

(6.2.10)

where

G11 = L1A1 + AT
1L

T
1 + AT

1D1A1,

G21 = AT
2L

T
1 +MA1 + AT

2D1A1,

G22 = L2D2L
T
2 +MA2 + AT

2M
T + AT

2D1A2.
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Proof. Multiplying out the factors reveals the result.

Remark 6.2.4. The matrix D2 in the above will be identical to the value of

D22 in (6.1.3) for the same values of G. This factorization can therefore be

considered to be an example of a nullspace method.

It follows trivially from Silvester’s law of inertia that

D2 must be positive definite (6.2.11)

for P to be a meaningful preconditioner [44]. Similarly, D22 in (6.1.3) must be

positive definite for K = PBP T to be a meaningful preconditioner, where P

and B are defined in Theorem 6.2.3.

It is reasonable to assume that L1 = 0 and L2 = I since this doesn’t restrict

the possible forms of G produced but simplifies solves with P, B, and P T .

Under this assumption, and the additional assumption that D2 is diagonal,

the cost of using the implicit factorization preconditioner (6.2.10) is

work = O
(

2

3
m3 + 2(i+ 1)(4mn−m2)

)
,

where i is the number of iterations carried out by our iterative method. We

observe that this upper bound is lower than that of the variable reduction

method (the constant involved in the O-notation can be assumed to be the

same in each case), so we expect to favour the Schilders factorization for general

implicit factorization choices.

One example of this for specific choices in our implicit factorizations is to

require that G11 = 0, G21 = 0, and G22 = H22, as in Theorem 5.2.5. We shall

assume that H22 is positive definite so that a Cholesky factorization can be

carried out: the preconditioner is meaningful in terms of the PPCG method.

The constraint preconditioner has a block triangular form

K =




0 0 AT
1

0 G22 AT
2

A1 A2 0


 ,

which can be taken advantage of when solving systems of the form

K



g1

g2

v


 =



r1

r2

w


 .
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Specifically, we would carry out the following steps:

v = A−T
1 r1 O(2m2) flops

g2 = H−1
22

(
r2 − AT

2 v
)

O(2n2 − 2mn) flops

g1 = A−1
1 (w − A2g2) O(2mn) flops

giving an upper bound on the work of

work = O
(

1

3
(m3 + 2(n−m)3) + 2(i+ 1)(m2 + n2)

)
flops.

Now let us consider how the variable reduction method would solve such a

preconditioning step:

x2 = r2 − AT
2A

−T
1 r1 O(2mn) flops

v = A−T
1 r1 O(2m2) flops

g2 = H−1
22 x2 O(2n2 − 4mn+ 2m2) flops

y1 = A−1
1 w O(2m2) flops

g1 = y1 − A−1
1 A2g2 O(2mn) flops

giving an upper bound on the work of

work = O
(

1

3
(m3 + 2(n−m)3) + 2(i+ 1)(3m2 + n2)

)
flops.

If we assume that L1 = 0 and L2 = I in the Schilders factorization, then we

obtain
v = A−T

1 r1 O(2m2) flops

x2 = r2 − AT
2 v O(2mn) flops

g2 = H−1
22 x2 O(2n2 − 4mn+ 2m2) flops

g1 = A−1
1 (w − A2g2) O(2mn) flops

giving an upper bound on the work of

work = O
(

1

3
(m3 + 2(n−m)3) + 2(i+ 1)(m2 + n2)

)
flops.

We see that the Schilders factorization carries out the expected steps accord-

ing to the structure of K, but the variable reduction method is less efficient.

We will therefore concentrate on the Schilders factorization from this point

onwards.

Remark 6.2.5. The bounds on the number of flops given above are all based

on dense matrices. However, it is clear from just observing that the variable

reduction method requires two more solves involving A1 (AT
1 ) that the Schilders

factorization will be preferable in this case.
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6.3 Numerical Experiments

In this section we indicate that, in some cases, the Schilders factorization con-

straint preconditioners are very effective in practice when applied to equality

constrained quadratic programming problems.

We consider the set of quadratic programming examples from the CUTEr

test set examined in Section 5.2.1. For each we use the projected precondi-

tioned conjugate gradient method of Algorithm 5.1.3 to solve the resulting

quadratic programming problem

min
x∈Rn

f(x) =
1

2
xTQx+ bTx subject to Ax− d = 0.

Firstly a feasible point x = x0 is determined. Thereafter, iterates x0 + s

generated by the conjugate gradient method are constrained to satisfy As = 0

by means of the constraint preconditioning system (5.2.3). Since, as frequently

happens in practice, f(x0 + s) may be unbounded from below, a trust-region

constraint ‖s‖ ≤ ∆ is also imposed, and the Generalized Lanczos Trust-Region

(GLTR) method [46], as implemented in the GALAHAD library [48], is used to

solve the resulting problem

min
x∈Rn

f(x0 + s) subject to As = 0 and ‖s‖ ≤ ∆; (6.3.1)

a large value of ∆ = 1010 is used so as not to cut off the unconstrained solution

for convex problems.

In Tables 6.1 and 6.2, we compare four preconditioning strategies for (ap-

proximately) solving the problem (6.3.1). The tables contain the results for

the test problems in Table 5.2. The column “fact.” contains the CPU time

(in seconds) used to factorize the preconditioner, the column “iter.” contains

the number of PPCG iterations used to reach the required tolerance, and the

column “total” contains the total CPU time (in seconds) used to solve the

problem. Full listings for all the test problems in the CUTEr test set can be

found in Appendix B. We consider both low and high(er) accuracy solutions.

For the former, we terminate as soon as the norm of the (preconditioned) gra-

dient of f(x0 + s) has been reduced more than 10−2 from that of f(x0), while

the latter requires a 10−8 reduction; these are intended to simulate the levels

of accuracy required within a nonlinear programming solver in early (global)

and later (asymptotic) phases of the solution process.
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We consider two explicit factorizations, one using exact factors (G = H),

and the other using the simple projection (G = I). The HSL package MA57 [22]

(version 2.2.1) is used to factorize K and subsequently solve (5.2.3); by way of

comparison we also include times for exact factorization with the earlier MA27

[24], since this is still widely used. Two implicit factorizations of the form

(6.2.10) are considered. In the first, the simplest, we set G11 = 0, G21 = 0 and

G22 = I, i.e. L2 = I and D2 = I are used. The second uses G11 = 0, G21 = 0

and G22 = H22. In particular, we exploit one of MA57’s options to make modest

modifications [76] of the diagonals of H22 to ensure that G22 is positive definite

if H22 fails to be—this proved only to be necessary for the BLOWEY* problems.

All of our experiments in this section were performed using a single proces-

sor of a 3.05Mhz Dell Precision 650 Workstation with 4 Gbytes of RAM. Our

codes were written in double precision Fortran 90, compiled using the Intel

ifort 8.1 compiler, and wherever possible made use of tuned ATLAS BLAS

[85] for core computations. A single iteration of iterative refinement is ap-

plied, as necessary, when applying the preconditioner (5.2.3) to try to ensure

small relative residuals. All of the problems have been pre-processed by the

method described in Section 5.2.1 to ensure that A1 is nonsingular.

For each option tested, we record the time taken to compute the (explicit or

implicit) factors, the number of GLTR iterations performed (equivalently, the

number of preconditioned systems solved), and the total CPU time taken to

solve the quadratic programming problem (including the factorization). The

initial feasible point x0 is found by solving

[
G AT

A 0

][
x0

y0

]
=

[
0

b

]

using the factors of K. Occasionally—in particular when b = 0 and G = H—

such a point solves EQP, and the resulting iteration count is zero. In a few

cases, the problems are so ill-conditioned that the trust-region constraint is

activated, and more than one GLTR iteration is required to solve EQP even

when G = H. Furthermore, in some problems, rank deficiency of A violated

our assumption of A1 being nonsingular and resulted in unacceptably large

residuals in (5.2.3) and subsequent failure of GLTR when G = H, even after

iterative refinement.

In Table 6.3 we record the total number of nonzero entries in the factors re-

quired by the different preconditioners. For the explicit factorization methods
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Table 6.1: The time taken to compute the factors, the number of GLTR iterations performed
to achieve a residual decrease of at least 10−2, and the total CPU time taken (including the
factorization) to solve various CUTEr QP problems with implicit and explicit preconditioners
are shown — times given in seconds

Explicit factors Implicit factors

G = H G = I G22 = I G22 = H22

MA27 MA57 MA57 MA57 MA57

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.08 1 0.13 0.47 1 0.54 0.46 1 0.53 0.04 125 1.54 0.25 125 2.01

BLOCKQP1 0.06 0 0.08 0.21 0 0.23 0.23 1 0.26 0.33 2 0.35 0.39 2 0.41

CVXQP1 579.20 0 580.15 3.99 0 4.11 0.20 3 0.24 0.21 57 0.56 0.24 55 0.69

KSIP 0.01 1 0.02 0.05 1 0.06 0.04 3 0.05 0.02 3 0.03 0.02 3 0.03

PRIMAL1 0.01 1 0.01 0.01 1 0.02 0.03 5 0.03 0.00 15 0.01 0.00 27 0.02

STCQP2 9.76 0 9.84 0.87 0 0.92 0.14 3 0.17 0.03 3 0.05 0.11 1 0.13

UBH1 0.02 0 0.03 0.12 0 0.14 0.11 0 0.13 0.02 0 0.03 0.04 0 0.05

Table 6.2: The time taken to compute the factors, the number of GLTR iterations performed
to achieve a residual decrease of at least 10−8, and the total CPU time taken (including the
factorization) to solve various CUTEr QP problems with implicit and explicit preconditioners
are shown — times given in seconds

Explicit factors Implicit factors

G = H G = I G22 = I G22 = H22

MA27 MA57 MA57 MA57 MA57

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.08 1 0.13 0.47 1 0.54 0.46 1 0.53 0.04 866 10.35 0.25 872 12.50

BLOCKQP1 0.06 0 0.08 0.21 0 0.23 0.23 1 0.26 0.33 3 0.37 0.39 3 0.43

CVXQP1 579.20 0 580.15 3.99 0 4.11 0.20 5 0.27 0.21 211 1.49 0.24 207 1.94

KSIP 0.01 1 0.02 0.05 1 0.06 0.04 5 0.05 0.02 18 0.05 0.02 10 0.04

PRIMAL1 0.01 1 0.01 0.01 1 0.02 0.03 8 0.03 0.00 153 0.08 0.00 158 0.09

STCQP2 9.76 0 9.84 0.87 0 0.92 0.14 7 0.20 0.03 7 0.07 0.11 1 0.13

UBH1 0.02 0 0.03 0.12 0 0.14 0.11 0 0.13 0.02 0 0.03 0.04 0 0.05

Table 6.3: CUTEr QP problems — total number of nonzero entries in factors

Explicit factors MA57 Implicit factors MA57

name G = H G = I G22 = I G22 = H22

AUG2DCQP 35061 35061 8004 8004

BLOCKQP1 110080 105080 25022 25022

CVXQP1 5872175 120118 25354 40155

KSIP 25236 25236 2042 2042

PRIMAL1 10458 10458 820 820

STCQP2 288794 24952 19480 35419

UBH1 66009 66009 24006 24006
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the HSL subroutine MA57 is used to factor the preconditioner K into LDLT —

we record the number of nonzeros in L and D. In our implicit method we need

to factor A1 and D2 — the number of nonzeros in the resulting factors are

recorded. We observe that in many cases the implicit factorization methods

have a dramatic reduction in the number of nonzeros in the factors, hence the

amount of memory required will be a lot lower.

It is difficult to analyze which preconditioner is performing better overall

by just looking at the tables. We shall therefore use performance profiles to

illustrate the results over the whole CUTEr test set. To explain the idea, let Φ

represent the set of preconditioners that we wish to compare. Suppose that us-

ing a given preconditioner i ∈ Φ the quadratic programming problem is solved

in total CPU time tij ≥ 0 for example j from the test set T . For all the prob-

lems j ∈ T , we want to compare the performance of the use of preconditioner

i with the performance of the fastest algorithm using a preconditioner from

the set Φ. For j ∈ T , let tMIN
j = min{tij; i ∈ Φ}. Then for α ≥ 1 and each

i ∈ Φ we define

k(tij, t
MIN
j , α) =

{
1 if tij ≤ αtMIN

j

0 otherwise.

The performance profile of the algorithm using preconditioner i is then given

by the function

pi(α) =

∑
j∈T k(tij, t

MIN
j , α)

|T | , α ≥ 1.

Hence, pi(1) gives the fractions of problems for which the algorithm using

preconditioner i is most effective according to the total CPU time used, pi(2)

gives the fraction for which the algorithm using preconditioner i is within

a factor of 2 of the best, and limα→∞ pi(α) gives the fraction for which the

algorithm succeeded.

In Figures 6.1 and 6.2 (see Tables B.1 and B.2 for the raw data), we com-

pare the five different preconditioning strategies. We see that if low accuracy

solutions suffice, the Schilders factorization with G22 = I is significantly more

effective at reducing the residual than its explicit counterparts. For higher

accuracy solutions the explicit factorization with G = I is generally more

cost effective than the Schilders factorizations. For the majority of the test

problems, it is clear that the use of MA57 is preferable to MA27.

We must admit to being slightly disappointed that the more sophisticated

Schilders factorization with G22 = H22 seemed to show few advantages over
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the cheaper G22 = I, but this might reflect the nature of H in our test set.

In Chapter 8 we will see the advantage of the choice G22 = H22 when solving

mixed constraint optimization problems.
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Figure 6.1: Performance profile, p(α): CPU time (seconds) to reduce relative residual by
10−2.
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Figure 6.2: Performance profile, p(α): CPU time (seconds) to reduce relative residual by
10−8.



Chapter 7

Implicit Factorization
Constraint Preconditioners

In Chapter 6 we considered how to use the Schilders factorization (and variable

reduction method) to generate constraint preconditioners for the case C = 0.

In this chapter we will extend this idea to the use of implicit factorization

constraint preconditioners for C 6= 0.

7.1 Generating implicit factorization constraint

preconditioners

Let K be a constraint preconditioner of the form

K =

[
G AT

A −C

]
, (7.1.1)

where G ∈ R
n×n approximates, but is not the same as H [see Section 5.4].

Again, let us expand out K in a similar manner to that done in (6.1.1):

K =



G11 GT

21 AT
1

G21 G22 AT
2

A1 A2 −C


 , (7.1.2)

where G11 ∈ R
m×m, G21 ∈ R

(n−m)×m, G22 ∈ R
(n−m)×(n−m), A1 ∈ R

m×m and

A2 ∈ R
m×(n−m). As in the previous chapter, we shall assume that A1 and its

transpose are easily invertible: we shall consider how to partition A to produce

such an A1 in Chapter 8.

Again, we wish to consider preconditioners of the form

K = PBP T , (7.1.3)

119
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where solutions with each of the matrices P, B and P T are easily obtained. In

particular, rather than obtaining P and B from a given K, K is derived from

specially chosen P and B.

Suppose that

P =



P11 P12 AT

1

P21 P22 AT
2

P31 P32 P33


 and B =



B11 BT

21 BT
31

B21 B22 BT
32

B31 B32 B33


 , (7.1.4)

where the corner sub-blocks are all m by m in dimension. For the factorization

PBP T to be a constraint preconditioner we require that

A1 = (P31B11 + P32B21)P
T
11 +

(
P31B

T
21 + P32B22

)
P T

12

+P33

(
B31P

T
11 +B32P

T
12

)
+
(
P31B

T
31 + P32B

T
32

)
A1 (7.1.5)

+P33B33A1

A2 = (P31B11 + P32B21)P
T
21 +

(
P31B

T
21 + P32B22

)
P T

22

+P33

(
B31P

T
21 +B32P

T
22

)
+
(
P31B

T
31 + P32B

T
32

)
A2 (7.1.6)

+P33B33A2

−C = (P31B11 + P32B21)P
T
31 +

(
P31B

T
21 + P32B22

)
P T

32

+P33

(
B31P

T
31 +B32P

T
32

)
+
(
P31B

T
31 + P32B

T
32

)
P T

33 (7.1.7)

+P33B33P
T
33.

Pragmatically, we are only interested in the case where one of the three possi-

bilities

P11 = 0, P12 = 0 and P32 = 0, (7.1.8)

or P11 = 0, P12 = 0 and P21 = 0, (7.1.9)

or P12 = 0, P32 = 0 and P33 = 0, (7.1.10)

(as well as nonsingular P31 and P22) holds, since P will then be easily block-

invertible. Likewise, we restrict ourselves to the three general cases

B21 = 0, B31 = 0 and B32 = 0, (7.1.11)

or B32 = 0, B33 = 0 with easily invertible B31 and B22, (7.1.12)

or B11 = 0, B21 = 0 with easily invertible B31 and B22, (7.1.13)

so that B is block invertible. B will also be easily block invertible if

B21 = 0 and B32 = 0 with easily invertible

[
B11 BT

31

B31 B33

]
and B22,

(7.1.14)
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so we will also consider this possibility.

We shall examine in detail the case where (7.1.8) and (7.1.11) hold. The

rest of the cases will be examined in Appendix C and the resulting implicit-

factorization families are summarized in Tables 7.1 and 7.2.

If (7.1.8) and (7.1.11) hold, then P31, P22, B11, B22 and B33 are required to

be nonsingular, and

A1 = P33B33A1, (7.1.15)

A2 = P31B11P
T
21 + P33B33A2, (7.1.16)

−C = P31B11P
T
31 + P33B33P

T
33. (7.1.17)

Equation (7.1.15) implies that

P33B33 = I (7.1.18)

and, hence, that P33 is symmetric. Equation (7.1.16) forces P31B11P
T
21 = 0,

and thus that

P21 = 0

since P31 and B11 are nonsingular. Finally, (7.1.17) becomes

−C = P31B11P
T
31 + P33. (7.1.19)

We therefore have

P =




0 0 AT
1

0 P22 AT
2

P31 0 P33


 and B =



B11 0 0

0 B22 0

0 0 B33


 , (7.1.20)

where

B11 = −P−1
31 (C + P33)P

−T
31 and B33 = P−1

33 . (7.1.21)

We shall refer to this as Family 1.

Remark 7.1.1. We note that there is no restriction on the matrices P22 and

B22 in Family 1. This is also the same for all of the families in Tables 7.1 and

7.2.
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Table 7.1: Possible implicit factors for the preconditioner (7.1.3). We give the P and B
factors and any necessary restrictions on their entries. We also associate a family number
with each class of implicit factors, and indicate where each is derived in Appendix C.

Family/

reference P B conditions

1.

(C.0.6)

–(C.0.7)




0 0 AT
1

0 P22 AT
2

P31 0 P33







B11 0 0

0 B22 0

0 0 B33




B11 = −P−1

31
(C + P33)P−T

31

B33 = P−1

33

2.

(C.0.16)

–(C.0.17)




0 0 AT
1

0 P22 AT
2

P31 0 P33







B11 0 BT
31

0 B22 0

B31 0 0




B11 = −P−1

31

(
C + P33 + PT

33

)
P−T

31

B31 = P−T

31

3.

(C.0.18)

–(C.0.19)




0 0 AT
1

P21 P22 AT
2

P31 0 −C







B11 0 BT
31

0 B22 0

B31 0 0




B11 = P−1

31
CP−T

31

B31 = P−T

31

4.

(C.0.25)

–(C.0.26)




0 0 AT
1

P21 P22 AT
2

P31 0 P33







0 0 BT
31

0 B22 BT
32

B31 B32 0




P21 = −P22CB32P31

B31 = P−T

31

C = −
(
P33 + PT

33

)

5.

(C.0.27)

–(C.0.28)




0 0 AT
1

P21 P22 AT
2

P31 0 P33







0 0 BT
31

0 B22 BT
32

B31 B32 B33




B32 = −B31P
T
21

P−T

22

B31 =
(
I −B33P

T
33

)
P−T

31

−C = P33 + PT
33
− P33B33P

T
33

6.

(C.0.35)

–(C.0.36)




0 0 AT
1

0 P22 AT
2

P31 P32 P33







B11 BT
21

BT
31

B21 B22 0

B31 0 0




P32 = −P31B
T
21

B−1

22

B31 = P−T

31

−C = P31

(
B11 −BT

31
B−1

22
B21

)
PT

31

+P33 + PT
33

7.

(C.0.45)

–(C.0.46)




0 0 AT
1

0 P22 AT
2

P31 P32 P33







0 0 BT
31

0 B22 BT
32

B31 B32 B33




P32 = −P33B32B
−1

22

P31 =
(
I − P32B

T
32
− P33B

T
33

)
B−T

31

−C = P33

(
B33 −B32B

−1

22
BT

32

)
PT

33

+P33 + PT
33
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Table 7.2: Possible implicit factors for the preconditioner (7.1.3). We give the P and B
factors and any necessary restrictions on their entries. We also associate a family number
with each class of implicit factors, and indicate where each is derived in Appendix C.

Family/

reference P B conditions

8.

(C.0.47)




AT
1

0 AT
1

AT
2

P22 AT
2

−C 0 0






−C−1 0 0

0 B22 0

0 0 B33


 C invertible

9.

(C.0.51)

–(C.0.52)




P11 0 AT
1

P21 P22 AT
2

P31 0 0







B11 BT
21

BT
31

B21 B22 0

B31 0 0




B11 = −P−1

31
CP−T

31

B31 = P−T

31
−MB11

B21 = P−1

22

(
P21 −AT

2

)
B11

P11 = AT
1
M for some invertible M

10.

(C.0.53)




P11 0 AT
1

P21 P22 AT
2

P31 0 0







0 0 BT
31

0 B22 BT
32

B31 B32 B33




C = 0

B31 = P−T

31

11.

(C.0.60)

–(C.0.61)




0 0 AT
1

P21 P22 AT
2

P31 0 −C







B11 0 BT
31

0 B22 0

B31 0 B33




C invertible

PT
31

= B−1

11
BT

31
C

B33 =
(
B31P

T
31
− I
)
C−1

11.

(C.0.60),

(C.0.65)

–(C.0.66)




0 0 AT
1

P21 P22 AT
2

P31 0 −C







B11 0 BT
31

0 B22 0

B31 0 B33




B11 = P−1

31
CP−T

31

B31 = P−T

31

B33C = 0

13.

(C.0.68)

–(C.0.69)




0 0 AT
1

P21 P22 AT
2

P31 0 P33







B11 0 BT
31

0 B22 0

B31 0 B33




P31 = (I − P33B33)B−T

31

B11 = P−1

31

(
P33B33P

T
33

= −C − P33 − PT
33

)
P−T

31

14.

(C.0.76)

–(C.0.77)




P11 0 AT
1

P21 P22 AT
2

P31 0 0







B11 0 BT
31

0 B22 0

B31 0 B33




B11 = −P−1

31
CP−T

31

B31 = P−T

31
−MB11

P11 = AT
1
M

P21 = AT
2
M for some invertible M
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7.2 Reproducing H

Having described families of preconditioners which are capable of reproducing

the required components A and C of K, we now examine what form the

resulting G takes. In particular, we consider which submatrices of G can

be defined to completely reproduce the associated submatrix of H; we say

that a component Gij, i, j ∈ {1, 2}, is complete if it is possible to choose it

such that Gij = Hij. We give the details in Appendix D, and summarize our

findings for each of the 14 families from Section 7.1 in Table 7.3. In Table 7.3

the superscript 1 indicates that the value of G21 is dependent on the choice of

G11. If Gij, i, j ∈ {1, 2}, is a zero matrix, then a superscript 2 is used. The

superscript 3 means that G21 is dependent on the choice of G11 when C = 0,

but complete otherwise, whilst the superscript 4 indicates that G11 is only

guaranteed to be complete when C = 0.

Some of the submatrices in the factors P and B can be arbitrarily chosen

without changing the completeness of the family. We shall call these free blocks.

For example, consider Family 2 from Table 7.1. The matrix G produced by

this family always satisfies G11 = 0, G21 = 0, and G22 = P22B22P
T
22. Hence,

P22 can be defined as any nonsingular matrix of suitable dimension, and B22

can be subsequently chosen so that G22 = H22. The simplest choice for P22 is

the identity matrix. We observe, that the choice of the remaining submatrices

in P and B will not affect the completeness of the factorization, and are only

required to satisfy the conditions given in Table 7.1. The simplest choices

for these submatrices will be P31 = I, and B11 = 0, giving P33 = −1
2
C, and

B31 = I. Using these simple choices we obtain:

P =




0 0 AT
1

0 I AT
2

I 0 −1
2
C


 and B =




0 0 I

0 B22 0

I 0 0


 .

The simplest choice of the free blocks may result in some of the families having

the same factors as other families. This is indicated in the “Comments” column

of the table. Table 7.3 also gives the conditions that C must satisfy to use the

family, and whether the family is feasible to use, i.e., are the conditions on the

blocks given in Tables 7.1 and 7.2 easily satisfied?

Table 7.4 gives some guidance towards which families from Tables 7.1 and

7.2 should be used in the various cases of G given in Section 5.4.2. We also

suggest simple choices for the free blocks. In our view, although Table 7.3
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Family Completeness Conditions Feasible Comments

G
11

G
21

G
22

on C to use

1. X ×1
X any C X

2. ×2 ×2
X any C X

3. ×2
X X any C X

Simplest choice of free blocks is
4. ×2 ×2 X any C X

the same as that for Family 2.

5. X ×1
X any C C = 0

Simplest choice of free blocks is
6. ×2 ×2

X any C X
the same as that for Family 2.

If C = 0 and use simplest choice of

7. X X
3

X any C C = 0 free blocks, then same as that for

Family 5 with C = 0.

8. X ×1
X nonsingular X

9. X X X any C C = 0

Generalization of factorization
10. X X X C = 0 X

suggested by Schilders, see Chapter 6.

11. X X X nonsingular X

C = 0 gives example of Family 10.
12. X

4
X X any C diagonal C

C nonsingular gives Family 3.

13. X ×1
X any C X

14. X ×1
X any C X

C = 0 gives example of Family 10.

Table 7.3: Blocks of G for the families of preconditioners given in Tables 7.1 and 7.2. The
superscripts used are defined in the first paragraph of Section 7.2.
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Sub-blocks of G Conditions on C Family Free block choices

G
22

= H
22

, G
11

= 0, G
21

= 0 any C 2 P
22

= I, P
31

= I, B
11

= 0

G
22

= H
22

, G
11

= H
11

, G
21

= 0 C = 0 10 B
21

= 0, P
22

= I, P
31

= I

G
22

= H
22

, G
11

= H
11

, G
21

= 0 C non-singular 11 P
22

= I, P
31

= I

G
22

= H
22

, G
21

= H
21

, G
11

= 0 any C 3 P
22

= I, P
31

= I

Table 7.4: Guidance towards which family to use to generate the various choices of G given
in Section 5.4.2.

indicates that it is theoretically possible to reproduce all of H using (e.g.)

Family 9, in practice this will often be unviable because of the resulting density

of some of the matrices that need to be factorized.

7.3 Numerical Experiments

In this section we examine how effective implicit factorization preconditioners

might be when compared to explicit ones. We consider problems generated

using the complete set of quadratic programming examples from the CUTEr

test set examined in Section 5.2.1. All inequality constraints are converted to

equations by adding slack variables, and a suitable “barrier” penalty term (in

this case, 1.1) is added to the diagonal of the Hessian for each bounded or

slack variable to simulate systems that might arise during an iteration of an

interior-point method for such problems. The resulting equality constrained

quadratic programs are then of the form

min
x∈Rn

f(x) =
1

2
xTHx+ bTx subject to Ax = 0. (7.3.1)

Given the data H and A, two illustrative choices of diagonal C are considered,

namely

cii = 1 for 1 ≤ i ≤ m, (7.3.2)

and

cii =

{
0 for 1 ≤ i ≤ ⌈m

2
⌉,

1 for ⌈m
2
⌉+ 1 ≤ i ≤ m,

(7.3.3)

in practice such C may be thought of as regularization terms for some or all of

the constraints in (7.3.1). We wish to solve the resulting saddle point systems

(5.3.1) using Algorithm 5.3.2.
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We consider two explicit factorization preconditioners, one using exact fac-

tors (G = H), and the other using a simple projection (G = I). A Matlab

interface to the HSL package MA57 [22] (version 2.2.1) is used to factorizeK and

subsequently solve (5.3.12). Three implicit factorizations of the form (7.1.3)

are also considered. The first is from Family 1 (Table 7.1), and aims for sim-

plicity by choosing P31 = I, P33 = I = B33 and B22 = I = P22, and this leads

to B11 = −(C+ I); such a choice does not necessarily reproduce any of H, but

is inexpensive to use. The remaining implicit factorizations are from Family 2

(Table 7.1). The former (marked (a) in the Figures) selects G22 = H22 while

the latter (marked (b) in the Figures) chooses G22 = I; for simplicity we chose

P31 = I = B31, B11 = 0, P22 = I and P33 = −1
2
C (see Section 7.2), and thus

we merely require that B22 = H22 for case (a) and B22 = I for case (b)—we

use MA57 to factorize H22 in the former case.

Given A, a suitable basis matrix A1 is found by finding a sparse LU factor-

ization of AT using the built-in Matlab function lu. An attempt to correctly

identify rank is controlled by tight threshold column pivoting, in which any

pivot may not be smaller than a factor τ = 2 of the largest entry in its (une-

liminated) column [38].

Although such a strategy may not be as robust as, say, a singular value

decomposition or a QR factorization with pivoting, both our and experiences

others’ [38] indicate it to be remarkably reliable and successful in practice.

Having found A1, the factors are discarded, and a fresh LU decomposition of

A1, with a looser threshold column pivoting factor τ = 100, is computed using

lu in order to try to encourage sparse factors.

All of our experiments in this chapter were performed using a dual processor

Intel Xeon 3.2GHz Workstation with hyper-threading and 2 Gbytes of RAM.

Our codes were written and executed in Matlab 7.0 Service Pack 1.

In Tables 7.5 and 7.6 we compare our five preconditioning strategies for

(approximately) solving the problem (5.3.1) using Algorithm 5.3.2 when C is

given by (7.3.2). We consider both low and high(er) accuracy solutions. For

the former, we terminate as soon as the residual σ has been reduced by more

than 10−2 from its original value, while the latter requires a 10−8 reduction.

The column “fact.” contains the CPU time (in seconds) used to factorize the

preconditioner, the column “iter.” contains the number of PPCG iterations

used to reach the required tolerance, and the column “total” contains the total

CPU time (in seconds) used to solve the problem. Tables containing the full
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Table 7.5: Time taken to compute the factors, number of PPCG iterations performed to
achieve a residual decrease of at least 10−2, and total CPU time taken (including the factor-
ization) to solve (5.3.1) using Algorithm 5.3.2 when C = I for various CUTEr QP problems
with implicit and explicit preconditioners — times given in seconds

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.38 1 0.45 0.12 1 0.18 0.07 13 0.19 0.07 267 1.94 0.02 36 0.30

BLOCKQP1 5.03 1 33.28 4.98 1 33.15 0.14 1 28.20 0.06 1 28.18 0.06 1 28.09

CONT5-QP ran out of memory ran out of memory 0.91 1 6.63 0.24 1 5.94 0.25 1 5.92

CVXQP1 48.16 1 50.38 139.83 1 142.34 0.18 2 0.36 0.13 1310 43.43 0.12 1258 42.24

KSIP 0.50 1 1.04 0.50 1 1.02 0.06 2 0.59 0.01 2 0.55 0.01 2 0.55

PRIMAL1 0.11 1 0.76 0.11 1 0.12 0.05 19 0.08 0.01 8 0.03 0.01 2 0.02

STCQP2 0.86 1 0.96 1.47 1 1.62 0.05 4 0.12 0.09 1 0.13 0.09 2622 38.05

UBH1 0.34 1 0.52 0.33 1 0.52 0.13 2 0.29 0.05 1 0.17 0.05 4 0.23

Table 7.6: Time taken to compute the factors, number of PPCG iterations performed to
achieve a residual decrease of at least 10−8, and total CPU time taken (including the factor-
ization) to solve (5.3.1) using Algorithm 5.3.2 when C = I for various CUTEr QP problems
with implicit and explicit preconditioners — times given in seconds

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.38 1 0.44 0.12 1 0.18 0.07 157 1.11 0.07 1220 8.48 0.02 89 0.66

BLOCKQP1 5.03 1 33.06 4.98 1 33.11 0.14 1 28.22 0.06 2 28.20 0.06 2 28.14

CONT5-QP ran out of memory ran out of memory 0.91 1 6.71 0.24 110 30.72 0.25 147 37.19

CVXQP1 48.16 1 50.39 139.83 1 142.36 0.18 51 1.56 0.13 9237 305.76 0.12 4165 138.96

KSIP 0.50 1 1.02 0.50 1 1.03 0.06 8 0.61 0.01 6 0.57 0.01 6 0.57

PRIMAL1 0.11 1 0.12 0.11 1 0.12 0.05 172 0.30 0.01 21 0.05 0.01 31 0.07

STCQP2 0.86 1 0.96 1.47 1 1.62 0.05 92 1.12 0.09 1 0.13 0.09 6140 89.14

UBH1 0.34 1 0.53 0.33 1 0.52 0.13 30 0.87 0.05 472 10.12 0.05 47 1.13

Table 7.7: Time taken to compute the factors, number of PPCG iterations performed to
achieve a residual decrease of at least 10−2, and total CPU time taken (including the fac-
torization) to solve (5.3.1) using Algorithm 5.3.2 when C given by (7.3.3) for various CUTEr

QP problems with implicit and explicit preconditioners — times given in seconds

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.13 1 0.19 0.13 1 0.19 0.06 19 0.21 0.02 43 0.35 0.02 1 0.06

BLOCKQP1 4.94 2 32.95 4.93 2 33.05 0.14 1 28.14 0.06 1 28.07 0.07 1 28.10

CONT5-QP ran out of memory ran out of memory 0.87 1 6.50 0.25 1 5.87 0.25 1 5.83

CVXQP1 0.48 2 0.75 0.46 2 0.79 0.14 2 0.33 0.06 1 0.22 0.06 1 0.22

KSIP 0.50 2 1.03 0.50 1 1.03 0.03 1 0.56 0.01 2 0.54 0.01 1 0.52

PRIMAL1 0.12 2 0.13 0.12 1 0.13 0.04 18 0.07 0.02 9 0.04 0.02 2 0.03

STCQP2 0.13 1 0.19 0.14 1 0.20 0.05 4 0.12 0.03 255 3.08 0.03 4 0.09

UBH1 0.34 1 0.52 0.34 1 0.52 0.14 2 0.29 0.05 1 0.17 0.05 4 0.23



CHAPTER 7. IMPLICIT FACTORIZATIONS 129

Table 7.8: Time taken to compute the factors, number of PPCG iterations performed to
achieve a residual decrease of at least 10−8, and total CPU time taken (including the fac-
torization) to solve (5.3.1) using Algorithm 5.3.2 when C given by (7.3.3) for various CUTEr

QP problems with implicit and explicit preconditioners — times given in seconds

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.13 6 0.26 0.13 7 0.27 0.06 163 1.12 0.02 1158 7.94 0.02 233 1.61

BLOCKQP1 4.94 2 33.05 4.93 2 32.97 0.14 1 28.12 0.06 2 28.18 0.07 2 28.17

CONT5-QP ran out of memory ran out of memory 0.87 1 6.55 0.25 36 13.90 0.25 36 13.30

CVXQP1 0.48 124 6.61 0.46 73 4.99 0.14 97 2.63 0.06 21 0.74 0.06 22 0.76

KSIP 0.50 6 1.05 0.50 8 1.07 0.03 15 0.61 0.01 6 0.57 0.01 5 0.54

PRIMAL1 0.12 6 0.14 0.12 9 0.15 0.04 166 0.28 0.02 15 0.05 0.02 30 0.07

STCQP2 0.13 57 1.07 0.14 51 1.14 0.05 67 0.79 0.03 6029 71.04 0.03 5989 66.54

UBH1 0.34 6 0.76 0.34 5 0.67 0.14 28 0.82 0.05 31 0.81 0.05 24 0.65

results for the CUTEr collection can be found in Appendix E. Tables 7.7 and

7.8 (c.f., Tables E.3–E.4) repeat the experiments when C is given by (7.3.3).

As in the previous chapter, as well as presenting tables of data in this

chapter we use performance profiles, see Section 6.3. Figures 7.1 and 7.2

correspond to Tables E.1 and E.2 respectively.

We see that if low accuracy solutions suffice, then the implicit factorizations

appear to be significantly more effective at reducing the residual than their

explicit counterparts. In particular, the implicit factorization from Family 1

seems to be the most effective. Of interest is that for Family 2, the cost of

applying the more accurate implicit factorization that reproducesH22 generally

does not pay off relative to the cost of the cheaper implicit factorizations. This

was also observed when we used the Schilders factorization, see Section 6.3.

For higher accuracy solutions, the leading implicit factorization still slightly

outperforms the explicit factors, although the remaining implicit factorizations

are now less effective.

Figures 7.3 and 7.4 correspond to Tables E.3 and E.4 respectively. Once

again the implicit factorizations seem very effective, with a shift now to favour

those from Family 2, most especially the less sophisticated of these.
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Figure 7.1: Performance profile, p(α): CPU time (seconds) to reduce relative residual by
10−2, when C is given by (7.3.2).
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Figure 7.2: Performance profile, p(α): CPU time (seconds) to reduce relative residual by
10−8, when C is given by (7.3.2).
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Figure 7.3: Performance profile, p(α): CPU time (seconds) to reduce relative residual by
10−2, when C is given by (7.3.3).
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Figure 7.4: Performance profile, p(α): CPU time (seconds) to reduce relative residual by
10−8, when C is given by (7.3.3).



Chapter 8

Permutations and the
Nonsingularity of A1

In Chapters 5, 6 and 7 we assumed that we can express the block 2 by 2 saddle

point system [
H AT

A −C

]

︸ ︷︷ ︸
H

[
x

y

]
=

[
b

d

]

in a block 3 by 3 structure


H1,1 H1,2 AT

1

H2,1 H2,2 AT
2

A1 A2 0






x1

x2

y


 =



b1

b2

d


 ,

where H11 ∈ R
m×m, H21 ∈ R

(n−m)×m, H22 ∈ R
(n−m)×(n−m), A1 ∈ R

m×m,

A2 ∈ R
m×(n−m) and A1 is nonsingular. In practice, we know that A is of full

rank but we certainly cannot assume that the first m columns of A are linearly

independent. However, by the assumption that A is of full rank and m ≤ n,

we can always find an n by n permutation matrix Π such that

AΠ = Â

and the first m columns of Â are linearly independent. Letting

Ĥ = ΠTHΠ,

we solve [
Ĥ ÂT

Â −C

]

︸ ︷︷ ︸bH [
x̂

y

]
=

[
ΠT b

d

]
(8.0.1)

and set

x = Πx̂.

132
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8.1 Desirable properties of the permutation

The choice of permutation, Π, such that the first m columns of Â = AΠ are

linearly independent is clearly not unique. Let us define Â1 ∈ R
m×m and

Â2 ∈ R
m×(n−m) in a similar manner to that of A1 and A2, i.e.

AΠ = Â =
[
Â1 Â2

]
. (8.1.1)

We need to consider what sort of properties of Ĥ we would like to be induced

from our choice of Π. Let us firstly consider the case of C = 0.

8.1.1 Permutations for the case C = 0

When applying the projected preconditioned conjugate gradient method (PPCG),

Algorithm 5.1.3, to solve systems of the form (8.0.1) we know that the conver-

gence of the method is determined by the n−m eigenvalues λ defined by the

generalized eigenvalue problem

ẐT ĤẐx̂z = λẐT ĜẐx̂z, (8.1.2)

where Ẑ is an n by n−m basis for the nullspace of Â and the preconditioner

K̂ =

[
Ĝ ÂT

Â 0

]

is used, see Section 5.2. Using the fundamental basis Ẑ (5.2.5) we find that

ẐT ĜẐ = Ĝ22 + R̂T ĜT
21 + Ĝ21R̂ + R̂T Ĝ11R̂

and ẐT ĤẐ = Ĥ22 + R̂T ĤT
21 + Ĥ21R̂ + R̂T Ĥ11R̂,

where R̂ = −Â−1
1 Â2. In Theorems 5.2.5–5.2.7 we saw that, under the appro-

priate assumptions, the number of distinct eigenvalues is bounded from above

by an expression involving the rank of Â2, so one possible requirement of Π

would be to minimize the rank of Â2.

When using Algorithm 2.3.1 to solve the mixed constraint optimization

problems of the form given in Section 2.3, we saw that some of the entries on

the diagonal of H grow like O(µ−1
k ) as µk → 0 and the others will be O(1)

for general quadratic programming problems, see Section 2.4.2.1. Another

possibility would be for Π to take this into account. Suppose that Ĥ22 contains

the diagonal entries of H which grow like O(µ−1
k ), but the diagonal entries of
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Ĥ11 are O(1). Using a preconditioner of the form used in Theorem 5.2.5 will

result in the n−m eigenvalues of (8.1.2) clustering around 1 as we grow close

to the optimal value of x. We may have to slightly reshuffle the permutation to

obtain a nonsingular Â1, but we hope that the majority of the large diagonal

entries can be kept in Ĥ22. By clustering the eigenvalues of (8.1.2) around 1

we hope that the number of iterations required by the PPCG method will be

greatly reduced [5, Section 1.3].

In using our implicit factorization preconditioners we are required to solve

systems involving Â1. From Chapter 3 we know that choosing Â1 to be sparse

and well conditioned would be an advantage. The problem of finding the

sparsest Â1 is NP complete [16, 17], so we just wish to find a sparse Â1 but

not necessarily the sparsest. We also wish for the condition number of Â1 to

be relatively low.

We can therefore conclude that ideally our permutation Π should

• produce a sparse and well conditioned Â1,

• produce a low rank Â2,

• move the largest diagonal entries of H into Ĥ22

Let us consider the different possibilities for carrying out some of these

ideal requirements. We will firstly consider how the condition number of Â1

can affect the number of iterations carried out by the PPCG method when

used inside Algorithm 2.3.1.

8.1.1.1 The effect of the condition number and sparsity of Â1

Some of the problems in the CUTEr collection of quadratic programming prob-

lems [47] already have the first m columns of A linearly independent, for

example, the CVXQP problems all satisfy this. We will compare the condi-

tion number and sparsity of Â1 when we use different permutations that are

easily available within Matlab R©. We terminate the loop in Algorithm 2.3.1

when ‖Axk − d‖2 < 10−8 and µk < 10−8. The PPCG method uses a stopping

tolerance of 10−10. Both algorithms are implemented in Matlab R© with an

interface to the fortran code MA57 when symmetric systems are factored for

the implicit-factorization. Algorithm 2.3.1 is implemented using Mehrotra’s

predictor-corrector method to find the search direction, Section 2.3.2. The
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Schilders factorization is used to produce a preconditioner of the form consid-

ered in Theorem 5.2.5. We will consider three different methods for generating

the permutation Π, namely

• None: Π = I;

• LU: Π is generated using the Matlab R© command [l,u,Π,q]=lu(A’,0.5);

• QR: Π is generated using the Matlab R© command [q,r,Π]=qr(full(A)).

See Appendix F for descriptions of these functions.

We record the following details when using these different permutations:

• κ(Â1) : The condition number of Â1;

• nnz(Â1) : The number of nonzero entries that Â1 has;

• k : The number of interior point iterations carried out;

• Total PPCG Its 1: The total number of PPCG iterations used to find

the affine directions, Section 2.3.2;

• Total PPCG Its 2: The total number of PPCG iterations used to find

the search directions, Section 2.3.2;

• Total CPU Time: The total CPU time required to solve the quadratic

programming problem in seconds;

• % Permutation Time: The percentage of the total CPU time used to

find Π.

The results for different quadratic programming problems are given in Ta-

bles 8.1–8.3. If the condition number and number of nonzero entries is given for

a particular Â1 but no further results, then the interior point method failed

to converge. If no results are given for a particular permutation, then the

resulting Â1 is singular.

We firstly observe that the different permutations can make a large differ-

ence to the total number of interior point iterations required to solve the prob-

lem. We also observe that even when the number of interior point iterations

is roughly unchanged, the total number of PPCG iterations can vary greatly.

Comparing the examples in Tables 8.1–8.3 for which the first m columns of A
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CVXQP1 M CVXQP2 M

(n = 1000, m = 500) (n = 1000, m = 250)

Permutation None LU QR None LU QR

κ(Â1) 71279 4165 1854 964 142 33

nnz(Â1) 1048 996 1298 411 309 428

rank(Â2) 200 200 200 200 218 218

k 22 15 11 26 12 12

Total PPCG Its 1 7995 6125 1024 2490 2652 505

Total PPCG Its 2 8200 6130 1060 3787 2761 514

Total CPU Time 56.2 39.7 9.07 25.9 20.1 6.22

% Permutation Time 0 0.01 5.8 0 0.05 4.0

Table 8.1: The effect of different permutations on the number of iterations and the time to
solve the mixed constraint quadratic programming problem.

CVXQP3 M KSIP

(n = 1000, m = 750) (n = 1021, m = 1001)

Permutation None LU QR None LU QR

κ(Â1) ≈ 109 58315 5111 — 1 850

nnz(Â1) 1048 1880 2147 — 1001 4998

rank(Â2) 100 100 100 — 20 20

k — — 10 — 15 16

Total PPCG Its 1 — — 875 — 51 87

Total PPCG Its 2 — — 904 — 56 86

Total CPU Time — — 8.36 — 12.5 16.1

% Permutation Time — — 12.6 — 0.08 13.0

Table 8.2: The effect of different permutations on the number of iterations and the time to
solve the mixed constraint quadratic programming problem.
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MOSARQP1 PRIMAL1

(n = 3200, m = 700) (n = 410, m = 85)

Permutation None LU QR None LU QR

κ(Â1) 167 4 3.5 — 1 191

nnz(Â1) 3372 700 1953 — 85 3078

rank(Â2) 700 700 700 — 85 85

k 21 14 22 — 13 13

Total PPCG Its 1 13004 10089 17574 — 1821 1278

Total PPCG Its 2 19298 12509 16690 — 1804 1301

Total CPU Time 796.7 182.6 715.1 — 6.85 6.39

% Permutation Time 0 0.01 0.55 — 0.15 0.16

Table 8.3: The effect of different permutations on the number of iterations and the time to
solve the mixed constraint quadratic programming problem.

are originally linearly independent, we observe that there is always an advan-

tage in reordering the columns of A. The permutation obtained using the QR

factorization does not take advantage of the sparse format of A : this permu-

tation will be inefficient to generate when the sizes of m and n are large and

A is sparse. For example, 13% of the overall time spent in solving the KSIP

problem was in finding the permutation, compared to just 0.1% when the LU

function was used to generate Π. The KSIP problem is still relatively small,

but for larger problems the inefficiency of the QR will be more exaggerated in

terms of memory requirements and time.

The large difference in the number of PPCG iterations (and hence the total

CPU time) does not appear to be completely down to the condition number

and sparsity of Â1 or the rank of Â2. Let us plot what happens to the diagonal

entries of Ĥ as the interior point method progresses and see if the iterations

numbers can be explained by the distribution of the large diagonal entries.

Figures 8.1–8.3 show the diagonal entries of Ĥ at each iteration k of the

interior point method when applied to the CVXQP1 M quadratic programming

problem from the CUTEr test set [47]. We see that the large diagonal values

are distributed in an almost uniform manner when no permutation is used

or the permutation is generated with the LU function, Figures 8.1 and 8.2.

When the permutation is generated using the QR function, the majority of

the large diagonal values have been moved into Ĥ22, Figure 8.3. We will

therefore expect many of the eigenvalues to be clustered around 1 and, hence,
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Figure 8.1: CVXQP1 M: Diagonal entries of Ĥ as the interior point method progresses when
no permutation is used.

Figure 8.2: CVXQP1 M: Diagonal entries of Ĥ as the interior point method progresses when
Π is derived using the LU function.
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Figure 8.3: CVXQP1 M: Diagonal entries of Ĥ as the interior point method progresses when
Π is derived using the QR function.
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a significant decrease in the number of PPCG iterations required over the other

two permutations: this is what we see in practice.

We also observe that when no permutation or the LU generated permutation

are used, the magnitude of the diagonal entries of Ĥ start to increase and then

some drop again. The ill-conditioning of Â1 is resulting in the convergence

of Axk − d to 0 being delayed compared to when the permutation generated

by the QR factorization is used. We compare the values of ‖Axk − d‖2 in

Figure 8.4. The first two permutations are trying to minimize the problem
1
2
xTHx + cTx subject to x ≥ 0 before the requirement Ax = d is close to

being obtained, so some of the entries in x are firstly moving towards 0 (giving

large diagonal entries in Ĥ). These entries then move away from 0 in order

for the constraint Ax = d to be satisfied. In comparison, the permutation

generated by the QR function produces a much more favourably conditioned

Â1 and just one interior point iteration is required for the constraint Ax = d

to be closely satisfied. This means that the entries of x which wrongly started

moving towards 0 with the other permutations will not do this. The total

number of interior point iterations required is also reduced for this reason.

8.1.1.2 The effect of the location of the diagonal values of Ĥ

In the previous section we saw that not only is it important to keep the con-

dition number of Â1 low (and also aim to reduce the rank of A2), but it’s

the distribution of the diagonal entries of Ĥ that makes a large (and dom-

inating) difference to the total time used to solve a quadratic programming

problem with mixed constraints. We will firstly use the preconditioner as de-

scribed in Theorem 5.2.5, and then consider other choices for the constraint

preconditioner afterwards.

From Section 8.1.1 we know that we would like to try to move the large

diagonal entries of H into Ĥ22, but we’d also like to obtain an Â1 which is well-

conditioned. For convenience, we’d also like the method to be cheap to apply

and to use built in Matlab R© functions. Let us try the following method:

1. Find a permutation Π1 that sorts the diagonal entries of H;

2. Find a permutation Π2 so that the first m columns of Â = AΠ1Π2 are

linearly independent but the effect of Π1 isn’t completely lost;

3. Set Π = Π1Π2.
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We shall compare the differences between choosing Π1 to firstly sort the

diagonal entries of H into ascending and descending order: to do this we will

use the Matlab R© commands

[yy,ii]=sort(diag(H));

and

[yy,ii]=sort(-diag(H));

respectively. We then set Π1 = I(:,ii). In our tables of results we shall refer

to these methods of generating the permutation Π as LUA and LUD respectively.

To find Π2 we use the LU function applied to Ap = AΠ1 :

[l,u,P]=lu(Ap’,0.5).

We give results for both of these strategies, and an additional strategy. In

this additional strategy we try both the above strategies and compare them

to see which one is “best” at moving the large entries into Ĥ22 : this is

a hybrid of the other two methods. Specifically, if the first strategy re-

turns Π̃ and the second strategy returns Π, then we carry out the following

steps:

d1 = diag(Π̃THΠ̃)

d2 = diag(Π
T
HΠ)

r1 = mean(d1(m+1:m+n))
mean(d1(1:m))

r2 = mean(d2(m+1:m+n))
mean(d2(1:m))

if r1 > r2 then

Π = Π̃

else

Π = Π

end if

In our tables of results the above method is referred to as LUH. All of

the results are run on the same machine and to the same specifications as in

the previous section. However, this time we generate a new permutation for

each interior point iteration. The results for different quadratic programming

problems are given in Tables 8.4–8.6.

We firstly observe that trying to take the diagonal entries of H into account

when generating Π is advantageous over just using the LU method in the previ-

ous section. We also observe that the LUD method is generally better than the

LUA in generating a permutation that reduces the number of PPCG iterations

required, but the difference is normally fairly small; this appears to be due to

the LU function moving columns to the end of A when they are swapped out
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CVXQP1 M CVXQP2 M

(n = 1000, m = 500) (n = 1000, m = 250)

Permutation LUA LUD LUH LUA LUD LUH

k 13 12 12 12 12 12

Total PPCG Its 1 1700 1244 1375 375 308 311

Total PPCG Its 2 1789 1241 1439 382 308 309

Total CPU Time 14.6 11.2 12.9 5.44 4.70 4.95

% Permutation Time 3.5 3.1 7.0 2.2 2.3 6.1

Table 8.4: The effect of different permutations on the number of iterations and the time to
solve the mixed constraint quadratic programming problem.

CVXQP3 M KSIP

(n = 1000, m = 750) (n = 1021, m = 1001)

Permutation LUA LUD LUH LUA LUD LUH

k 12 10 10 12 13 12

Total PPCG Its 1 1190 1020 998 34 37 35

Total PPCG Its 2 1259 1069 991 39 45 40

Total CPU Time 12.8 10.4 12.2 15.8 17.6 21.7

% Permutation Time 18.8 14.7 30.1 35.4 36.6 52.6

Table 8.5: The effect of different permutations on the number of iterations and the time to
solve the mixed constraint quadratic programming problem.

MOSARQP1 PRIMAL1

(n = 3200, m = 700) (n = 410, m = 85)

Permutation LUA LUD LUH LUA LUD LUH

k 66 12 12 13 13 13

Total PPCG Its 1 82833 3840 3932 1480 1374 1475

Total PPCG Its 2 98205 4008 4008 1480 1386 1448

Total CPU Time 2986 58.7 58.7 7.62 7.25 7.91

% Permutation Time 0.04 0.39 0.39 4.1 4.7 8.1

Table 8.6: The effect of different permutations on the number of iterations and the time to
solve the mixed constraint quadratic programming problem.
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of position. There is a big difference between using the LUA and LUD methods

for the MOSARQP1 problem. In Figures 8.5—8.8 we compare the distribution of

the diagonal values for the different LU* permutations. The permutation gen-

erated by the LUA method is moving many of the large diagonal entries of H

into Ĥ11 and not Ĥ22, so the average number of PPCG iterations required per

interior point iteration is a lot higher than when we use the other iterations.

The LUD and LUH are successfully moving the majority of the large diagonal

entries into Ĥ22; there are still some large entries in Ĥ11 but far fewer than

when the LU and LUA methods are used to generate the permutation. For this

larger problem there is little difference in using the hybrid method LUH and

LUD methods. For the smaller problems there is generally a small overhead

when using the LUH method, particularly when n−m is small, but in practice

much larger problems will be solved using the PPCG method, so in Table 8.7

we compare the different methods for a larger test problem from the CUTEr

quadratic programming test set. We observe the advantage of using the LUH

method over the other permutations.

GOULDQP2

(n = 19999, m = 9999)

Permutation LU LUA LUD LUH

k 8 15 29 35

Total PPCG Its 1 12305 56862 23907 12660

Total PPCG Its 2 12431 58027 28581 8711

Total CPU Time 2092 7264 2859 1350

% Permutation Time 0.001 0.02 0.13 0.80

Table 8.7: The effect of different permutations on the number of iterations and the time to
solve the mixed constraint quadratic programming problem.

8.1.1.3 Numerical examples

There is generally little advantage in trying to get the PPCG method to con-

verge with a high accuracy during the first few iterations of the interior point

method. Instead, whilst µ > 10−1 we will use a stopping tolerance of 10−4,

but when µ ≤ 10−1 a stopping tolerance of 10−10 is used. We shall com-

pare the behaviour of different preconditioning strategies for solving quadratic

programming problems of the form

min
x

1

2
xTQx+ cTx subject to Ax− d = 0 and x ≥ 0.
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Figure 8.5: MOSARQP1: Diagonal entries of Ĥ as the interior point method progresses when
Π is derived using the LU method.

Figure 8.6: MOSARQP1: Diagonal entries of Ĥ as the interior point method progresses when
Π is derived using the LUA method.
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Figure 8.7: MOSARQP1: Diagonal entries of Ĥ as the interior point method progresses when
Π is derived using the LUD method.

Figure 8.8: MOSARQP1: Diagonal entries of Ĥ as the interior point method progresses when
Π is derived using the LUH method.
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As in all our previous numerical tests, we shall consider problems for the CUTEr

test set [47]. The following preconditioners will be considered:

Expl1 No permutation used and MA57 is used to factor the constraint precon-

ditioner with G = diag{H}. This is the same as the AS-preconditioner

considered in [9].

Expl2 No permutation used and MA57 is used to factor the constraint precon-

ditioner with G = I. This is the same as the preconditioner presented in

[70].

Impl1 Permutation of the form LUH is used with a preconditioner generated

with the Schilders factorization where G11 = 0, G21 = 0 and G22 = H22.

Impl2 Permutation of the form LUH is used with a preconditioner generated

with the Schilders factorization where G11 = 0, G21 = 0 and G22 =

diag{H22}.

Impl3 Permutation of the form LUH is used with a preconditioner generated

with the Schilders factorization where G11 = 0, G21 = H21 andD2 = H22.

Impl4 Permutation of the form LUH is used with a preconditioner generated

with the Schilders factorization where G11 = 0, G12 = 0 and G22 = I.

For many of quadratic programming problems, the submatrix H22 will not

be diagonal, so we will expect the preconditioner Impl2 to use more PPCG

iterations than when the preconditioner Impl1 is used. However, the matrix

D2 in the Schilders factorization will take longer to be factorized when Impl1 is

used, so it is difficult to predict which of these two preconditioners will perform

better (i.e. use the least CPU time) overall.

In exact arithmetic, the preconditioners Impl1 and Impl3 will produce

the same values of ZTHZ and ZTGZ, Section 5.2.1. However, the latter

preconditioner will carry out more operations, so we expect the timings to be

longer for this. We might also expect there to be a bigger effect from rounding

errors for the preconditioner Impl3 compared to Impl1, so the number of

PPCG iterations might also be larger.

As we approach optimality some of the diagonal entries of H will grow in

size: by using the LUH permutation we hope to move the majority of these

large entries into H22. The preconditioner Impl4 does not take any of these
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large entries into account, so we expect the number of PPCG iterations to

grow very large as we approach optimality. We therefore predict that all of

the other implicit preconditioners will perform a lot better than when Impl4

is used.

By setting G = diag{H} in Expl1, we replicate one of the preconditioners

considered in [9]. As the problems to be solved grow large, we will expect the

choice of preconditioner Impl1 to be better than Expl1.

There is no consideration of the diagonal entries of H when the precondi-

tioner Expl2 is used. We therefore predict that it will require a large number

of PPCG iterations and will produce very poor CPU timings compared to the

other preconditioners.

Table 8.8 contains results for some problems found in the CUTEr test set.

More results from the CUTEr test set can be found in Appendix G. We observe

that for small problems there is little advantage in using the Schilders implicit

factorizations compared to the explicit factorizations (in fact, the explicit fac-

torizations Expl1 are normally favourable in these cases). However, as the

dimensions of the problems being solved increase the implicit factorizations

(excluding Impl4) appear to become preferable. For some of the problems,

the dimensions and memory requirements have become large enough for the

explicit factorizations to be unusable because of the computer used not having

enough memory. Clearly, whichever machine is used, we will encounter prob-

lems for which the explicit factorizations will be infeasible to use for memory

reasons, but implicit factorizations can still be extremely effective.

Table 8.8: CUTEr QP problems—Number of iterations used

Problem Expl1 Expl2 Impl1 Impl2 Impl3 Impl4

AUG3DCQP M k 11 11 17 17 15 16

n = 3873 Total Its 1 11 9869 1475 1475 1297 20762

m = 1000 Total Its 2 11 9689 1568 1568 1336 20507

Total CPU 23.02 23.11 26.06 26.06 35.43 253.90

% Permutation 0 0 1.80 1.80 1.35 0.18

CONT1-10 k memory — 6 6 6 6

n = 10197 Total Its 1 — — 37 37 37 56

m = 9801 Total Its 2 — — 38 38 38 56

Total CPU — — 67.92 67.92 80.27 70.30

% Permutation — — 50.25 50.25 42.74 48.58

CVXQP2 M k 12 14 13 13 13 20

n = 1000 Total Its 1 260 7310 256 656 256 13859

m = 250 Total Its 2 263 6945 265 675 260 13815
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Table 8.8: CUTEr QP problems—Number of iterations used (continued)

Problem Expl1 Expl2 Impl1 Impl2 Impl3 Impl4

Total CPU 7.24 71.05 4.04 7.18 4.98 132.39

% Permutation 0 0 4.70 2.65 3.61 0.19

DUALC2 k 7 8 41 16 10 10

n = 235 Total Its 1 23 40 244 107 34 40

m = 229 Total Its 2 24 39 277 108 33 38

Total CPU 0.65 0.71 3.56 2.36 0.99 1.04

% Permutation 0 0 6.18 4.23 3.03 3.85

STCQP2 k 16 16 16 16 16 16

n = 8193 Total Its 1 63 3645 16 63 16 3541

m = 4095 Total Its 2 71 3626 16 71 16 3508

Total CPU 9.47 165.79 8.38 8.64 9.08 107.92

% Permutation 0 0 18.38 18.26 16.52 1.33

As in previous chapters, we compare the preconditioning strategies using

a performance profile, Figure 8.9. The data from Appendix G is used for this

performance profile but any problems with n < 1000 are now excluded because

these problems are too small to be effective tests for the various precondition-

ers. We observe that the Impl1 preconditioner generally outperforms all of the

other choices of preconditioner. As expected, the Expl2 and Impl4 precondi-

tioners perform badly because they do not take into account the large entries

that are forming on the diagonal of H.

We noted that Impl1 and Impl3 are different implementations of the same

choice of G. We were expecting Impl1 to be more efficient and this is con-

firmed by our results. Expl1 and Impl2 perform very similarly for many of the

problems, but as the problems grow large the implicit factorization generally

becomes preferable out of the two because it does not suffer from the memory

problems. We therefore conclude that the implicit-factorization preconditioner

Impl1 is preferable for such problems.

8.1.2 Permutations for the case C 6= 0

Similarly to the case of C = 0, we can use Corollaries 5.4.15—5.4.17 to find

that ideally our permutation should produce:

• a sparse and well conditioned Â1;

• a low rank Â2.
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Figure 8.9: Performance profile, p(α): CPU time (seconds) to solve QP programming
problems.

We no longer worry about the ordering of the diagonal entries of H because

an active set strategy is used within the interior point methods when solving

inequality constrained problems, as described in Section 2.2.

Let us consider how we might perform a permutation to reduce the rank of

Â2 but maintain the nonsingularity of Â1. The approach we shall use is based

on the computation of a block triangular form of AT . This method takes a

matrix AT and finds a row and column permutation such that

ÂT =



Âh X X

0 Âs X

0 0 Âv


 ,

where Âh is underdetermined, Âs is square, Âv is overdetermined, and Xs

denote possibly nonzero matrices of appropriate dimension. However, since A

has full row rank in our case, there will not exist such a Âh. We hope that for

many of our test problems the dimensions of Âs will be large so that the rank

of Â2 will be small.

Algorithms for computing such row and column permutations are gener-

ally based on a canonical decomposition for bipartite graphs as discovered by

Dulmage and Mendelsohn [26]. Essentially, a subset of the bipartite graph cor-

responding to AT is found and this is then used to divide the rows into three
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groups and the columns into a further three groups. These groups then give

us the rows and columns used in Âh, Âs and Âv. Further details can be found

in [68]. If τ is the number of nonzero entries in AT , then such a decomposition

can be found in O(τ
√
n) flops. The function dmperm can be used to compute

such a permutation in Matlab R©.

Unfortunately, the resulting Â1 is not guaranteed to be nonsingular so, as in

the previous section where we initially carried out a permutation to order the

diagonal entries of H, we might still need to carry out a further permutation

(using the lu function as before) to guarantee that Â1 is nonsingular. We shall

call this the BTF permutation. Tables 8.9—8.11 compare the permutations

LU, QR and BTF for some of the test problems from the CUTEr test set. These

problems are transformed to give inequality constrained problems of the form

min
x∈Rn

1

2
xT (Q+ 1.1I) x+ bTx subject to Ax ≥ d,

and the interior point method Algorithm 2.2.1 is used in conjunction with

an active set strategy to solve these problems. The PPCG method, Algo-

rithm 5.3.2, is used to solve the saddle point problems arising within the in-

terior point method: we use Family 2 from Table 7.1 with B11 = 0, B22 =

Q22 + 1.1I, P22 = I and P31 = I as the implicit factorization constraint pre-

conditioner. The PPCG method is terminated when the residual has been

reduced by a factor of 10−6 and we terminate the interior point method once∥∥c(xk)− µk[Y k]−1e
∥∥

2
< 10−10 and µk < 10−10 in Algorithm 2.2.1.

CVXQP1 M CVXQP2 M

(n = 1000, m = 500) (n = 1000, m = 250)

Permutation LU QR BTF LU QR BTF

k 120 37 34 25 24 24

Total PPCG Its 33369 5263 5348 8114 1111 1214

Total CPU Time 148.24 45.48 25.57 36.58 12.68 8.10

% Permutation Time 0.30 38.83 1.11 0.19 38.17 1.41

Table 8.9: The effect of different permutations on the number of iterations and the time to
solve the inequality constrained quadratic programming problem.

We observe that the time spent in finding the solution is dramatically

reduced when the BTF permutation is used compared to the LU permutation:

this is down to the greatly reduced number of PPCG iterations. As expected,

the QR permutation is too inefficient to use for the large problems. As a result
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GOULDQP2 S KSIP

(n = 699, m = 349) (n = 1021, m = 1001)

Permutation LU QR BTF LU QR BTF

k 8 14 18 15 6 6

Total PPCG Its 165 286 447 76 22 11

Total CPU Time 0.95 4.29 2.42 13.89 16.85 7.27

% Permutation Time 1.05 60.84 1.65 1.58 65.22 21.05

Table 8.10: The effect of different permutations on the number of iterations and the time
to solve the inequality constrained quadratic programming problem.

MOSARQP1 PRIMAL1

(n = 3200, m = 700) (n = 410, m = 85)

Permutation LU QR BTF LU QR BTF

k 15 10 10 6 9 8

Total PPCG Its 185 120 105 130 161 156

Total CPU Time 5.45 40.09 3.71 0.60 0.99 0.90

% Permutation Time 1.65 90.15 2.96 5.00 12.12 15.56

Table 8.11: The effect of different permutations on the number of iterations and the time
to solve the inequality constrained quadratic programming problem.

of these tests we will use the BTF permutation in the following numerical

examples.

8.1.2.1 Numerical examples

We shall compare the behaviour of different preconditioning strategies for solv-

ing inequality constrained quadratic programming problems:

min
x∈Rn

1

2
xT (Q+ 1.1I) x+ bTx subject to Ax ≥ d.

The interior point method Algorithm 2.2.1 is used in conjunction with an active

set strategy to solve these problems. The PPCG method, Algorithm 5.3.2,

is used to solve the saddle point problems arising within the interior point

method. As in all our previous tests, we shall consider problems from the

CUTEr test to give us the matrices and vectors A, Q, b, and d. The PPCG

method is terminated when the residual has been reduced by a factor of 10−6

and we terminate the interior point method once
∥∥c(xk)− µk[Y k]−1e

∥∥
2
< 10−10

and µk < 10−10 in Algorithm 2.2.1.

The following preconditioners will be compared:
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Expl1 No permutation used and MA57 is used to factor the constraint precon-

ditioner with G = diag{H}.

Expl2 No permutation used and MA57 is used to factor the constraint precon-

ditioner with G = I.

Fam1a Permutation of the form BTF is used with a preconditioner of the form

Family 1 (Table 7.1) with P31 = I, P33 = B33 = I, and P22 = B22 = I.

Fam1b Permutation of the form BTF is used with a preconditioner of the form

Family 1 (Table 7.1) with P31 = I, P33 = B33 = I, P22 = I, and B22 =

Q22 + 1.1I.

Fam1c Permutation of the form BTF is used with a preconditioner of the form

Family 1 (Table 7.1) with P31 = I, P33 = B33 = I, P22 = I, and B22 =

diag{Q22}+ 1.1I.

Fam2a Permutation of the form BTF is used with a preconditioner of the form

Family 2 (Table 7.1) with P31 = B31 = I, B11 = 0, P22 = I, and

B22 = Q22 + 1.1I.

Fam2b Permutation of the form BTF is used with a preconditioner of the form

Family 2 (Table 7.1) with P31 = B31 = I, B11 = 0, P22 = I, and

B22 = H22.

Fam2c Permutation of the form BTF is used with a preconditioner of the form

Family 2 (Table 7.1) with P31 = B31 = I, B11 = 0, P22 = I, and

B22 = diag{Q22}+ 1.1I.

Fam2d Permutation of the form BTF is used with a preconditioner of the form

Family 2 (Table 7.1) with P31 = B31 = I, B11 = 0, and P22 = B22 = I.

Fam3a Permutation of the form BTF is used with a preconditioner of the form

Family 3 (Table 7.1) with P31 = B31 = I, G21 = Q21, and G22 = Q22 +

1.1I.

Fam3b Permutation of the form BTF is used with a preconditioner of the form

Family 3 (Table 7.1) with P31 = B31 = I, G21 = Q21, and B22 = I.
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We expect that the preconditioners Fam1b and Fam1c will require fewer

PPCG iterations than when Fam1a is used of there being no inclusion of H in

G for the latter choice. Fam1b should use fewer PPCG iterations than Fam1c,

but the latter will be more efficient to form and use.

Similarly, we expect Fam2b to use fewer iterations than Fam2a, but Fam2a

will be far more efficient to form and solve. Fam2c is likely to use more itera-

tions than Fam2a, but the efficiency in forming and applying the preconditioner

may make it favourable. The preconditioner Fam2d does not take the entries

of H into account, so we expect this to perform badly.

Fam3a takes more account of the entries of H in G than any of our other

implicit factorization preconditioners. However, this will be at a cost of the

efficiency. Fam3b will be more efficient than Fam3a to apply, but it will generally

require more iterations.

For large problems, the explicit factorizations Expl1 and Expl2 may be-

come unviable to use because of memory problems.

Table 8.12 contains results for some problems found in the CUTEr test set.

More results from the CUTEr test set can be found in Appendix H. We observe

that for small problems there is little advantage in using implicit factorization

constraint preconditioners over the explicit factorizations (in fact, the explicit

factorization Expl1 is often preferable in this case). Looking at the tables,

for larger problems the implicit factorizations appear to become preferable.

As in previous chapters, we shall also use a performance profiling technique

to compare the results. As in the previous section, we shall exclude any test

problems with n < 1000 from the profiles.

A figure profiling all of the preconditioners can be found in Appendix H.

We observe that the choices Fam3a and Fam3b are performing very poorly, so

we have removed them in the profile found in Figure 8.10: there is a high cost

in trying to reproduce H21 and H22 in G. The preconditioners generated by

Family 1 are generally outperforming those of Family 2 (as was the case in

Figures 7.1 and 7.2), Figure 8.11. The explicit factorization constraint pre-

conditioners are generally being outperformed by the implicit factorizations

generated by both Family 1 and Family 2. In Figure 8.12 we profile the ex-

plicit factorization preconditioners with just those generated through Family

1. Clearly, the implicit factorization constraint preconditioners Fam1a—Fam1c

are outperforming both of the explicit factorization preconditioners. As pre-

dicted, Fam1a is performing the poorest out of those generated with Family 1.
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Table 8.12: CUTEr QP problems—Number of iterations used

Problem Expl1 Expl2 Fam1a Fam1b Fam1c Fam2a Fam2b Fam2c Fam2d Fam3a Fam3b

AUG3DC- k 26 26 97 105 95 111 200 105 79 88 85

QP M Its 507 473 3258 3616 3052 3817 4522 3293 3046 2816 2769

CPU 26.77 26.04 85.76 93.97 83.39 99.83 175.32 92.49 73.12 82.34 79.75

CONT1-10 k 17 17 25 18 24 27 54 24 25 25 25

Its 835 677 2227 1517 2096 2015 1502 2061 2243 2082 2245

CPU 9193 8973 13172 8960 12108 13478 25933 12542 13345 12647 12354

CVXQP2 M k 24 27 27 24 24 24 23 25 26 — —

Its 2161 3596 4452 1233 3800 1214 1281 8331 4254 — —

CPU 13.73 14.62 12.71 8.25 10.60 8.10 8.32 23.02 12.34 — —

DUALC2 k 200 13 200 27 200 200 200 52 7 82 13

Its 409 2277 10431 3526 12773 17601 743 6882 851 12673 590

CPU 10.38 3.01 22.78 5.75 26.73 31.69 8.84 10.62 1.32 25.83 1.56

STCQP2 k 74 74 73 73 73 73 74 73 74 93 75

Its 1146 2216 4355 5541 5729 5485 5196 14471 4378 32656 5639

CPU 702.32 807.47 316.91 396.21 332.36 398.94 434.13 450.43 324.74 2802.36 354.24
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Figure 8.10: Performance profile, p(α): CPU time (seconds) to solve QP programming
problems.
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Figure 8.11: Performance profile, p(α): CPU time (seconds) to solve QP programming
problems.
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Figure 8.12: Performance profile, p(α): CPU time (seconds) to solve QP programming
problems.
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There is little difference between Fam1b and Fam1c in the performance profile;

but Fam1c will use less memory so we recommend this preconditioner.

The factorization times for our test problems are so fast for the implicit

methods generated through Family 1 (for example, see Appendix E) that there

is little point in applying Algorithm 5.5.2 with γ = 0 and a fixed G for the

latter interior point iterations. However, for saddle point problems where A1

is inefficient to factor, then we expect this to be a good method to follow and

suggest this as future work.



Chapter 9

Other Preconditioners

In the previous chapters we have concentrated on the use of constraint pre-

conditioners in partnership with projected preconditioned conjugate methods

to solve systems of the form

[
H AT

A −C

]

︸ ︷︷ ︸
H

[
x

y

]
=

[
b

d

]
, (9.0.1)

where H ∈ R
n×n, C ∈ R

m×m are symmetric and A ∈ R
m×n with m ≤ n. How-

ever, there are a variety of other preconditioners that could be used although a

different iterative method to the PPCG method would have to be used. Many

of these preconditioners have been constructed with specific applications such

as incompressible fluid flow and magnetostatics in mind, but they can equally

be applied to constrained optimization problems. We will briefly consider

some such preconditioners and compare them with the implicit factorization

constraint preconditioners presented in earlier chapters.

9.1 Block diagonal preconditioners

The symmetry of the saddle point problem naturally leads to the consideration

of symmetric preconditioners. The constraint preconditioners that we previ-

ously considered are indefinite, but, in contrast, several authors have opted

for positive definite preconditioners [31, 65, 66, 77]. One choice is the block

diagonal matrix

K =

[
I 0

0 AAT + C

]
.

157
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When preconditioning H with K we obtain

K− 1
2HK− 1

2 =

[
H ÂT

Â −Ĉ

]
,

where Â =
(
AAT + C

)− 1
2 A and Ĉ =

(
AAT + C

)− 1
2 C
(
AAT + C

)− 1
2 . Perugia

and Simoncini [65] prove the following results relating to some of the spectral

properties of K− 1
2HK− 1

2 :

Theorem 9.1.1. Let A, C, Â and Ĉ be as above. Then

• ÂÂT + C = I

• AT (AAT + C)−1A is a projection and so it has eigenvalues λ ∈ {0, 1.}

• The largest singular value of Â is equal to 1.

Thus, using this in conjunction with Theorem 2.4.4, we obtain

Corollary 9.1.2. Assume that H is symmetric positive definite and A has

full rank. Let λ1 and λn denote the largest and smallest eigenvalues of H

respectively, and let σm denote the smallest eigenvalue of Â, where Â is defined

above. Let λ(K− 1
2HK− 1

2 ) denote the spectrum of K− 1
2HK− 1

2 . Then

λ(K− 1
2HK− 1

2 ) ⊂ I− ∪ I+,

where

I− =

[
1

2

(
λn −

∥∥∥Ĉ
∥∥∥−

√(
λn +

∥∥∥Ĉ
∥∥∥
)2

+ 4

)
,
1

2

(
λ1 −

√
λ2

1 + 4σ2
m

)]
,

I+ =

[
λn,

1

2

(
λ1 +

√
λ2

1 + 4

)]
,

and Ĉ is as defined above.

Remark 9.1.3. For the case of the quadratic programming problems as con-

sidered in Sections 2.3.1 and 2.4.2.1, the upper bound on the eigenvalues will

still grow like O( 1
µk

) as the interior point method draws near to the optimal

solution, and the lower bound on the absolute value of the eigenvalues will

remain constant. Hence, following on from our results in Chapter 8, we do not

expect this preconditioner to be very effective for these problems.
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Perugia and Simoncini [65] also consider an approximation to this precon-

ditioner which takes the form

KI =

[
I 0

0 SI

]
, (9.1.1)

where SI is a symmetric positive definite approximation to AAT +C. Bounds

on the spectral properties can be found in [65].

An alternative which takes into the account the entries of H has been

suggested by Murphy, Golub and Wathen when C = 0 and H is nonsingular

[58]. Suppose that we precondition

H =

[
H AT

A 0

]

by

K =

[
H 0

0 AH−1AT

]
; (9.1.2)

then K−1H is diagonalizable and has at most four distinct eigenvalues

0, 1,
1

2
±
√

5

2
.

If K−1H is nonsingular, then it has the three nonzero eigenvalues. However, as

discussed in Section 3.3, the block AH−1AT may be full and too expensive to

compute or factor except in the special case when H is diagonal, and, hence,

an approximation to this is often used. It is hoped that the approximation

will not dramatically affect the distribution of the eigenvalues. For various

discretization schemes when applied to steady incompressible Navier-Stokes

equations, Elman shows that

X−1 =
(
AAT

)−1 (
AHAT

) (
AAT

)−1
(9.1.3)

accurately approximates the inverse of the Schur complement [27]. Of course,

we may find this to be a bad approximation when applied to our constrained

optimization problems.

If C 6= 0, then preconditioning H by the analogous

K =

[
H 0

0 AH−1AT + C

]
(9.1.4)
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Figure 9.1: Eigenvalues of K−1H where K is given by (9.1.4) with (a) C = 0 (b) C 6= 0.

unfortunately does not produce a system with at most four distinct eigenvalues.

This is illustrated in Figure 9.1 for the problem CVXQP1 S (the value of 1.1 is

added to all the diagonal entries of H). We compare the case C = 0, and that

when C is set to be diagonal with random positive entries.

There are many other block diagonal preconditioners that can be applied:

see the work of Gill, Murray, Ponceleón and Saunders for comparisons of some

different block diagonal preconditioners which are applied within a linear pro-

gramming context [37].

9.2 The Hermitian and Skew-Hermitian Split-

ting Preconditioner

The saddle point system (9.0.1) can be rewritten in the equivalent form

[
H AT

−A C

]

︸ ︷︷ ︸
M

[
x

y

]
=

[
b

−d

]
=Mu = c. (9.2.1)
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By splittingM into its symmetric and skew-symmetric parts we obtain

M =

[
H 0

0 C

]
+

[
0 AT

−A 0

]
=MH +MS. (9.2.2)

Let us consider the preconditioning matrix

K =
1

2α
(MH + αI) (MS + αI) , (9.2.3)

where α > 0 is some chosen constant. Note that if C and H are diagonal and

positive semidefinite, then MH + αI is positive definite. Also, MS + αI will

be nonsingular. Although the scaling factor 1
2α

in (9.2.3) has no impact on the

preconditioned system it is retained as a normalization factor.

Simoncini and Benzi [78] prove various bounds for the case C = 0 on the

eigenvalues produced by the associated preconditioned matrix, that is,

(MH +MS)u = λ
1

2α
(MH + αI) (MS + αI)u. (9.2.4)

Let ℑ(θ) and ℜ(θ) denote the imaginary and real parts of θ, respectively.

The following theorem gives bounds for the eigenvalues defined by the eigen-

value problem (9.2.4):

Theorem 9.2.1. Assume that H is symmetric and positive semidefinite with

λ1 and λn its largest and smallest eigenvalues, respectively. Let σ1 and σm be

the largest and smallest singular values of A, respectively. The eigenvalues of

(9.2.4) are such that the following hold:

1. If ℑ(λ) 6= 0, then

(
α+ 1

2
λn

)
λn

3α2
< ℜ(λ) < min

{
2,

4α

α+ λn

}
,

λ2
n

3α2 + 1
4
λ2

n

< |λ|2 ≤ 4α

α+ α
(
1 +

σ2
1

α2

)−1

+ λn

.

2. If ℑ(λ) = 0, then

min

{
2λn

α+ λn

,
2σ2

m

̺

α+ σ2
m

̺

}
≤ λ ≤ 2ρ

α+ ρ
< 2,

where ̺ = λ1(1 + σ2
m

α2 ) and ρ = λ1(1 +
σ2
1

α2 ).
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Proof. See [78, Theorem 2.2].

In addition, the following theorem holds:

Theorem 9.2.2. Assume that the hypotheses and notation of Theorem 9.2.1

hold and also assume that H is symmetric positive definite. If α ≤ 1
2
λn, then

all the eigenvalues of (9.2.4) are real.

Proof. See [78, Theorem 3.1].

Remark 9.2.3. If the hypotheses and notation of Theorem 9.2.2 hold, and

we consider the saddle point problems produced whilst solving quadratic pro-

gramming problems with interior point methods, Sections 2.3.1 and 2.4.2.1,

then for fixed α the lower bound on the eigenvalues will satisfy

min

{
2λn

α+ λn

,
2σ2

m

̺

α+ σ2
m

̺

}
= min

{
2λn

α+ λn

,
2σ2

m

̺α+ σ2
m

}

≈ min

{
2λn

α+ λn

,
2σ2

m

ζ

µ
α+ σ2

m

}
for some positive constant ζ

= O(µ) as µ→ 0.

Hence, we would like α to scale with µ as µ→ 0, that is, α = ǫµ for some

(small) ǫ > 0 such that the eigenvalues will cluster around 2.

9.3 Numerical Examples

In this Section we shall compare the above preconditioners with the implicit-

factorization constraint preconditioner Impl1 from Section 8.1.1.3. We wish

to solve problems of the form

min
x∈Rn

1

2
xTQx+ bTx subject to Ax− d = 0 and x ≥ 0

using the interior point method Algorithm 2.3.1 with Mehrotra’s Predictor-

Corrector Method. When solving the resulting saddle point problems we shall

use the following preconditioners with associated iterative methods:

Impl1 Implicit factorization constraint preconditioner as defined in Section 8.1.1.3

using the PPCG method.



CHAPTER 9. OTHER PRECONDITIONERS 163

BD1 Block diagonal preconditioner as defined in Equation 9.1.1 using the Bi-

CGSTAB method.

BD1a Block diagonal preconditioner as defined in Equation 9.1.1 but AAT

is approximated by an incomplete Cholesky factorization (Bi-CGSTAB

method).

BD2 Block diagonal preconditioner as defined in Equation 9.1.2 using the Bi-

CGSTAB method.

BD2a Block diagonal preconditioner as defined in Equation 9.1.2 but the in-

verse of the Schur complement is approximated by X−1 given in (9.1.3)

(Bi-CGSTAB method).

HSS1 The HSS preconditioner as defined in Equation 9.2.3 with α = 0.01 using

Bi-CGSTAB.

HSS2 The HSS preconditioner as defined in Equation 9.2.3 with

α = max
(
10−8,min

(
10−2, 10−2µk

))

using Bi-CGSTAB.

We could use the MINRES method when applying the block diagonal precondi-

tioners but, in practice, there was little difference in the CPU times compared

to the Bi-CGSTAB method. We shall terminate the interior point method

when ‖Axk − d‖2 < 10−6 and µk < 10−6. (Note: this is different to the termi-

nation condition used in Chapter 8.) Whilst µ > 10−1 we will use a stopping

tolerance of 10−4, but when µ ≤ 10−1 a stopping tolerance of 10−10 is used for

terminating either PPCG or Bi-CGSTAB.

In Tables 9.1–9.4 we give iteration and timing results for four of the smaller

problems (mixed constraints) from the CUTEr test set. We observe that the

implicit factorization constraint preconditioner Impl1 and block diagonal pre-

conditioner BD2 consistently produce results which allow the interior point

method to correctly terminate, but the remainder of the preconditioners per-

form badly in general. However, Impl1 is tending to perform faster than BD2,

and as the dimension of the problems increases, we will expect the implicit

factorization preconditioner to be several orders of magnitude faster (and, of

course, to use far less memory). We are already seeing the large difference in

CPU time costs in the relatively small problem CVXQP2 M.
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Impl1 BD1 BD1a BD2 BD2a HSS1 HSS2

k 6 — — 6 — — —

Total Its 1 72 — — 20 — — —

Total Its 2 73 — — 19 — — —

Total CPU 0.49 — — 0.83 — — —

Table 9.1: CVXQP1 S: Comparison of different preconditioning methods

Impl1 BD1 BD1a BD2 BD2a HSS1 HSS2

k 11 — — 11 — — —

Total Its 1 220 — — 42 — — —

Total Its 2 225 — — 39 — — —

Total CPU 3.66 — — 40.79 — — —

Table 9.2: CVXQP2 M: Comparison of different preconditioning methods

Impl1 BD1 BD1a BD2 BD2a HSS1 HSS2

k 9 7 — 7 7 7 7

Total Its 1 25 25.5 — 22.5 25.5 29.5 24.5

Total Its 2 25 25.5 — 23.5 25.5 30 24.5

Total CPU 0.77 1.43 — 1.34 1.41 2.10 1.91

Table 9.3: DUAL1: Comparison of different preconditioning methods

Impl1 BD1 BD1a BD2 BD2a HSS1 HSS2

k 11 — — 11 — 11 32

Total Its 1 610 — — 47.5 — 2953 1167

Total Its 2 623 — — 40.5 — 2463 585

Total CPU 4.24 — — 3.07 — 584.35 2229.92

Table 9.4: PRIMAL1: Comparison of different preconditioning methods
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Figure 9.2: CVXQP1 M: Convergence of ‖Axk − d‖
2

for the different preconditioners.

When the preconditioner BD1a is applied, the interior point method is al-

ways failing to terminate because the requirement ‖Axk − d‖2 < 10−6 is not

satisfied. Similarly, if the interior point method fails to converge when the

other preconditioners are employed, we find that it is due to the requirement

‖Axk − d‖2 < 10−6 failing to be satisfied. We give the plot of the convergence

of ‖Axk − d‖2 for the problem CVXQP1 M in Figure 9.2.

In Chapter 5 we saw that when problems of the form
[
H AT

A 0

][
∆x

∆y

]
=

[
δ1

δ2

]

are (approximately) solved with the PPCG method, Algorithm 5.3.2, then an

approximate solution
[

∆̃x
T

∆̃y
T
]T

is produced for which
∥∥∥A∆̃x− δ2

∥∥∥ ≈ 0

no matter what tolerance is used in terminating the PPCG method. This

results in the value ‖Axk − d‖2 converging towards zero as the interior point

method progresses. The only other preconditioner that we might expect to

consistently produce an approximate solution with
∥∥∥A∆̃x− δ2

∥∥∥ ≈ 0 is BD2

because of its spectral properties. However, as we have already mentioned,

this preconditioner will be very inefficient to apply as the dimension of the

problem increases.
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Hence, the constraint preconditioners (with the PPCG method) are allow-

ing the constraints to be satisfied earlier during the interior point method and

are also cheaper to apply than the other preconditioners considered. There-

fore, out of the preconditioners tested, the implicit factorization constraint

preconditioner is our preconditioner of choice for the classes of optimization

problems considered in this work.



Chapter 10

Concluding Remarks

10.1 Conclusions

In this thesis we have discussed constrained optimization problems and ex-

isting methods for finding the optimal solution: interior point methods. We

saw that we are required to solve at least one saddle point system during each

iteration of these methods and that this is the major cost factor when solving

such problems. In Chapters 3 and 4 we considered how direct methods and

iterative methods can be employed to solve the arising saddle point systems.

We noted that as the size of the problems has increased over time, the cur-

rently available routines involving direct methods have become too inefficient

so iterative methods are now commonly used.

Although the saddle point systems are symmetric and indefinite, we showed

that we can apply projected preconditioned conjugate gradient (PPCG) meth-

ods to find (approximate) solutions, Chapter 5. To use such methods, we

require constraint preconditioners: we extended the use of these precondi-

tioners to allow for nonzero entries in the (2,2) sub-block of the saddle point

system (we have used the notation C for this block throughout this thesis)

and have proved relevant results about the spectral properties of the resulting

preconditioned system.

In Chapter 6 we assumed that C = 0 and firstly noted that choosing a

specific constraint preconditioner and then factorizing it for use within the

PPCG method can be prohibitively expensive even for the simplest of choices:

we have referred to these preconditioners as explicit factorization constraint

preconditioners. We then introduced the key idea of implicit factorization

constraint preconditioners which allow us to apply constraint preconditioners

167
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with far lower overheads in terms of memory and time. We analyzed two pos-

sible implicit factorization methods (the variable reduction method and the

Schilders factorization) and found the Schilders factorization to be preferable.

Numerical examples in Chapters 6 and 8 substantially support the use of im-

plicit factorization constraint preconditioners instead of explicit factorization

constraint preconditioners.

We extend the use of implicit factorization constraint preconditioners to

the case of C 6= 0 in Chapter 7. Fourteen families of such preconditioners are

derived, but we find that some of them will be equivalent when the natural

choices for some of the blocks are used and, as such, just three of the families

are really worth testing for C 6= 0. As for the case of C = 0, our numerical ex-

amples reveal that the implicit factorization constraint preconditioners can be

far more efficient to use when compared to the explicit factorization constraint

preconditioners when applied to constrained optimization test problems.

A fundamental assumption was made about the form of the saddle point

problem for us to apply our implicit factorization constraint preconditioners,

namely, the first m columns of the (2,1) sub-block (the matrix A in our nota-

tion) must be linearly independent. We considered different permutations to

achieve this assumption in Chapter 8 and found that the diagonal entries of

the (1,1) sub-block (the matrix H) should be taken into account when finding

such a permutation for mixed constraint optimization problems.

Finally, in Chapter 9, we compared constraint preconditioners with some

other preconditioners (and associated iterative methods) that are often used

when solving saddle point systems arising in different applications. We found

that constraint preconditioners (with the PPCG method) were favourable for

the constrained optimization test problems that we considered because they

allowed the constraints to be satisfied earlier during the interior point method

and were cheaper to apply.

10.2 Future work

There are many possible avenues of interest still to explore. In this section we

shall indicate just a few of the possibilities.
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10.2.1 Permutations to obtain a nonsingular A1

The investigations carried out in Chapter 8 were not designed to be very

thorough, we just wanted to find a permutation that was cheap to apply and

reasonably effective at reducing the number of PPCG iterations required in

solving the saddle point problems. However, we saw how important it can be

to take the entries of H into account when choosing our permutation. Graph

based methods which weight the nodes according to the diagonal entries of H

is just one possibility for obtaining suitable permutations that needs exploring.

10.2.2 PDE constrained optimization problems

The methods that we have proposed in Chapter 5 perform an initial projec-

tion step which forces the iterates xk and yk to satisfy Axk − Cyk = 0. We

therefore require the constraint to be exact for subsequent iterations to satisfy

this requirement. When the matrix A has a PDE-like structure we are often

required to handle it approximately: the PPCG methods with constraint pre-

conditioners would not be applicable. In the recent work of Forsgren, Gill and

Griffin [33] they assume that C is positive definite and consider solving the

doubly augmented system
[
H + 2ATC−1A −AT

−A C

][
x

y

]
=

[
b− 2ATC−1d

−d

]
(10.2.1)

instead of the equivalent system (3.0.1). If H + 2ATC−1A is positive definite,

then the PCG method can be applied to solve (10.2.1). Forsgren et al. suggest

using preconditioners of the form
[
G+ 2ÃTC−1Ã −ÃT

−Ã C

]

︸ ︷︷ ︸eK ,

where G is an approximation to H, and Ã indicates that the systems involv-

ing A can be solved approximately. In addition, they suggest applying the

preconditioning step Kv = r to the equivalent system
[
G ÃT

Ã −C

][
v1

v2

]
=

[
r1 + 2ÃTC−1r2

−r2

]

to avoid computations involving G + 2ÃTC−1Ã. The use of implicit factor-

ization constraint preconditioners for this preconditioning step is an exciting

prospect.
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10.2.3 Other application areas

As we noted in Chapter 2, there are many application areas other than con-

strained optimization problems for which the solution of saddle point systems

is crucial. A further avenue would be to explore the use of implicit factor-

ization constraint preconditioners with the PPCG method for some of these

application areas.
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Appendix A

Improved eigenvalue bounds
with reduced-space basis for
C = 0 : Complete tables

The following appendix gives complete results corresponding to the numerical

experiments carried out in Section 5.2.1. The ranks of the submatrices in the

resulting saddle point systems are given along with results which show that

reproducing parts of H in G can dramatically reduce the number of distinct

eigenvalues compared to using some general choice for G.

Table A.1: NETLIB LP problems

iteration bound

rank any G exact H22 & H21

name n m A A2 H11 H12 µ + 1 upper

25FV47 1876 821 820 725 820 0 1057 726 822

80BAU3B 12061 2262 2262 2231 2262 0 9800 2232 2263

ADLITTLE 138 56 56 53 56 0 83 54 57

AFIRO 51 27 27 21 27 0 25 22 25

AGG2 758 516 516 195 516 0 243 196 243

AGG3 758 516 516 195 516 0 243 196 243

AGG 615 488 488 123 488 0 128 124 128

BANDM 472 305 305 161 305 0 168 162 168

BCDOUT 7078 5414 5412 1102 2227 0 1667 1103 1667

BEACONFD 295 173 173 116 173 0 123 117 123

BLEND 114 74 74 37 74 0 41 38 41

BNL1 1586 643 642 458 642 0 945 459 644

BNL2 4486 2324 2324 1207 2324 0 2163 1208 2163

BOEING1 726 351 351 314 351 0 376 315 352

BOEING2 305 166 166 109 166 0 140 110 140

BORE3D 334 233 231 73 231 0 104 74 104

BRANDY 303 220 193 98 193 0 111 99 111

CAPRI 482 271 271 144 261 0 212 145 212

CYCLE 3371 1903 1875 1272 1868 0 1497 1273 1497

CZPROB 3562 929 929 732 929 0 2634 733 930

D2Q06C 5831 2171 2171 2059 2171 0 3661 2060 2172

D6CUBE 6184 415 404 403 404 0 5781 404 416

172
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Table A.1: NETLIB LP problems (continued)

iteration bound

rank any G exact H22 & H21

name n m A A2 H11 H12 µ + 1 upper

DEGEN2 757 444 442 295 442 0 316 296 316

DEGEN3 2604 1503 1501 1052 1501 0 1104 1053 1104

DFL001 12230 6071 6058 5313 6058 0 6173 5314 6072

E226 472 223 223 186 223 0 250 187 224

ETAMACRO 816 400 400 341 400 0 417 342 401

FFFFF800 1028 524 524 290 524 0 505 291 505

FINNIS 1064 497 497 456 497 0 568 457 498

FIT1D 1049 24 24 24 24 0 1026 25 25

FIT1P 1677 627 627 627 627 0 1051 628 628

FIT2D 10524 25 25 25 25 0 10500 26 26

FIT2P 13525 3000 3000 3000 3000 0 10526 3001 3001

FORPLAN 492 161 161 100 161 0 332 101 162

GANGES 1706 1309 1309 397 1309 0 398 398 398

GFRD-PNC 1160 616 616 423 616 0 545 424 545

GOFFIN 101 50 50 50 0 0 52 1 51

GREENBEA 5598 2392 2389 2171 2389 0 3210 2172 2393

GREENBEB 5598 2392 2389 2171 2386 0 3210 2172 2393

GROW15 645 300 300 300 300 0 346 301 301

GROW22 946 440 440 440 440 0 507 441 441

GROW7 301 140 140 140 140 0 162 141 141

SIERRA 2735 1227 1217 768 1217 0 1519 769 1228

ISRAEL 316 174 174 142 174 0 143 143 143

KB2 68 43 43 25 43 0 26 26 26

LINSPANH 97 33 32 32 32 0 66 33 34

LOTFI 366 153 153 110 153 0 214 111 154

MAKELA4 61 40 40 21 40 0 22 22 22

MAROS-R7 9408 3136 3136 3136 3136 0 6273 3137 3137

MAROS 1966 846 846 723 846 0 1121 724 847

MODEL 1557 38 38 11 38 0 1520 12 39

MODSZK1 1620 687 686 667 684 0 935 668 688

NESM 3105 662 662 568 662 0 2444 569 663

OET1 1005 1002 1002 3 1000 0 4 4 4

OET3 1006 1002 1002 4 1000 0 5 5 5

PEROLD 1506 625 625 532 562 0 882 533 626

PILOT4 1123 410 410 367 333 0 714 334 411

PILOT87 6680 2030 2030 1914 2030 0 4651 1915 2031

PILOT-JA 2267 940 940 783 903 0 1328 784 941

PILOTNOV 2446 975 975 823 975 0 1472 824 976

PILOT 4860 1441 1441 1354 1441 0 3420 1355 1442

PILOT-WE 2928 722 722 645 662 0 2207 646 723

PT 503 501 501 2 499 0 3 3 3

QAP8 1632 912 853 697 853 0 780 698 780

QAP12 8856 3192 3089 2783 3089 0 5768 2784 3193

QAP15 22275 6330 6285 5632 6285 0 15991 5633 6331

QPBD OUT 442 211 211 176 211 0 232 177 212

READING2 6003 4000 4000 2001 2001 0 2004 2002 2004

RECIPELP 204 91 91 78 91 0 114 79 92

SC105 163 105 105 58 105 0 59 59 59

SC205 317 205 205 112 205 0 113 113 113

SC50A 78 50 50 28 50 0 29 29 29

SC50B 78 50 50 28 50 0 29 29 29

SCAGR25 671 471 471 199 471 0 201 200 201
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Table A.1: NETLIB LP problems (continued)

iteration bound

rank any G exact H22 & H21

name n m A A2 H11 H12 µ + 1 upper

SCAGR7 185 129 129 56 129 0 57 57 57

SCFXM1 600 330 330 217 330 0 271 218 271

SCFXM2 1200 660 660 440 660 0 541 441 541

SCFXM3 1800 990 990 660 990 0 811 661 811

SCORPION 466 388 388 77 388 0 79 78 79

SCRS8 1275 490 490 341 490 0 786 342 491

SCSD1 760 77 77 77 77 0 684 78 78

SCSD6 1350 147 147 147 147 0 1204 148 148

SCSD8 2750 397 397 397 397 0 2354 398 398

SCTAP1 660 300 300 246 300 0 361 247 301

SCTAP2 2500 1090 1090 955 1090 0 1411 956 1091

SCTAP3 3340 1480 1480 1264 1480 0 1861 1265 1481

SEBA 1036 515 515 479 515 0 522 480 516

SHARE1B 253 117 117 72 117 0 137 73 118

SHARE2B 162 96 96 65 96 0 67 66 67

SHELL 1777 536 535 489 535 0 1243 490 537

SHIP04L 2166 402 360 343 360 0 1807 344 403

SHIP04S 1506 402 360 256 360 0 1147 257 403

SHIP08L 4363 778 712 679 712 0 3652 680 779

SHIP08S 2467 778 712 406 712 0 1756 407 779

SHIP12L 5533 1151 1042 828 1042 0 4492 829 1152

SHIP12S 2869 1151 1042 451 1042 0 1828 452 1152

SIERRA 2735 1227 1217 768 1217 0 1519 769 1228

SIPOW1M 2002 2000 2000 2 2000 0 3 3 3

SIPOW1 2002 2000 2000 2 1999 0 3 3 3

SIPOW2M 2002 2000 2000 2 2000 0 3 3 3

SIPOW2 2002 2000 2000 2 1999 0 3 3 3

SIPOW3 2004 2000 2000 4 1999 0 5 5 5

SIPOW4 2004 2000 2000 4 1999 0 5 5 5

SSEBLIN 218 72 72 72 72 0 147 73 73

STAIR 614 356 356 249 356 0 259 250 259

STANDATA 1274 359 359 283 359 0 916 284 360

STANDGUB 1383 361 360 281 360 0 1024 282 362

STANDMPS 1274 467 467 372 467 0 808 373 468

STOCFOR1 165 117 117 48 117 0 49 49 49

STOCFOR2 3045 2157 2157 888 2157 0 889 889 889

STOCFOR3 23541 16675 16675 6866 16675 0 6867 6867 6867

TFI2 104 101 101 3 100 0 4 4 4

TRUSS 8806 1000 1000 1000 1000 0 7807 1001 1001

TUFF 628 333 302 207 301 0 327 208 327

VTP-BASE 346 198 198 86 198 0 149 87 149

WOOD1P 2595 244 244 244 244 0 2352 245 245

WOODW 8418 1098 1098 1098 1098 0 7321 1099 1099

Table A.2: CUTEr QP problems

iteration bound

rank any G exact H22 exact H22 & H21

name n m A A2 H11 H12 ρ + 1 upper µ + 1 upper

AUG2DCQP 20200 10000 10000 10000 10000 0 10201 10001 10201 10001 10001

AUG2DQP 20200 10000 10000 10000 10000 0 10201 10001 10201 10001 10001
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Table A.2: CUTEr QP problems (continued)

iteration bound

rank any G exact H22 exact H22 & H21

name n m A A2 H11 H12 ρ + 1 upper µ + 1 upper

AUG3DCQP 27543 8000 8000 7998 8000 0 19544 7999 16001 7999 8001

AUG3DQP 27543 8000 8000 7998 8000 0 19544 7999 16001 7999 8001

BLOCKQP1 10011 5001 5001 5001 5001 5000 5011 5011 5011 5002 5002

BLOCKQP2 10011 5001 5001 5001 5001 5000 5011 5011 5011 5002 5002

BLOCKQP3 10011 5001 5001 5001 5001 5000 5011 5011 5011 5002 5002

BLOWEYA 4002 2002 2002 2000 2002 2000 2001 2001 2001 2001 2001

BLOWEYB 4002 2002 2002 2000 2002 2000 2001 2001 2001 2001 2001

BLOWEYC 4002 2002 2002 2000 2002 2000 2001 2001 2001 2001 2001

CONT-050 2597 2401 2401 192 2401 0 197 193 197 193 197

CONT-101 10197 10098 10098 99 10098 0 100 100 100 100 100

CONT-201 40397 40198 40198 199 40198 0 200 200 200 200 200

CONT5-QP 40601 40200 40200 401 40200 0 402 402 402 402 402

CONT1-10 10197 9801 9801 392 9801 0 397 393 397 393 397

CONT1-20 40397 39601 39601 792 39601 0 797 793 797 793 797

CONT-300 90597 90298 90298 299 90298 0 300 300 300 300 300

CVXQP1 10000 5000 5000 2000 5000 2000 5001 4001 5001 2001 5001

CVXQP2 10000 2500 2500 2175 2500 1194 7501 3370 5001 2176 2501

CVXQP3 10000 7500 7500 1000 7500 2354 2501 2001 2501 1001 2501

DEGENQP 125050 125025 125024 26 125024 0 27 27 27 27 27

DUALC1 223 215 215 8 215 0 9 9 9 9 9

DUALC2 235 229 229 6 229 0 7 7 7 7 7

DUALC5 285 278 278 7 278 0 8 8 8 8 8

DUALC8 510 503 503 7 503 0 8 8 8 8 8

GOULDQP2 19999 9999 9999 9999 9999 0 10001 10000 10001 10000 10000

GOULDQP3 19999 9999 9999 9999 9999 9999 10001 10001 10001 10000 10000

KSIP 1021 1001 1001 20 1001 0 21 21 21 21 21

MOSARQP1 3200 700 700 700 700 3 2501 704 1401 701 701

NCVXQP1 10000 5000 5000 2000 5000 2000 5001 4001 5001 2001 5001

NCVXQP2 10000 5000 5000 2000 5000 2000 5001 4001 5001 2001 5001

NCVXQP3 10000 5000 5000 2000 5000 2000 5001 4001 5001 2001 5001

NCVXQP4 10000 2500 2500 2175 2500 1194 7501 3370 5001 2176 2501

NCVXQP5 10000 2500 2500 2175 2500 1194 7501 3370 5001 2176 2501

NCVXQP6 10000 2500 2500 2175 2500 1194 7501 3370 5001 2176 2501

NCVXQP7 10000 7500 7500 1000 7500 2354 2501 2001 2501 1001 2501

NCVXQP8 10000 7500 7500 1000 7500 2354 2501 2001 2501 1001 2501

NCVXQP9 10000 7500 7500 1000 7500 2354 2501 2001 2501 1001 2501

POWELL20 10000 5000 5000 4999 5000 0 5001 5000 5001 5000 5001

PRIMALC1 239 9 9 9 9 0 231 10 19 10 10

PRIMALC2 238 7 7 7 7 0 232 8 15 8 8

PRIMALC5 295 8 8 8 8 0 288 9 17 9 9

PRIMALC8 528 8 8 8 8 0 521 9 17 9 9

PRIMAL1 410 85 85 85 85 0 326 86 171 86 86

PRIMAL2 745 96 96 96 96 0 650 97 193 97 97

PRIMAL3 856 111 111 111 111 0 746 112 223 112 112

PRIMAL4 1564 75 75 75 75 0 1490 76 151 76 76

QPBAND 75000 25000 25000 25000 25000 0 50001 25001 50001 25001 25001

QPNBAND 75000 25000 25000 25000 25000 0 50001 25001 50001 25001 25001

QPCBOEI1 726 351 351 314 351 0 376 315 376 315 352

QPCBOEI2 305 166 166 109 166 0 140 110 140 110 140

QPCSTAIR 614 356 356 249 356 0 259 250 259 250 259

QPNBOEI1 726 351 351 314 351 0 376 315 376 315 352

QPNBOEI2 305 166 166 109 166 0 140 110 140 110 140



APPENDIX A. IMPROVED EIGENVALUE BOUNDS 176

Table A.2: CUTEr QP problems (continued)

iteration bound

rank any G exact H22 exact H22 & H21

name n m A A2 H11 H12 ρ + 1 upper µ + 1 upper

QPNSTAIR 614 356 356 249 356 0 259 250 259 250 259

SOSQP1 5000 2501 2501 2499 2501 2499 2500 2500 2500 2500 2500

STCQP1 8193 4095 1771 0 1771 317 6423 1 6423 1 4096

STCQP2 8193 4095 4095 0 4095 1191 4099 1 4099 1 4096

STNQP1 8193 4095 1771 0 1771 317 6423 1 6423 1 4096

STNQP2 8193 4095 4095 0 4095 1191 4099 1 4099 1 4096

UBH1 9009 6000 6000 3003 6 0 3010 7 3010 7 3010

YAO 4002 2000 2000 2000 2000 0 2003 2001 2003 2001 2001



Appendix B

CUTEr QP problems: Complete
tables

The following appendix gives complete results corresponding to the numerical

experiments carried out in Section 6.3. The factorization times “fact,” iteration

counts “it” and total CPU times “total” are given for different choices of

preconditioner.

Table B.1: CUTEr QP problems—residual decrease of at least 10−2

Explicit factors Implicit factors

G = H G = I G22 = I G22 = H22

MA27 MA57 MA57 MA57 MA57

name fact it total fact it total fact it total fact it total fact it total

AUG2DCQP 0.08 1 0.13 0.47 1 0.54 0.46 1 0.53 0.04 125 1.54 0.25 125 2.01

AUG2DQP 0.08 1 0.13 0.47 1 0.54 0.46 2 0.53 0.04 120 1.49 0.25 125 2.03

AUG3DCQP 1.56 1 1.66 1.54 1 1.67 1.45 1 1.57 0.05 41 0.71 0.79 41 1.59

AUG3DQP 1.59 1 1.69 1.29 1 1.42 1.46 2 1.59 0.05 43 0.71 0.78 40 1.56

BLOCKQP1 0.06 0 0.08 0.21 0 0.23 0.23 1 0.26 0.33 2 0.35 0.39 2 0.41

BLOCKQP2 0.06 0 0.08 0.21 0 0.23 0.23 2 0.26 0.33 2 0.36 0.39 2 0.41

BLOCKQP3 0.06 0 0.08 0.21 0 0.23 0.23 1 0.25 0.33 2 0.35 0.38 2 0.41

BLOWEYA 26.50 1 26.60 0.04 1 0.05 0.05 35 0.21 0.03 50 0.13 0.04 50 0.15

BLOWEYB 26.29 1 26.39 0.04 1 0.05 0.05 13 0.11 0.03 32 0.09 0.04 32 0.11

BLOWEYC 26.27 1 26.36 0.04 1 0.05 0.05 36 0.21 0.03 50 0.12 0.04 50 0.15

CONT-050 0.17 1 0.19 0.12 1 0.14 0.12 1 0.14 0.09 3 0.10 0.09 3 0.11

CONT-101 3.03 1 3.18 0.73 2 0.85 0.70 2 0.82 0.86 2 0.91 0.86 2 0.91

CONT-201 35.96 4 38.38 5.78 5 6.99 5.63 6 7.04 10.14 2 10.41 10.10 2 10.37

CONT5-QP 33.89 1 34.59 3.37 1 3.83 3.35 2 3.80 20.01 39 22.36 19.94 37 22.20

CONT1-10 2.81 1 2.95 0.68 1 0.80 0.66 1 0.77 0.90 3 0.97 0.91 3 0.99

CONT1-20 30.94 1 31.65 6.85 1 7.46 6.67 2 7.28 10.83 3 11.22 10.86 3 11.26

CONT-300 140.10 9 146.23 19.33 5 22.26 18.33 5 21.25 40.82 2 41.46 41.00 2 41.64

CVXQP1 579.20 0 580.15 3.99 0 4.11 0.20 3 0.24 0.21 57 0.56 0.24 55 0.69

CVXQP2 139.11 0 139.48 1.70 0 1.78 0.10 3 0.12 0.01 14 0.07 0.10 14 0.23

CVXQP3 1354 0 1355 9.93 0 10.13 0.32 3 0.38 0.33 44 0.64 0.34 43 0.68

DEGENQP 3.85 1 4.14 14.36 1 14.72 0.01 2 0.01 2.43 3 2.87 2.45 3 2.89

DUALC1 0.01 5 0.01 0.00 2 0.01 0.00 1 0.00 0.00 8 0.00 0.00 8 0.00

DUALC2 0.01 9 0.01 0.00 1 0.01 0.01 2 0.01 0.00 6 0.00 0.00 6 0.01

DUALC5 0.01 8 0.02 0.01 1 0.01 0.01 2 0.01 0.00 6 0.01 0.00 6 0.01

DUALC8 0.11 5 0.13 0.01 2 0.01 0.20 0 0.23 0.01 7 0.01 0.01 7 0.01
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Table B.1: CUTEr QP problems—residual decrease of at least 10−2 (continued)

Explicit factors Implicit factors

G = H G = I G22 = I G22 = H22

MA27 MA57 MA57 MA57 MA57

name fact it total fact it total fact it total fact it total fact it total

GOULDQP2 0.05 0 0.07 0.23 0 0.27 0.20 2 0.25 0.03 0 0.05 0.08 0 0.10

GOULDQP3 0.07 1 0.11 0.32 1 0.40 0.05 5 0.06 0.03 6 0.11 0.08 6 0.17

KSIP 0.01 1 0.02 0.05 1 0.06 0.04 3 0.05 0.02 3 0.03 0.02 3 0.03

MOSARQP1 0.02 1 0.03 0.04 1 0.04 0.20 3 0.24 0.06 6 0.07 0.07 6 0.08

NCVXQP1 573.69 0 574.65 4.10 0 4.22 0.20 3 0.24 0.21 55 0.54 0.24 55 0.68

NCVXQP2 584.17 0 585.14 4.02 0 4.14 0.20 3 0.24 0.20 55 0.54 0.24 56 0.70

NCVXQP3 573.04 0 573.98 4.15 0 4.28 0.11 3 0.13 0.20 54 0.53 0.23 55 0.69

NCVXQP4 138.52 0 138.90 1.71 0 1.79 0.10 3 0.12 0.01 14 0.07 0.10 13 0.22

NCVXQP5 130.26 0 130.64 1.69 0 1.76 0.10 3 0.13 0.01 14 0.06 0.10 14 0.24

NCVXQP6 139.37 0 139.75 1.70 0 1.79 0.32 3 0.38 0.01 14 0.06 0.10 14 0.24

NCVXQP7 1364 0 1365 10.03 0 10.23 0.33 3 0.39 0.33 43 0.64 0.34 43 0.67

NCVXQP8 1387 0 1388 10.07 0 10.26 0.33 3 0.38 0.33 43 0.63 0.34 43 0.67

NCVXQP9 1358 0 1359 10.12 0 10.32 0.09 2 0.11 0.33 44 0.64 0.34 43 0.67

POWELL20 0.03 0 0.05 0.09 0 0.11 0.00 5 0.01 0.01 2 0.03 0.07 2 0.08

PRIMALC1 0.00 1 0.00 0.00 1 0.01 0.00 3 0.00 0.00 11 0.00 0.00 6 0.00

PRIMALC2 0.00 1 0.00 0.00 1 0.01 0.00 6 0.01 0.00 5 0.00 0.00 5 0.00

PRIMALC5 0.00 1 0.00 0.00 1 0.01 0.01 4 0.01 0.00 6 0.00 0.00 5 0.00

PRIMALC8 0.01 1 0.01 0.01 1 0.01 0.01 8 0.02 0.00 11 0.01 0.00 7 0.01

PRIMAL1 0.01 1 0.01 0.01 1 0.02 0.03 5 0.03 0.00 15 0.01 0.00 27 0.02

PRIMAL2 0.01 1 0.01 0.03 1 0.03 0.06 4 0.07 0.00 13 0.01 0.01 21 0.02

PRIMAL3 0.03 1 0.03 0.06 1 0.06 0.03 3 0.04 0.01 18 0.04 0.01 26 0.06

PRIMAL4 0.04 1 0.04 0.03 1 0.03 14.34 2 14.69 0.01 12 0.03 0.02 15 0.04

QPBAND 0.16 1 0.30 1.08 1 1.28 1.84 2 1.99 0.09 2 0.19 0.40 2 0.54

QPNBAND 0.17 1 0.30 1.07 1 1.27 1.83 3 2.03 0.09 3 0.24 0.41 2 0.55

QPCBOEI1 0.01 1 0.01 0.02 2 0.02 0.01 3 0.01 0.00 12 0.01 0.00 12 0.01

QPCBOEI2 0.00 1 0.01 0.00 1 0.01 0.00 3 0.01 0.00 12 0.00 0.00 12 0.00

QPCSTAIR 0.01 1 0.01 0.02 1 0.02 0.01 3 0.02 0.00 12 0.01 0.00 14 0.01

QPNBOEI1 0.01 1 0.01 0.02 2 0.02 0.01 3 0.01 0.01 12 0.01 0.00 12 0.01

QPNBOEI2 0.00 1 0.00 0.00 1 0.01 0.00 3 0.01 0.00 12 0.00 0.00 12 0.00

QPNSTAIR 0.01 1 0.01 0.02 1 0.02 0.01 3 0.02 0.00 12 0.01 0.00 12 0.01

SOSQP1 0.01 0 0.01 0.04 0 0.04 0.04 0 0.05 0.03 1 0.04 0.05 1 0.05

STCQP1 rank deficient A rank deficient A 20.67 3 21.01 0.02 3 0.04 0.09 1 0.10

STCQP2 9.76 0 9.84 0.87 0 0.92 0.14 3 0.17 0.03 3 0.05 0.11 1 0.13

STNQP1 113.27 0 113.59 rank deficient A 20.75 3 21.09 0.02 3 0.04 0.09 1 0.11

STNQP2 9.64 0 9.72 0.87 0 0.92 0.14 3 0.17 0.03 3 0.05 0.11 1 0.13

UBH1 0.02 0 0.03 0.12 0 0.14 0.11 0 0.13 0.02 0 0.03 0.04 0 0.05

YAO 0.01 1 0.01 0.03 1 0.04 0.03 6 0.05 0.01 21 0.04 0.02 21 0.06

Table B.2: CUTEr QP problems—residual decrease of at least 10−8

Explicit factors Implicit factors

G = H G = I G22 = I G22 = H22

MA27 MA57 MA57 MA57 MA57

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.08 1 0.13 0.47 1 0.54 0.46 1 0.53 0.04 866 10.35 0.25 872 12.50

AUG2DQP 0.08 1 0.13 0.47 1 0.54 0.46 4 0.60 0.04 882 10.67 0.25 855 12.33

AUG3DCQP 1.56 1 1.66 1.54 1 1.67 1.45 1 1.57 0.05 378 6.04 0.79 377 8.18

AUG3DQP 1.59 1 1.69 1.29 1 1.42 1.46 5 1.75 0.05 381 5.90 0.78 380 8.27

BLOCKQP1 0.06 0 0.08 0.21 0 0.23 0.23 1 0.26 0.33 3 0.37 0.39 3 0.43

BLOCKQP2 0.06 0 0.08 0.21 0 0.23 0.23 2 0.26 0.33 3 0.37 0.39 3 0.43

BLOCKQP3 0.06 0 0.08 0.21 0 0.23 0.23 1 0.25 0.33 5 0.39 0.38 4 0.44

BLOWEYA 26.50 1 26.60 0.04 1 0.05 > 10000 iterations > 10000 iterations > 10000 iterations

BLOWEYB 26.29 1 26.39 0.04 1 0.05 0.05 216 0.99 0.03 668 1.23 > 10000 iterations

BLOWEYC 26.27 1 26.36 0.04 1 0.05 > 10000 iterations > 10000 iterations > 10000 iterations



APPENDIX B. SCHILDERS V EXPLICIT FACTORIZATION RESULTS179

Table B.2: CUTEr QP problems—residual decrease of at least 10−8 (continued)

Explicit factors Implicit factors

G = H G = I G22 = I G22 = H22

MA27 MA57 MA57 MA57 MA57

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

CONT-050 0.17 1 0.19 0.12 1 0.14 0.12 1 0.14 0.09 7 0.12 0.09 7 0.13

CONT-101 3.03 1 3.18 0.73 4 1.11 0.70 5 1.15 0.86 10 1.09 0.86 10 1.10

CONT-201 35.96 4 38.38 5.78 8 9.39 5.63 13 11.26 10.14 11 11.48 10.10 11 11.43

CONT5-QP 33.89 1 34.59 3.37 1 3.83 3.35 2 3.95 20.01 113 26.81 19.94 98 25.89

CONT1-10 2.81 1 2.95 0.68 1 0.80 0.66 1 0.77 0.90 10 1.13 0.91 10 1.16

CONT1-20 30.94 1 31.65 6.85 1 7.46 6.67 5 9.08 10.83 12 12.29 10.86 12 12.34

CONT-300 140.10 27 174.66 19.33 26 45.80 18.33 40 58.01 40.82 15 44.98 41.00 15 45.16

CVXQP1 579.20 0 580.15 3.99 0 4.11 0.20 5 0.27 0.21 211 1.49 0.24 207 1.94

CVXQP2 139.11 0 139.48 1.70 0 1.78 0.10 5 0.14 0.01 51 0.21 0.10 51 0.59

CVXQP3 1353.52 0 1355.13 9.93 0 10.13 0.32 5 0.42 0.33 183 1.62 0.34 178 1.71

DEGENQP 3.85 1 4.14 14.36 1 14.72 0.01 11 0.01 2.43 3 3.00 2.45 7 3.52

DUALC1 0.01 5 0.01 0.00 11 0.01 0.00 1 0.00 0.00 8 0.01 0.00 8 0.00

DUALC2 0.01 9 0.01 0.00 1 0.01 0.01 4 0.01 0.00 6 0.00 0.00 6 0.01

DUALC5 0.01 145 0.20 0.01 1 0.01 0.01 5 0.01 0.00 7 0.01 0.00 7 0.01

DUALC8 0.11 5 0.13 0.01 7 0.02 0.20 0 0.23 0.01 7 0.01 0.01 7 0.01

GOULDQP2 0.05 0 0.07 0.23 0 0.27 0.20 5 0.31 0.03 0 0.05 0.08 0 0.10

GOULDQP3 0.07 1 0.11 0.32 1 0.40 0.05 21 0.08 0.03 1614 18.95 0.08 1579 23.38

KSIP 0.01 1 0.02 0.05 1 0.06 0.04 5 0.05 0.02 18 0.05 0.02 10 0.04

MOSARQP1 0.02 1 0.03 0.04 1 0.04 0.20 5 0.27 0.06 36 0.10 0.07 35 0.13

NCVXQP1 573.69 0 574.65 4.10 0 4.22 0.20 5 0.27 0.21 215 1.51 0.24 204 1.89

NCVXQP2 584.17 0 585.14 4.02 0 4.14 0.20 6 0.28 0.20 212 1.50 0.24 212 2.00

NCVXQP3 573.04 0 573.98 4.15 0 4.28 0.11 5 0.14 0.20 210 1.46 0.23 204 1.92

NCVXQP4 138.52 0 138.90 1.71 0 1.79 0.10 5 0.14 0.01 51 0.20 0.10 51 0.60

NCVXQP5 130.26 0 130.64 1.69 0 1.76 0.10 6 0.15 0.01 51 0.20 0.10 50 0.59

NCVXQP6 139.37 0 139.75 1.70 0 1.79 0.32 5 0.42 0.01 51 0.21 0.10 51 0.61

NCVXQP7 1363.85 0 1365.49 10.03 0 10.23 0.33 5 0.43 0.33 189 1.69 0.34 176 1.67

NCVXQP8 1386.80 0 1388.45 10.07 0 10.26 0.33 5 0.42 0.33 191 1.69 0.34 176 1.70

NCVXQP9 1357.68 0 1359.31 10.12 0 10.32 0.09 20 0.23 0.33 193 1.69 0.34 179 1.71

POWELL20 0.03 0 0.05 0.09 0 0.11 0.00 11 0.01 0.01 40 0.21 0.07 40 0.31

PRIMALC1 0.00 1 0.00 0.00 1 0.01 0.00 4 0.00 0.00 25 0.01 0.00 12 0.01

PRIMALC2 0.00 1 0.00 0.00 1 0.01 0.00 10 0.01 0.00 9 0.00 0.00 9 0.00

PRIMALC5 0.00 1 0.00 0.00 1 0.01 0.01 7 0.01 0.00 15 0.01 0.00 10 0.01

PRIMALC8 0.01 1 0.01 0.01 1 0.01 0.01 14 0.02 0.00 20 0.01 0.00 10 0.01

PRIMAL1 0.01 1 0.01 0.01 1 0.02 0.03 8 0.03 0.00 153 0.08 0.00 158 0.09

PRIMAL2 0.01 1 0.01 0.03 1 0.03 0.06 6 0.07 0.00 86 0.06 0.01 92 0.08

PRIMAL3 0.03 1 0.03 0.06 1 0.06 0.03 5 0.04 0.01 74 0.14 0.01 80 0.15

PRIMAL4 0.04 1 0.04 0.03 1 0.03 14.34 2 14.80 0.01 41 0.07 0.02 44 0.09

QPBAND 0.16 1 0.30 1.08 1 1.28 1.84 5 2.19 0.09 7 0.46 0.40 5 0.78

QPNBAND 0.17 1 0.30 1.07 1 1.27 1.83 6 2.24 0.09 8 0.51 0.41 6 0.84

QPCBOEI1 0.01 1 0.01 0.02 5 0.02 0.01 5 0.02 0.00 47 0.03 0.00 47 0.03

QPCBOEI2 0.00 1 0.01 0.00 1 0.01 0.00 5 0.01 0.00 38 0.01 0.00 37 0.01

QPCSTAIR 0.01 1 0.01 0.02 1 0.02 0.01 8 0.02 0.00 40 0.02 0.00 52 0.03

QPNBOEI1 0.01 1 0.01 0.02 5 0.03 0.01 5 0.01 0.01 48 0.03 0.00 47 0.03

QPNBOEI2 0.00 1 0.00 0.00 1 0.01 0.00 5 0.01 0.00 37 0.01 0.00 37 0.01

QPNSTAIR 0.01 1 0.01 0.02 1 0.02 0.01 8 0.02 0.00 40 0.02 0.00 56 0.03

SOSQP1 0.01 0 0.01 0.04 0 0.04 0.04 0 0.05 0.03 1 0.04 0.05 1 0.05

STCQP1 rank deficient A rank deficient A 20.67 6 21.35 0.02 6 0.05 0.09 1 0.10

STCQP2 9.76 0 9.84 0.87 0 0.92 0.14 7 0.20 0.03 7 0.07 0.11 1 0.13

STNQP1 113.27 0 113.59 rank deficient A 20.75 6 21.43 0.02 6 0.05 0.09 1 0.11

STNQP2 9.64 0 9.72 0.87 0 0.92 0.14 8 0.22 0.03 8 0.08 0.11 1 0.13

UBH1 0.02 0 0.03 0.12 0 0.14 0.11 0 0.13 0.02 0 0.03 0.04 0 0.05

YAO 0.01 1 0.01 0.03 1 0.04 0.03 26 0.11 0.01 107 0.18 0.02 106 0.23



Appendix C

Generation of the implicit
factorization families

We examine each of the sub-cases mentioned in Section 7.1 in detail. Note

that for general P and B as partitioned in (7.1.4), we have

A1 = (P31B11 + P32B21)P
T
11 +

(
P31B
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)
P T
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(
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(
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P T
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+P33B33P
T
33.

Case 1: (7.1.8) and (7.1.11) hold

If (7.1.8) and (7.1.11) hold, then P31, P22, B11, B22 and B33 are required to be

nonsingular, and

A1 = P33B33A1, (C.0.1)

A2 = P31B11P
T
21 + P33B33A2, (C.0.2)

−C = P31B11P
T
31 + P33B33P

T
33. (C.0.3)

Equation C.0.1 implies that

P33B33 = I (C.0.4)
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and, hence, that P33 is symmetric. Equation C.0.2 forces P31B11P
T
21 = 0, and

thus that

P21 = 0

since P31 and B11 are nonsingular. Finally, (C.0.3) becomes

−C = P31B11P
T
31 + P33. (C.0.5)

We therefore have

P =




0 0 AT
1

0 P22 AT
2

P31 0 P33


 and B =



B11 0 0

0 B22 0

0 0 B33


 , (C.0.6)

where

B11 = −P−1
31 (C + P33)P

−T
31 and B33 = P−1

33 . (C.0.7)

Case 2: (7.1.8) and (7.1.12) hold

If (7.1.8) and (7.1.12) hold, then P31, P22, B31 and B22 are required to be

nonsingular, and

A1 = P31B
T
31A1, (C.0.8)

A2 = P31B
T
31A2 + P31B11P

T
21 + P31B

T
21P

T
22 + P33B31P

T
21, (C.0.9)

−C = P31B
T
31P

T
33 + P31B11P

T
31 + P33B31P

T
31. (C.0.10)

Equation C.0.8 implies that

P31B
T
31 = I, (C.0.11)

holds. It then follows from (C.0.10) and (C.0.11) that

P33 + P T
33 + P31B11P

T
31 = −C. (C.0.12)

The remaining requirement (C.0.9) implies that P31B11P
T
21+P31B

T
21P

T
22+P33B31P

T
21 =

0, which is most easily guaranteed if either

B21 = 0 and P21 = 0 (C.0.13)

or

B21 = 0 and P31B11 = −P33B31 (C.0.14)

or

B21 = 0, B11 = 0 and P33 = 0. (C.0.15)
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When (C.0.13) holds, it follows from (C.0.11) and (C.0.12) that

P =




0 0 AT
1

0 P22 AT
2

P31 0 P33


 and B =



B11 0 BT

31

0 B22 0

B31 0 0


 , (C.0.16)

where

B31 = P−1
31 and P33 + P T

33 + P31B11P
T
31 = −C. (C.0.17)

In the case of (C.0.14),

P =




0 0 AT
1

0 P22 AT
2

P31 0 −C


 and B =



B11 0 BT

31

0 B22 0

B31 0 0


 , (C.0.18)

where

B31 = P−1
31 and P31B11P

T
31 = C, (C.0.19)

as then

P33 + P31B11P
T
31 = P33 − P33B31P

T
31 = P33 − P33 = 0

from (C.0.11) and (C.0.14) and hence P33 = P T
33 = −C from (C.0.12). Finally,

(C.0.15) can only hold when C = 0, and is a special instance of (C.0.18)—

(C.0.19).

Case 3: (7.1.8) and (7.1.13) hold

If (7.1.8) and (7.1.13) hold, then P31, P22, B31 and B22 are required to be

nonsingular, and

A1 = P31B
T
31A1 + P33B33A1, (C.0.20)

A2 = P31B
T
31A2 + P33B33A2 + P33

(
B31P

T
21 +B32P

T
22

)
, (C.0.21)

−C = P31B
T
31P

T
33 + P33B33P

T
33 + P33B31P

T
31. (C.0.22)

Equation C.0.20 implies that either (C.0.11) holds and either P33 = 0 or

B33 = 0, or

P33B33 = I − P31B
T
31 (C.0.23)

with nonzero P33 and B33. It is easy to see that requirement (C.0.22) cannot

hold when P33 = 0 unless C = 0, this will then be a special case of Family
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10. So suppose instead that (C.0.11) holds and that B33 = 0. In this case, the

requirement (C.0.22) is simply that

P33 + P T
33 = −C,

while (C.0.21) additionally requires that

B31P
T
21 +B32P

T
22 = 0. (C.0.24)

This results in

P =




0 0 AT
1

P21 P22 AT
2

P31 0 P33


 and B =


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0 0 BT
31

0 B22 BT
32

B31 B32 0


 , (C.0.25)

where

B31 = P−T
31 , P21 = −P22B

T
32B

−T
31 and P33 + P T

33 = −C. (C.0.26)

Suppose that (C.0.23) holds with nonzero P33 and B33. Then the require-

ment (C.0.22) is that

−C = (I − P33B33)P
T
33 +P33B33P

T
33 +P33 (I −B33P33) = P33 +P T

33−P33B33P
T
33

while once again (C.0.24) holds since P22 6= 0. Thus, we have

P =



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1

P21 P22 AT
2
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
 and B =


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0 0 BT
31

0 B22 BT
32

B31 B32 0


 , (C.0.27)

where

B31 =
(
I −B33P

T
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P−T

31 , B33 = P−1
33 +P−T

33 +P−1
33 CP

−T
33 and B32 = −B31P

T
21P
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(C.0.28)

Case 4: (7.1.9) and (7.1.11) hold

If (7.1.9) and (7.1.11) hold, then P31, P22, B11, B22 and B33 are required to be

nonsingular, and

A1 = P33B33A1, (C.0.29)

A2 = P33B33A2 + P32B22P
T
22, (C.0.30)

−C = P33B33P
T
33 + P32B22P

T
32 + P31B11P

T
31. (C.0.31)

As in case 1, (C.0.29) implies that (C.0.4) holds (and thus P33 is symmetric).

Requirement (C.0.30) then forces P32B22P
T
22 = 0, and thus that P32 = 0 since

P22 and B22 are nonsingular. Requirement (C.0.31) then leads to (C.0.5), and

hence exactly the same conclusions as for case 1.
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Case 5: (7.1.9) and (7.1.12) hold

If (7.1.9) and (7.1.12) hold, then P31, P22, B31 and B22 are required to be

nonsingular, and

A1 = P31B
T
31A1, (C.0.32)

A2 = P331B
T
31A2 +

(
P31B

T
21 + P32B22

)
P T

22, (C.0.33)

−C = P31B
T
31P

T
33 +

(
P31B

T
21 + P32B22

)
P T

32 + P33B31P
T
31

+ (P31B11 + P32B21)P
T
31. (C.0.34)

As in case 2, (C.0.32) implies that (C.0.11) holds. Requirement (C.0.33) and

the nonsingularity of P22 together imply that

P31B
T
21 + P32B22 = 0.

Thus wither

B21 = 0 and P32 = 0

or

P32 = −P31B
T
21B

−1
22 with nonzero B21andP32

since B31 and P22 are nonsingular. The first of these two cases is identical to

(C.0.6)–(C.0.17) under the requirement (C.0.34). Under the same requirement,

simple manipulation for the second case gives

P =




0 0 AT
1

0 P22 AT
2

P31 P32 P33


 and B =




0 0 BT
31

0 B22 BT
32

B31 B32 B33


 , (C.0.35)

where

B31 = P−T
31 , P33+P

T
33 = −C−P31

(
B11 −BT

21B
−1
22 B21

)
P T

31 and P32 = −P31B
T
21B

−1
22 .

(C.0.36)
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Case 6: (7.1.9) and (7.1.13) hold

If (7.1.9) and (7.1.13) hold, then P31, P22, B31 and B22 are required to be

nonsingular, and

A1 =
(
P31B

T
31 + P32B

T
32 + P33B33

)
A1, (C.0.37)

A2 =
(
P31B

T
31 + P32B

T
32 + P33B33

)
A2 + (P32B22 + P33B32)P

T
22,

(C.0.38)

−C =
(
P31B

T
31 + P32B

T
32 + P33B33

)
P T

33 + (P32B22 + P33B32)P
T
32

+P33B31P
T
31. (C.0.39)

The requirement (C.0.37) implies that either

P31B
T
31 + P32B

T
32 = I, (C.0.40)

and either P33 = 0 or B33 = 0, or

P31B31 = I − P32B
T
32 − P33B33 (C.0.41)

with nonzero P33 and B33. As in case 3, it is easy to see that it is not possible

for the requirement (C.0.39) to hold when P33 = 0 unless C = 0, and this is

just a case of Family 10. Suppose instead that (C.0.40) holds and that B33 = 0.

Then the nonsingularity of P22 and B22 and the requirement (C.0.38) together

imply that

P32 = −P33B32B
−1
22 .

Requirement (C.0.39) then becomes

P33 + P T
33 + P33B32B

−1
22 B

T
32P

T
33 = −C. (C.0.42)

This then results in

P =




0 0 AT
1

0 P22 AT
2

P31 P32 P33


 and B =




0 0 BT
31

0 B22 BT
32

B31 B32 0


 , (C.0.43)

where

P33 + P T
33 + P33B32B

−1
22 B

T
32P

T
33 = −C,

P32 = −P33B32B
−1
22 , and P31 =

(
I − P32B

T
32

)
B−T

31 .
(C.0.44)

Note that although (C.0.42) restricts the choice of B32 and B22, it is easily

satisfied, for example, when B32 = 0.
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Suppose that (C.0.41) holds with nonzero P33 and B33. Then, once again,

the nonsingularity of P22 and B22 and the requirement (C.0.38) together imply

that (C.0.42) holds, while (C.0.41) and (C.0.42) show that the requirement

(C.0.39) holds whenever

−C = P33 + P T
33 + P32B22P

T
32 − P33B33P

T
33

= P33 + P T
33 + P33

(
B32B

−1
22 B

T
32 −B33

)
P T

33.

Hence, we obtain

P =




0 0 AT
1

0 P22 AT
2

P31 P32 P33


 and B =




0 0 BT
31

0 B22 BT
32

B31 B32 B33


 , (C.0.45)

where

P33 + P T
33 + P33

(
B32B

−1
22 B

T
32 −B33

)
P T

33 = −C,
P32 = −P33B32B

−1
22 , and P31 =

(
I − P32B

T
32 − P33B33

)
B−T

31 .
(C.0.46)

Observe that (C.0.43)–(C.0.44) is the special case B33 = 0 of (C.0.45)–(C.0.46).

Case 7: (7.1.10) and (7.1.11) hold

If (7.1.10) and (7.1.11) hold, then P31, P22, B22 and B33 are required to be

nonsingular, and

A1 = P31B11P
T
11, A2 = P31B11P

T
21 and − C = P31B11P

T
31.

This then leads to the requirement that C is nonsingular and

P11 = AT
1 , P21 = AT

2 , P31 = −C and B11 = −C−1.

Hence,

P =



AT

1 0 AT
1

AT
2 P22 AT

2

−C P32 P33


 and B =



−C−1 0 0

0 B22 0

0 0 B33


 . (C.0.47)
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Case 8: (7.1.10) and (7.1.12) hold

If (7.1.10) and (7.1.12) hold, then P31, P22, B31 and B22 are required to be

nonsingular, and

A1 = P31B
T
31A1 + P31B11P

T
11, (C.0.48)

A2 = P31B
T
31A2 + P31B11P

T
21 + P31B

T
21A2, (C.0.49)

−C = P31B
T
11P

T
31. (C.0.50)

In reverse order, these give

B11 = −P−1
31 CP

−T
31 ,

B31 = P−T
31 − A−T

1 P11B11,

and B21 = P−1
22

(
P21 − AT

2A
−T
1 P11

)
B11.

There is very little reason to believe that B31 will be easily invertible in general,

but if P11 = AT
1M for some diagonal M and if P31 and B11 are also diagonal,

then it may be. This leads to

P =



P11 0 AT

1

P21 P22 AT
2

P31 0 0


 and B =



B11 BT

21 BT
31

B21 B22 0

B31 0 0


 , (C.0.51)

where

B11 = −P−1
31 CP

−T
31 , B31 = P−T

31 −MB11,

B21 = P−1
22

(
P21 − AT

2M
)
B11 and P11 = AT

1M
(C.0.52)

for some suitable M.

Case 9: (7.1.10) and (7.1.13) hold

If (7.1.10) and (7.1.13) hold, then P31, P22, B31 and B22 are required to be

nonsingular, and

A1 = P31B
T
31A1, A2 = P31B

T
31A2 and − C = 0.

Thus, the matrix C is required to be equal to the zero matrix of appropriate

size. This gives

P =




P11 0 AT
1

P21 P22 AT
2

B−T
31 0 0


 and B =




0 0 BT
31

0 B22 BT
32

B31 B32 B33


 . (C.0.53)
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Case 10: (7.1.8) and (7.1.14) hold

If (7.1.8) and (7.1.14) hold, then P31, P22 and B22 are required to be nonsin-

gular, and

A1 = P31B
T
31A1 + P33B33A1, (C.0.54)

A2 = P31B
T
31A2 + P33B33A2 + P31B11P

T
21 + P33B31P

T
21, (C.0.55)

−C = P31B
T
31P

T
33 + P33B33P

T
33 + P31B11P

T
31 + P33B31P

T
31. (C.0.56)

Requirement (C.0.54) implies that

P31B
T
31 + P33B33 = I, (C.0.57)

whilst (C.0.55) gives either

P31B11 + P33B31 = 0 (C.0.58)

or

P31B11 + P33B31 6= 0 and P21 = 0. (C.0.59)

If (C.0.57) and (C.0.58) hold, requirement (C.0.56) is simply P33 = −C. If C

is invertible, this leads to

P =




0 0 AT
1

P21 P22 AT
2

P31 0 P33


 and B =



B11 0 BT

31

0 B22 0

B31 0 B33


 , (C.0.60)

where

P33 = −C, P T
31 = −B−1

11 B
T
31P

T
33 and B33 =

(
I −B31P

T
31

)
P−T

33 . (C.0.61)

However, since solves with B simply involve B22 and

[
B11 BT

31

B31 B33

]
=

[
B11 0

B31 I

][
B−1

11 0

0 C−1

][
BT

11 BT
31

0 I

]
, (C.0.62)

the block form of (C.0.62) indicates that only products with C, and not its

inverse, are required when solving with B, and that B33 need not be formed.

If C is singular, then (C.0.57) and (C.0.58) give that

P33 = −C, B31 = (I +B33C)P−T
31 and B11 = P−1

31 (C + CP33C)P−T
31 .

(C.0.63)
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As before, solves with B simply involve B22 and

[
B11 BT

31

B31 B33

]
=

[
P−1

31 0

0 I

][
CB33C + C I + CB33

I +B33C B33

][
P−T

31 0

0 I

]
,

and, hence, we need to ensure that

[
CB33C + C I + CB33

I +B33C B33

]
=

[
C I

I 0

]
+

[
C

I

]
B33

[
C I

]
(C.0.64)

is non-singular (and has the correct inertia). The possibility B33 = 0 is that

given by (C.0.18) in Case 2, but an interesting alternative is when B33 is chosen

so that

B33C = 0. (C.0.65)

In this case, (C.0.63) becomes

P33 = −C, B31 = P−T
31 and B11 = P−1

31 CP
−T
31 , (C.0.66)

and (C.0.64) gives

[
CB33C + C I + CB33

I +B33C B33

]
=

[
C I

I B33

]
=

[
I 0

B33 I

][
C I

I 0

]
(C.0.67)

which is clearly (block) invertible.

If (C.0.57) and (C.0.59) hold, then the requirement (C.0.56) becomes

−C = P T
33 + P31B11P

T
31 + P33B31P

T
31

which leads to

P =




0 0 AT
1

P21 P22 AT
2

P31 0 P33


 and B =



B11 0 BT

31

0 B22 0

B31 0 B33


 , (C.0.68)

where

P31 = (I − P33B33)B
−T
31 and B11 = P−1

31

(
P33B33P

T
33 − C − P33 − P T

33

)
P−T

31 .

(C.0.69)
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Case 11: (7.1.9) and (7.1.14) hold

If (7.1.9) and (7.1.14) hold, then P31, P22 and B22 are required to be nonsin-

gular, and

A1 = P31B
T
31A1 + P33B33A1, (C.0.70)

A2 = P31B
T
31A2 + P33B33A2 + P32B22P

T
22, (C.0.71)

−C =
P31B

T
31P

T
33 + P33B33P

T
33 + P31B11P

T
31

+P33B31P
T
31 + P32B22P

T
32.

(C.0.72)

To satisfy the requirement (C.0.70), then (C.0.57) must hold. Requirement

(C.0.71) and the nonsingularity of P22 and B22 force P32 = 0. This case is then

simply a subcase of the previous one.

Case 12: (7.1.10) and (7.1.14) hold

If (7.1.10) and (7.1.14) hold, then P31, P22 and B22 are required to be nonsin-

gular, and

A1 = P31B
T
31A1 + P31B11P

T
11, (C.0.73)

A2 = P31B
T
31A2 + P31B11P

T
21, (C.0.74)

−C = P31B11P
T
31. (C.0.75)

As in case 8, the requirements (C.0.73) and C.0.75 respectively imply that

B11 = −P−1
31 CP

−T
31 and B31 = P−T

31 − A−T
1 P11B11.

Requirement (C.0.74) imposes that B11

(
P T

21 − P T
11A

−1
1 A2

)
= 0, which is cer-

tainly satisfied when

P T
21 = P T

11A
−1
1 A2.

The latter is true, for example, if P11 = AT
1M and P21 = AT

2M for a given

matrix M. In general, we thus have that

P =



P11 0 AT

1

P21 P22 AT
2

P31 0 0


 and B =



B11 0 BT

31

0 B22 0

B31 0 B33


 , (C.0.76)

where

B11 = −P−1
31 CP

−T
31 , B31 = P−T

31 − A−T
1 P11B11 and P T

21 = P T
11A

−1
1 A2.
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The warnings concerning the easy invertibility of B31 we mentioned for the

case 8 equally apply here, so we actually require

B11 = −P−1
31 CP

−T
31 , B31 = P−T

31 −MB11, P11 = AT
1M and P T

21 = AT
2M,

(C.0.77)

for some suitable (diagonal) M.



Appendix D

Implicit factorization families
and the matrix G which arises

Here we examine the matrix G which arises for each of the families mentioned

in Section 7.1. Note that for general P and B partitioned as is (7.1.4), we have

G11 = P11B11P
T
11 + P11B

T
21P

T
12 + P11B

T
31A1 + P12B21P

T
11 + P12B22P

T
12

+P12B
T
32A1 + AT

1B31P
T
11 + AT

1B32P
T
12 + AT

1B33A1,

G21 = P21B11P
T
11 + P21B

T
21P

T
12 + P21B

T
31A1 + P22B21P

T
11 + P22B22P

T
12

+P22B
T
32A1 + AT

2B31P
T
11 + AT

2B32P
T
12 + AT

2B33A1,

G22 = P21B11P
T
21 + P21B

T
21P

T
22 + P21B

T
31A2 + P22B21P

T
21 + P22B22P

T
22

+P22B
T
32A2 + AT

2B31P
T
21 + AT

2B32P
T
22 + AT

2B33A2.

Family 1: (7.1.8) and (7.1.11) hold

In this case

G11 = AT
1B33A1,

G21 = AT
2B33A1,

G22 = P21B11P
T
21 + P22B22P

T
22 + AT

2B33A2.

Since P21 = 0 for Family 1, G22 becomes

G22 = P22B22P
T
22 + AT

2B33A2.

192
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Families 2 and 3: (7.1.8) and (7.1.12) hold

In this case

G11 = 0,

G21 = P21B
T
31A1,

G22 = P21B11P
T
21 + P21B

T
21P

T
22 + P21B

T
31A2 + P22B21P

T
21 + P22B22P

T
22

+AT
2B31P

T
21.

For Family 2, B21 = 0 and P21 = 0, so that G21 and G22 become

G21 = 0,

G22 = P22B22P
T
22.

For Family 3, B21 = 0, so that G22 becomes

G22 = P21B11P
T
21 + P21B

T
31A2 + P22B22P

T
22 + AT

2B31P
T
21.

Families 4 and 5: (7.1.8) and (7.1.13) hold

In this case

G11 = AT
1B33A1,

G21 = P21B
T
31A1 + P22B

T
32A1 + AT

2B33A1,

G22 = P21B
T
31A2 + P22B22P

T
22 + P22B

T
32A2 + AT

2B31P
T
21 + AT

2B32P
T
22

+AT
2B33A2.

For both families, (C.0.24) holds, and thus

G21 = AT
2B33A1,

G22 = P22B22P
T
22 + AT

2B33A2.

In addition, for Family 4, B33 = 0, so

G22 = P22B22P
T
22.

Family 6: (7.1.9) and (7.1.12) hold

In this case

G11 = 0,

G21 = 0,

G22 = 0P22B22P
T
22.
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Family 7: (7.1.9) and (7.1.13) hold

In this case

G11 = AT
1B33A1,

G21 = P22B
T
32A1 + AT

2B33A1,

G22 = P22B22P
T
22 + P22B

T
32A2 + AT

2B32P
T
22 + AT

2B33A2.

Family 8: (7.1.10) and (7.1.11) hold

In this case

G11 = P11B11P
T
11 + AT

1B33A1,

G21 = P21B11P
T
11 + AT

2B33A1,

G22 = P21B11P
T
21 + P22B22P

T
22 + AT

2B33A2.

But since P11 = AT
1 , P21 = AT

2 and B11 = −C−1, we have

G11 = AT
1

(
B33 − C−1

)
A1,

G21 = AT
2

(
B33 − C−1

)
A1,

G22 = P22B22P
T
22 + AT

2

(
B33 − C−1

)
A2.

Family 9: (7.1.10) and (7.1.12) hold

In this case

G11 = P11B11P
T
11 + P11B

T
31A1 + AT

1B31P
T
11,

G21 = P21B11P
T
11 + P21B

T
31A1 + P22B21P

T
11 + AT

2B31P
T
11,

G22 = P21B11P
T
21 + P21B

T
21P

T
22 + P21B

T
31A2 + P22B21P

T
21 + P22B22P

T
22

+AT
2B31P

T
21.

Family 10: (7.1.10) and (7.1.13) hold

In this case

G11 = P11B
T
31A1 + AT

1B31P
T
11 + AT

1B33A1,

G21 = P21B
T
31A1 + P22B

T
32A1 + AT

2B31P
T
11 + AT

2B33A1,

G22 = P21B
T
31A2 + P22B22P

T
22 + P22B

T
32A2 + AT

2B31P
T
21 + AT

2B32P
T
22

+AT
2B33A2.
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Families 11, 12 and 13: (7.1.8) and (7.1.14) hold

In this case

G11 = AT
1B33A1,

G21 = P21B
T
31A1 + P22B

T
32A1 + AT

2B31P
T
11 + AT

2B33A1,

G22 = P21B11P
T
21 + P21B

T
31A2 + P22B22P

T
22 + AT

2B31P
T
21 + AT

2B33A2.

For Family 13, P21 = 0, and thus

G21 = P22B
T
32A1 + AT

2B31P
T
11 + AT

2B33A1,

G22 = P22B22P
T
22 + AT

2B33A2.

Family 14: (7.1.10) and (7.1.14) hold

In this case

G11 = P11B11P
T
11 + P11B

T
31A1 + AT

1B31P
T
11 + AT

1B33A1,

G21 = P21B11P
T
11 + P21B

T
31A1 + AT

2B31P
T
11 + AT

2B33A1,

G22 = P21B11P
T
21 + P21B

T
31A2 + P22B22P

T
22 + AT

2B31P
T
21 + AT

2B33A2.



Appendix E

CUTEr QP problems: Complete
tables

The following appendix gives complete results corresponding to the numerical

experiments carried out in Section 7.3. The factorization times “fact,” iteration

counts “iter” and total CPU times “total” are given for different choices of

preconditioner.

Table E.1: CUTEr QP problems—residual decrease of at least 10−2 and C = I

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.38 1 0.45 0.12 1 0.18 0.07 13 0.19 0.07 267 1.94 0.02 36 0.30

AUG2DQP 0.12 1 0.18 0.12 1 0.18 0.06 13 0.17 0.03 268 1.89 0.02 36 0.29

AUG3DCQP 0.16 1 0.24 0.16 1 0.24 0.06 24 0.24 0.03 96 0.74 0.03 37 0.33

AUG3DQP 0.16 1 0.24 0.16 1 0.24 0.07 25 0.26 0.03 96 0.75 0.03 37 0.33

BLOCKQP1 5.03 1 33.28 4.98 1 33.15 0.14 1 28.20 0.06 1 28.18 0.06 1 28.09

BLOCKQP2 4.98 1 33.13 5.02 1 33.14 0.14 1 28.22 0.06 1 28.17 0.07 1 28.16

BLOCKQP3 4.96 1 33.03 5.04 1 33.13 0.14 1 28.08 0.06 1 28.10 0.06 1 28.07

BLOWEYA 0.27 1 0.33 16.58 1 16.69 0.06 1 0.10 0.05 1 0.09 0.05 1 0.09

BLOWEYB 0.28 1 0.34 16.52 1 16.63 0.06 1 0.10 0.05 1 0.09 0.05 1 0.08

BLOWEYC 0.29 1 0.35 14.75 1 14.87 0.07 1 0.11 0.05 1 0.09 0.05 1 0.09

CONT-050 0.36 1 0.53 0.61 1 0.81 0.05 1 0.17 0.01 1 0.13 0.01 1 0.13

CONT-101 2.17 1 3.33 4.39 1 5.84 0.20 0 1.02 0.06 0 0.87 0.05 0 0.87

CONT-201 13.18 1 21.04 29.63 1 38.82 0.86 0 6.94 0.24 0 6.27 0.24 0 6.30

CONT1-10 2.16 1 3.35 4.22 1 5.57 0.20 1 1.08 0.05 1 0.93 0.05 1 0.92

CONT1-20 13.33 1 21.64 29.07 1 38.37 0.85 0 7.48 0.25 0 6.84 0.25 0 6.78

CONT5-QP ran out of memory ran out of memory 0.91 1 6.63 0.24 1 5.94 0.25 1 5.92

CVXQP1 48.16 1 50.38 139.83 1 142.34 0.18 2 0.36 0.13 1310 43.43 0.12 1258 42.24

CVXQP2 27.27 1 28.66 29.21 1 30.67 0.11 3 0.21 0.30 523 21.98 0.30 130 5.63

CVXQP3 53.57 1 56.33 78.67 1 82.48 0.45 1 0.89 0.16 1 0.59 0.06 1 0.48

DUALC1 0.13 1 0.23 0.03 1 0.06 0.01 1 0.03 0.01 1 0.02 0.01 3 0.03

DUALC2 0.03 1 0.05 0.03 1 0.05 0.01 1 0.04 0.01 1 0.03 0.01 0 0.02

DUALC5 0.04 1 0.07 0.13 1 0.16 0.02 10 0.06 0.01 1 0.03 0.01 563 0.81

DUALC8 0.10 1 0.23 0.10 1 0.20 0.04 1 0.15 0.01 1 0.11 0.01 7 0.12

GOULDQP2 0.85 1 1.04 0.79 1 1.04 0.27 4 0.45 0.12 13 0.60 0.11 14 0.65

GOULDQP3 0.81 1 0.99 0.92 1 1.23 0.27 4 0.46 0.11 13 0.78 0.11 15 0.98

KSIP 0.50 1 1.04 0.50 1 1.02 0.06 2 0.59 0.01 2 0.55 0.01 2 0.55

MOSARQP1 0.09 1 0.13 0.09 1 0.13 0.04 7 0.09 0.02 5 0.08 0.02 5 0.08

NCVXQP1 117.67 1 119.93 141.30 1 143.77 0.14 2 0.32 9.66 1420 69.96 9.64 676 38.51

NCVXQP2 129.22 1 131.48 141.86 1 144.34 0.14 3 0.35 9.64 1 9.82 9.65 31 11.12

NCVXQP3 128.41 1 130.66 129.05 1 131.54 0.14 2 0.32 9.64 1197 60.17 8.36 1047 52.77

NCVXQP4 89.54 1 90.99 93.00 1 94.49 0.12 2 0.20 19.55 564 51.00 19.44 4 19.73

NCVXQP5 89.18 1 90.61 84.34 1 85.80 0.14 3 0.25 19.56 790 62.90 22.38 9 22.94

NCVXQP6 88.20 1 89.58 91.74 1 93.18 0.14 3 0.24 18.91 522 47.40 18.91 161 27.79

NCVXQP7 628.16 1 632.70 82.54 1 86.56 0.34 1 0.78 0.17 1 0.61 0.06 1 0.47

NCVXQP8 61.02 1 64.21 84.22 1 88.60 0.28 1 0.73 0.19 1 0.65 0.07 1 0.52

NCVXQP9 54.51 1 57.44 85.05 1 88.96 0.29 1 0.74 2.20 1 2.66 2.10 1 2.53

POWELL20 0.34 1 0.47 0.32 1 0.46 0.14 1 0.20 0.06 13 0.31 0.06 14 0.32
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Table E.1: CUTEr QP problems—residual decrease of at least 10−8 (continued)

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

PRIMAL1 0.11 1 0.76 0.11 1 0.12 0.05 19 0.08 0.01 8 0.03 0.01 2 0.02

PRIMAL2 0.16 1 0.17 0.16 1 0.17 0.05 18 0.09 0.02 2 0.03 0.03 2 0.04

PRIMAL3 0.57 1 0.60 0.59 1 0.62 0.04 25 0.14 0.02 2 0.04 0.01 2 0.03

PRIMAL4 0.30 1 0.32 0.30 1 0.32 0.05 15 0.11 0.01 2 0.03 0.02 2 0.03

PRIMALC1 0.01 1 0.02 0.02 1 0.02 0.02 2 0.03 0.01 248 0.25 0.01 30 0.04

PRIMALC2 0.02 1 0.02 0.03 1 0.03 0.03 2 0.03 0.01 245 0.24 0.01 245 0.24

PRIMALC5 0.02 1 0.02 0.02 1 0.02 0.05 2 0.05 0.02 7 0.03 0.02 7 0.03

PRIMALC8 0.04 1 0.04 0.03 1 0.04 0.02 2 0.03 0.02 64 0.12 0.01 6 0.02

QPBAND 0.42 1 0.55 0.42 1 0.57 0.19 2 0.26 0.15 16 0.77 0.15 14 0.71

QPNBAND 0.53 1 0.70 0.43 1 0.59 0.18 3 0.27 0.15 12 0.61 0.15 12 0.63

QPCBOEI1 0.05 1 0.09 0.06 1 0.10 0.02 16 0.09 0.01 2 0.04 0.01 2 0.04

QPCBOEI2 0.09 1 0.11 0.09 1 0.11 0.02 2 0.03 0.02 1 0.02 0.02 1 0.03

QPNBOEI1 0.43 1 0.47 0.05 1 0.09 0.03 16 0.09 0.01 3 0.05 0.01 2 0.05

QPNBOEI2 0.11 1 0.12 0.09 1 0.11 0.02 2 0.03 0.01 1 0.02 0.01 1 0.02

QPCSTAIR 0.05 1 0.11 0.05 1 0.11 0.02 3 0.08 0.01 13 0.09 0.01 5 0.07

QPNSTAIR 0.05 1 0.11 0.06 1 0.12 0.02 4 0.08 0.01 9 0.08 0.01 5 0.07

SOSQP1 0.12 1 0.17 0.12 1 0.18 0.07 1 0.10 0.03 1 0.06 0.03 1 0.06

STCQP2 0.86 1 0.96 1.47 1 1.62 0.05 4 0.12 0.09 1 0.13 0.09 2622 38.05

STNQP2 63.37 1 63.72 66.32 1 66.82 0.12 8 0.38 6.52 247 17.24 0.27 15 0.86

UBH1 0.34 1 0.52 0.33 1 0.52 0.13 2 0.29 0.05 1 0.17 0.05 4 0.23

Table E.2: CUTEr QP problems—residual decrease of at least 10−2 and C = I

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.38 1 0.44 0.12 1 0.18 0.07 157 1.11 0.07 1220 8.48 0.02 89 0.66

AUG2DQP 0.12 1 0.18 0.12 1 0.18 0.06 165 1.14 0.03 1271 8.83 0.02 670 4.60

AUG3DCQP 0.16 1 0.24 0.16 1 0.24 0.06 106 0.75 0.03 1684 11.91 0.03 2621 18.50

AUG3DQP 0.16 1 0.24 0.16 1 0.24 0.07 106 0.76 0.03 273 1.98 0.03 50 0.42

BLOCKQP1 5.03 1 33.06 4.98 1 33.11 0.14 1 28.22 0.06 2 28.20 0.06 2 28.14

BLOCKQP2 4.98 1 33.02 5.02 1 33.31 0.14 1 28.27 0.06 2 28.15 0.07 2 28.13

BLOCKQP3 4.96 1 33.06 5.04 1 33.15 0.14 1 28.24 0.06 2 28.17 0.06 2 28.23

BLOWEYA 0.27 1 0.32 16.58 1 16.69 0.06 1 0.09 0.05 1 0.09 0.05 1 0.09

BLOWEYB 0.28 1 0.33 16.52 1 16.63 0.06 1 0.10 0.05 1 0.09 0.05 1 0.08

BLOWEYC 0.29 1 0.35 14.75 1 14.87 0.07 1 0.11 0.05 1 0.09 0.05 1 0.09

CONT-050 0.36 1 0.53 0.61 1 0.81 0.05 9 0.23 0.01 28 0.34 0.01 29 0.35

CONT-101 2.17 1 3.33 4.39 1 5.82 0.20 0 1.03 0.06 0 0.86 0.05 0 0.84

CONT-201 13.18 1 21.05 29.63 1 38.79 0.86 0 6.97 0.24 0 6.25 0.24 0 6.34

CONT1-10 2.16 1 3.34 4.22 1 5.57 0.20 6 1.26 0.05 28 1.80 0.05 30 1.90

CONT1-20 13.33 1 21.66 29.07 1 38.44 0.85 0 7.52 0.25 0 6.76 0.25 0 6.77

CONT5-QP ran out of memory ran out of memory 0.91 1 6.71 0.24 110 30.72 0.25 147 37.19

CVXQP1 48.16 1 50.39 139.83 1 142.36 0.18 51 1.56 0.13 9237 305.76 0.12 4165 138.96

CVXQP2 27.27 1 28.67 29.21 1 30.67 0.11 369 7.39 0.30 9400 380.46 0.30 1353 55.55

CVXQP3 53.57 1 56.32 78.67 1 82.50 0.45 3 0.98 0.16 9291 369.75 0.06 5782 224.38

DUALC1 0.13 1 0.14 0.03 1 0.05 0.01 16 0.05 0.01 2 0.02 0.01 15 0.04

DUALC2 0.03 1 0.05 0.03 1 0.05 0.01 9 0.05 0.01 1 0.03 0.01 0 0.02

DUALC5 0.04 1 0.07 0.13 1 0.16 0.02 11 0.06 0.01 135 0.22 0.01 563 0.82

DUALC8 0.10 1 0.20 0.10 1 0.21 0.04 13 0.18 0.01 997 2.16 0.01 14 0.13

GOULDQP2 0.85 1 1.04 0.79 1 1.04 0.27 17 0.87 0.12 317 11.63 0.11 715 25.62

GOULDQP3 0.81 1 0.99 0.92 1 1.23 0.27 18 0.93 0.11 96 4.63 0.11 673 31.52

KSIP 0.50 1 1.02 0.50 1 1.03 0.06 8 0.61 0.01 6 0.57 0.01 6 0.57

MOSARQP1 0.09 1 0.13 0.09 1 0.13 0.04 50 0.27 0.02 295 2.07 0.02 952 6.58

NCVXQP1 117.67 1 119.93 141.30 1 143.77 0.14 61 1.73 9.66 9557 416.62 9.64 1802 86.77

NCVXQP2 129.22 1 131.49 141.86 1 144.36 0.14 9942 236.88 9.64 1 9.82 9.65 31 11.10

NCVXQP3 128.41 1 130.67 129.05 1 131.54 0.14 62 1.78 9.64 9877 443.35 8.36 2618 119.47

NCVXQP4 89.54 1 90.98 93.00 1 94.49 0.12 8373 163.19 19.55 7877 438.09 19.44 416 42.25

NCVXQP5 89.18 1 90.59 84.34 1 85.79 0.14 8263 160.94 19.56 1069 78.17 22.38 61 25.79

NCVXQP6 88.20 1 89.60 91.74 1 93.18 0.14 9041 175.54 18.91 9394 531.64 18.91 248 32.56

NCVXQP7 628.16 1 632.76 82.54 1 86.49 0.34 3 0.84 0.17 9736 373.63 0.06 4650 180.96

NCVXQP8 61.02 1 64.21 84.22 1 88.69 0.28 3 0.81 0.19 9994 426.71 0.07 5460 215.20

NCVXQP9 54.51 1 57.41 85.05 1 89.06 0.29 3 0.79 2.20 1790 81.11 2.10 1124 50.49

POWELL20 0.34 1 0.47 0.32 1 0.46 0.14 1 0.20 0.06 3581 54.93 0.06 82 1.37

PRIMAL1 0.11 1 0.12 0.11 1 0.12 0.05 172 0.30 0.01 21 0.05 0.01 31 0.07

PRIMAL2 0.16 1 0.17 0.16 1 0.17 0.05 132 0.31 0.02 23 0.08 0.03 37 0.12

PRIMAL3 0.57 1 0.60 0.59 1 0.62 0.04 117 0.44 0.02 36 0.16 0.01 37 0.16

PRIMAL4 0.30 1 0.32 0.30 1 0.32 0.05 62 0.27 0.01 13 0.08 0.02 53 0.23

PRIMALC1 0.01 1 0.02 0.02 1 0.02 0.02 6 0.03 0.01 248 0.25 0.01 132 0.14

PRIMALC2 0.02 34 0.05 0.03 1 0.03 0.03 4 0.03 0.01 245 0.23 0.01 245 0.24

PRIMALC5 0.02 1 0.02 0.02 1 0.02 0.05 5 0.05 0.02 16 0.04 0.02 14 0.03
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Table E.2: CUTEr QP problems—residual decrease of at least 10−8 (continued)

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

PRIMALC8 0.04 1 0.04 0.03 1 0.04 0.02 5 0.03 0.02 536 0.81 0.01 46 0.08

QPBAND 0.42 1 0.55 0.42 1 0.57 0.19 7 0.37 0.15 50 1.97 0.15 224 8.36

QPNBAND 0.53 1 0.70 0.43 1 0.58 0.18 7 0.36 0.15 30 1.24 0.15 159 5.98

QPCBOEI1 0.05 1 0.09 0.06 1 0.10 0.02 113 0.28 0.01 222 0.51 0.01 23 0.09

QPCBOEI2 0.09 1 0.11 0.09 1 0.11 0.02 4 0.03 0.02 2 0.03 0.02 2 0.03

QPNBOEI1 0.43 1 0.47 0.05 1 0.09 0.03 114 0.29 0.01 20 0.08 0.01 24 0.09

QPNBOEI2 0.11 1 0.12 0.09 1 0.11 0.02 4 0.03 0.01 2 0.02 0.01 2 0.02

QPCSTAIR 0.05 1 0.11 0.05 1 0.11 0.02 144 0.35 0.01 142 0.35 0.01 38 0.14

QPNSTAIR 0.05 1 0.11 0.06 1 0.12 0.02 145 0.35 0.01 135 0.34 0.01 28 0.12

SOSQP1 0.12 1 0.17 0.12 1 0.18 0.07 3 0.13 0.03 18 0.27 0.03 34 0.46

STCQP2 0.86 1 0.96 1.47 1 1.62 0.05 92 1.12 0.09 1 0.13 0.09 6140 89.14

STNQP2 63.37 1 63.72 66.32 1 66.82 0.12 5141 129.65 6.52 4747 177.13 0.27 5966 207.81

UBH1 0.34 1 0.53 0.33 1 0.52 0.13 30 0.87 0.05 472 10.12 0.05 47 1.13

Table E.3: CUTEr QP problems—residual decrease of at least 10−2 and C given by (7.3.3)

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.13 1 0.19 0.13 1 0.19 0.06 19 0.21 0.02 43 0.35 0.02 1 0.06

AUG2DQP 0.12 1 0.18 0.12 1 0.18 0.06 19 0.21 0.02 43 0.35 0.02 1 0.06

AUG3DCQP 0.16 2 0.25 0.17 2 0.25 0.06 14 0.19 0.03 12 0.15 0.03 10 0.14

AUG3DQP 0.17 2 0.25 0.17 2 0.26 0.06 14 0.18 0.03 13 0.16 0.03 10 0.14

BLOCKQP1 4.94 2 32.95 4.93 2 33.05 0.14 1 28.14 0.06 1 28.07 0.07 1 28.10

BLOCKQP2 4.93 2 32.84 4.87 2 33.00 0.14 1 28.11 0.07 1 28.11 0.07 1 27.99

BLOCKQP3 4.94 2 32.87 4.81 2 32.99 0.14 1 28.20 0.06 1 28.11 0.06 1 28.02

BLOWEYA 0.25 1 0.31 14.64 1 14.73 0.06 1 0.09 0.02 1 0.06 0.02 1 0.06

BLOWEYB 0.26 1 0.31 14.72 1 14.82 0.06 1 0.09 0.03 1 0.06 0.02 1 0.06

BLOWEYC 0.26 1 0.31 12.99 1 13.09 0.06 1 0.10 0.03 1 0.07 0.03 1 0.06

CONT-050 0.36 1 0.53 0.60 1 0.79 0.05 1 0.17 0.01 1 0.13 0.01 1 0.13

CONT-101 2.17 1 3.33 4.33 1 5.72 0.20 0 1.03 0.05 0 0.86 0.05 0 0.84

CONT-201 13.18 1 20.95 29.39 1 38.16 0.87 0 6.95 0.23 0 6.46 0.23 0 6.25

CONT1-10 2.16 1 3.34 4.14 1 5.47 0.20 1 1.11 0.05 1 0.93 0.05 1 0.93

CONT1-20 13.24 1 21.52 28.77 1 38.13 0.88 0 7.48 0.22 0 6.80 0.22 0 6.72

CONT5-QP ran out of memory ran out of memory 0.87 1 6.50 0.25 1 5.87 0.25 1 5.83

CVXQP1 0.48 2 0.75 0.46 2 0.79 0.14 2 0.33 0.06 1 0.22 0.06 1 0.22

CVXQP2 0.16 2 0.29 0.16 2 0.29 0.11 2 0.20 0.07 1 0.13 0.07 1 0.13

CVXQP3 0.71 2 1.29 505.39 2 506.87 0.16 1 0.59 0.05 1 0.47 0.05 1 0.47

DUALC1 0.03 1 0.04 0.03 1 0.05 0.01 2 0.03 0.01 2 0.02 0.01 1 0.02

DUALC2 0.02 2 0.04 0.02 2 0.04 0.02 2 0.04 0.01 89 0.13 0.01 150 0.20

DUALC5 0.03 2 0.06 0.03 2 0.06 0.02 2 0.05 0.01 9 0.04 0.01 26 0.07

DUALC8 0.07 2 0.17 0.07 1 0.17 0.02 1 0.12 0.01 3 0.12 0.01 2 0.12

GOULDQP2 0.48 2 0.72 0.47 2 0.78 0.26 4 0.45 0.12 1 0.20 0.12 1 0.21

GOULDQP3 0.47 2 0.71 0.46 2 0.76 0.26 4 0.47 0.12 1 0.21 0.12 1 0.21

KSIP 0.50 2 1.03 0.50 1 1.03 0.03 1 0.56 0.01 2 0.54 0.01 1 0.52

MOSARQP1 0.09 3 0.15 0.09 3 0.15 0.04 6 0.09 0.03 2 0.06 0.02 2 0.06

NCVXQP1 0.41 2 0.69 0.46 2 0.79 0.14 2 0.32 0.06 1 0.21 0.06 1 0.21

NCVXQP2 0.41 14 1.23 0.46 10 1.29 0.15 1 0.30 0.06 1 0.22 0.06 1 0.22

NCVXQP3 0.41 42 2.65 0.46 15 1.59 0.13 2 0.32 0.06 1 0.24 0.06 1 0.22

NCVXQP4 0.16 3 0.33 0.16 3 0.33 0.11 2 0.20 0.07 1 0.13 0.08 1 0.14

NCVXQP5 0.17 13 0.66 0.17 13 0.66 0.15 4 0.27 0.09 1 0.15 0.07 1 0.13

NCVXQP6 0.16 26 0.98 0.16 19 0.77 0.14 2 0.22 0.08 1 0.14 0.07 1 0.13

NCVXQP7 0.83 2 1.40 527.57 3 529.12 0.19 1 0.63 0.05 1 0.46 0.07 1 0.47

NCVXQP8 0.87 11 2.00 528.25 8 530.43 0.17 1 0.62 0.05 1 0.49 0.06 1 0.48

NCVXQP9 0.72 66 4.99 539.13 16 542.62 0.16 1 0.58 0.05 1 0.47 0.06 1 0.48

POWELL20 0.30 1 0.42 0.32 1 0.45 0.13 1 0.19 0.08 2 0.16 0.06 1 0.12

PRIMAL1 0.12 2 0.13 0.12 1 0.13 0.04 18 0.07 0.02 9 0.04 0.02 2 0.03

PRIMAL2 0.16 1 0.17 0.15 1 0.16 0.05 19 0.09 0.02 2 0.03 0.01 2 0.02

PRIMAL3 0.58 1 0.60 0.58 1 0.61 0.03 24 0.13 0.02 2 0.04 0.02 2 0.05

PRIMAL4 0.30 1 0.32 0.30 1 0.32 0.03 15 0.09 0.03 2 0.04 0.03 2 0.04

PRIMALC1 0.02 1 0.02 0.02 1 0.02 0.02 3 0.03 0.02 248 0.25 0.01 97 0.11

PRIMALC2 0.01 1 0.02 0.01 1 0.01 0.06 2 0.06 0.01 245 0.24 0.01 132 0.13

PRIMALC5 0.02 1 0.02 0.03 1 0.03 0.03 3 0.03 0.02 7 0.03 0.01 8 0.02

PRIMALC8 0.03 1 0.04 0.04 1 0.04 0.03 3 0.04 0.01 16 0.03 0.01 12 0.03

QPBAND 0.26 2 0.40 0.24 2 0.41 0.19 2 0.27 0.11 12 0.44 0.10 11 0.41

QPNBAND 0.24 1 0.33 0.24 2 0.42 0.19 2 0.27 0.10 10 0.39 0.12 8 0.34

QPCBOEI1 0.05 6 0.10 0.05 4 0.10 0.03 2 0.06 0.01 2 0.04 0.01 2 0.04

QPCBOEI2 0.10 6 0.12 0.10 3 0.12 0.02 2 0.03 0.01 1 0.02 0.01 1 0.02

QPNBOEI1 0.05 7 0.11 0.05 5 0.11 0.04 2 0.07 0.02 2 0.05 0.01 2 0.05

QPNBOEI2 0.11 6 0.13 0.09 3 0.11 0.02 2 0.03 0.01 1 0.02 0.01 1 0.02
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Table E.3: CUTEr QP problems—residual decrease of at least 10−8 (continued)

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

QPCSTAIR 0.05 4 0.12 0.05 3 0.12 0.02 3 0.08 0.01 1 0.06 0.01 1 0.06

QPNSTAIR 0.06 4 0.12 0.06 3 0.12 0.02 4 0.09 0.01 1 0.06 0.01 1 0.06

SOSQP1 0.11 1 0.16 0.12 1 0.18 0.07 1 0.10 0.03 1 0.06 0.03 1 0.06

STCQP2 0.13 1 0.19 0.14 1 0.20 0.05 4 0.12 0.03 255 3.08 0.03 4 0.09

STNQP2 0.31 1 0.43 0.32 5 0.58 0.12 4 0.28 0.06 1 0.14 0.06 5 0.23

UBH1 0.34 1 0.52 0.34 1 0.52 0.14 2 0.29 0.05 1 0.17 0.05 4 0.23

Table E.4: CUTEr QP problems—residual decrease of at least 10−8 and C given by (7.3.3)

Explicit factors Implicit factors

G = H G = I Family 1 Family 2(a) Family 2(b)

name fact. iter. total fact. iter. total fact. iter. total fact. iter. total fact. iter. total

AUG2DCQP 0.13 6 0.26 0.13 7 0.27 0.06 163 1.12 0.02 1158 7.94 0.02 233 1.61

AUG2DQP 0.12 6 0.24 0.12 7 0.26 0.06 159 1.09 0.02 72 0.55 0.02 247 1.74

AUG3DCQP 0.16 7 0.32 0.17 7 0.33 0.06 109 0.79 0.03 88 0.69 0.03 65 0.53

AUG3DQP 0.17 8 0.34 0.17 8 0.34 0.06 107 0.75 0.03 91 0.71 0.03 65 0.52

BLOCKQP1 4.94 2 33.05 4.93 2 32.97 0.14 1 28.12 0.06 2 28.18 0.07 2 28.17

BLOCKQP2 4.93 2 33.02 4.87 2 32.90 0.14 1 28.07 0.07 2 28.17 0.07 2 28.14

BLOCKQP3 4.94 2 32.92 4.81 3 32.82 0.14 1 28.11 0.06 2 28.09 0.06 2 28.16

BLOWEYA 0.25 5 0.36 14.64 4 14.82 0.06 1 0.09 0.02 1 0.06 0.02 1 0.06

BLOWEYB 0.26 5 0.37 14.72 4 14.90 0.06 1 0.09 0.03 1 0.06 0.02 1 0.06

BLOWEYC 0.26 5 0.37 12.99 4 13.18 0.06 1 0.10 0.03 1 0.07 0.03 1 0.06

CONT-050 0.36 7 0.67 0.60 8 1.03 0.05 8 0.22 0.01 19 0.27 0.01 19 0.27

CONT-101 2.17 6 3.96 4.33 7 6.97 0.20 0 1.02 0.05 0 0.86 0.05 0 0.84

CONT-201 13.18 6 24.10 29.39 6 43.18 0.87 0 6.92 0.23 0 6.37 0.23 0 6.30

CONT1-10 2.16 6 3.99 4.14 8 6.80 0.20 8 1.33 0.05 19 1.54 0.05 19 1.53

CONT1-20 13.24 6 24.70 28.77 7 43.92 0.88 0 7.53 0.22 0 6.72 0.22 0 6.75

CONT5-QP ran out of memory ran out of memory 0.87 1 6.55 0.25 36 13.90 0.25 36 13.30

CVXQP1 0.48 124 6.61 0.46 73 4.99 0.14 97 2.63 0.06 21 0.74 0.06 22 0.76

CVXQP2 0.16 116 3.66 0.16 85 2.72 0.11 180 3.77 0.07 27 0.71 0.07 15 0.45

CVXQP3 0.71 134 9.71 505.39 67 513.12 0.16 4 0.70 0.05 19 1.14 0.05 20 1.14

DUALC1 0.03 8 0.05 0.03 7 0.05 0.01 11 0.05 0.01 130 0.18 0.01 13 0.04

DUALC2 0.02 5 0.05 0.02 3 0.04 0.02 8 0.04 0.01 163 0.22 0.01 228 0.29

DUALC5 0.03 10 0.07 0.03 8 0.07 0.02 9 0.06 0.01 13 0.05 0.01 55 0.11

DUALC8 0.07 9 0.19 0.07 4 0.18 0.02 12 0.14 0.01 51 0.21 0.01 71 0.26

GOULDQP2 0.48 5 0.95 0.47 5 1.01 0.26 18 0.91 0.12 42 1.68 0.12 30 1.21

GOULDQP3 0.47 5 0.94 0.46 5 1.00 0.26 18 0.94 0.12 34 1.42 0.12 51 2.09

KSIP 0.50 6 1.05 0.50 8 1.07 0.03 15 0.61 0.01 6 0.57 0.01 5 0.54

MOSARQP1 0.09 14 0.26 0.09 13 0.25 0.04 50 0.26 0.03 14 0.12 0.02 14 0.11

NCVXQP1 0.41 9898 483.79 0.46 5925 352.31 0.14 91 2.46 0.06 21 0.73 0.06 22 0.74

NCVXQP2 0.41 9929 465.07 0.46 9929 582.50 0.15 4966 120.38 0.06 23 0.78 0.06 23 0.78

NCVXQP3 0.41 9997 466.65 0.46 8242 492.05 0.13 92 2.48 0.06 21 0.72 0.06 21 0.72

NCVXQP4 0.16 9489 296.79 0.16 8756 277.30 0.11 2693 52.80 0.07 28 0.74 0.08 16 0.48

NCVXQP5 0.17 9990 319.96 0.17 9973 320.34 0.15 9970 195.47 0.09 28 0.75 0.07 15 0.44

NCVXQP6 0.16 7284 209.70 0.16 9835 287.43 0.14 4658 85.75 0.08 27 0.72 0.07 15 0.44

NCVXQP7 0.83 9906 598.40 527.57 6192 1120.71 0.19 4 0.76 0.05 19 1.12 0.07 20 1.16

NCVXQP8 0.87 9918 640.50 528.25 9756 1523.06 0.17 4 0.76 0.05 19 1.20 0.06 20 1.17

NCVXQP9 0.72 9997 578.21 539.13 9884 1467.28 0.16 4 0.70 0.05 19 1.13 0.06 20 1.15

POWELL20 0.30 1 0.41 0.32 1 0.46 0.13 1 0.19 0.08 317 5.01 0.06 10 0.26

PRIMAL1 0.12 6 0.14 0.12 9 0.15 0.04 166 0.28 0.02 15 0.05 0.02 30 0.07

PRIMAL2 0.16 6 0.19 0.15 7 0.18 0.05 133 0.31 0.02 23 0.08 0.01 11 0.04

PRIMAL3 0.58 6 0.63 0.58 6 0.63 0.03 120 0.44 0.02 10 0.07 0.02 9 0.07

PRIMAL4 0.30 5 0.34 0.30 5 0.34 0.03 62 0.25 0.03 8 0.07 0.03 7 0.06

PRIMALC1 0.02 5 0.03 0.02 4 0.02 0.02 7 0.03 0.02 248 0.26 0.01 248 0.26

PRIMALC2 0.01 4 0.02 0.01 4 0.02 0.06 6 0.06 0.01 245 0.25 0.01 12 0.02

PRIMALC5 0.02 4 0.03 0.03 4 0.03 0.03 6 0.03 0.02 10 0.03 0.01 11 0.02

PRIMALC8 0.03 5 0.05 0.04 4 0.05 0.03 6 0.04 0.01 21 0.04 0.01 56 0.10

QPBAND 0.26 5 0.54 0.24 4 0.51 0.19 8 0.40 0.11 489 12.58 0.10 141 3.66

QPNBAND 0.24 9 0.69 0.24 6 0.61 0.19 7 0.38 0.10 131 3.43 0.12 76 2.06

QPCBOEI1 0.05 21 0.15 0.05 17 0.15 0.03 103 0.26 0.01 23 0.09 0.01 24 0.09

QPCBOEI2 0.10 19 0.15 0.10 18 0.15 0.02 4 0.03 0.01 2 0.03 0.01 2 0.03

QPNBOEI1 0.05 21 0.15 0.05 17 0.15 0.04 104 0.28 0.02 22 0.10 0.01 24 0.09

QPNBOEI2 0.11 18 0.16 0.09 18 0.15 0.02 4 0.03 0.01 2 0.02 0.01 2 0.02

QPCSTAIR 0.05 20 0.17 0.05 19 0.18 0.02 137 0.34 0.01 15 0.09 0.01 970 2.03

QPNSTAIR 0.06 20 0.18 0.06 19 0.18 0.02 125 0.32 0.01 15 0.09 0.01 11 0.09

SOSQP1 0.11 2 0.18 0.12 2 0.20 0.07 5 0.15 0.03 8 0.15 0.03 59 0.77

STCQP2 0.13 57 1.07 0.14 51 1.14 0.05 67 0.79 0.03 6029 71.04 0.03 5989 66.54

STNQP2 0.31 2402 87.38 0.32 529 18.89 0.12 930 22.62 0.06 1 0.14 0.06 5 0.24

UBH1 0.34 6 0.76 0.34 5 0.67 0.14 28 0.82 0.05 31 0.81 0.05 24 0.65



Appendix F

Matlab R© command descriptions

In the following appendix we describe some of the Matlab R© functions which

we use in Chapter 8. The descriptions are adapted from those provided in the

documentation available with Matlab R©.

F.1 The LU function

The command [L,U,P] = LU(X) returns a unit lower triangular matrix L,

upper triangular matrix U, and permutation matrix P so that P*X = L*U.

A column permutation can also be introduced: [L,U,P,Q] = LU(X) re-

turns unit lower triangular matrix L, upper triangular matrix U, a permutation

matrix P and a column reordering matrix Q so that P*X*Q = L*U for sparse

non-empty X.

[L,U,P] = LU(X,THRESH) controls pivoting in sparse matrices, where THRESH

is a pivot threshold in [0,1]. Pivoting occurs when the diagonal entry in a col-

umn has magnitude less than THRESH times the magnitude of any sub-diagonal

entry in that column. THRESH = 0 forces diagonal pivoting. THRESH = 1 is the

default.

[L,U,P,Q] = LU(X,THRESH) also controls pivoting, but in addition a col-

umn permutation is returned, where THRESH is a pivot threshold in [0,1]. Given

a pivot column j, the sparsest candidate pivot row i is selected such that the

absolute value of the pivot entry is greater than or equal to THRESH times

the largest entry in the column j. The magnitude of entries in L is limited to

1/THRESH. A value of 1.0 results in conventional partial pivoting. The default

value is 0.1. Smaller values tend to lead to sparser LU factors, but the solution
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can become inaccurate. Larger values can lead to a more accurate solution

(but not always), and usually an increase in the total work.

F.2 The QR function

The Matlab R© command [Q,R] = QR(A), where A is m by n, produces an m

by n upper triangular matrix R and an m by m unitary matrix Q so that A =

Q*R.

If A is full then the command [Q,R,E] = QR(A) can be used. This produces

unitary Q, upper triangular R and a permutation matrix E so that A*E = Q*R.

The column permutation E is chosen so that ABS(DIAG(R)) is decreasing.



Appendix G

CUTEr QP problems: Complete
tables

The following appendix gives complete results corresponding to the numerical

experiments carried out in Section 8.1.1.3. The total number of interior point

iterations “k”, the total number of PPCG iterations to solve the predictor

step “Total Its 1”, the total number of PPCG iterations to solve the corrector

step “Total Its 2”, the total amount of CPU time used “Total CPU” and

the percentage of the CPU time which was spent finding the permutation “%

Permutation” are given for different preconditioners.

Table G.1: CUTEr QP problems—Number of iterations used

Problem Impl1 Impl2 Impl3 Impl4 Expl1 Expl2

AUG2DCQP M k 139 139 45 109 21 20

n = 3280 Total Its 1 6051 6051 2740 12060 30 2118

m = 1600 Total Its 2 6518 6518 3011 13846 21 2293

Total CPU 108.00 108.00 165.60 195.04 94.62 59.93

% Permutation 3.25 3.25 2.05 1.39 0 0

AUG2DQP M k 143 143 85 97 25 24

n = 3280 Total Its 1 23037 23037 24091 16426 40 3007

m = 1600 Total Its 2 24174 24174 29405 19020 25 3007

Total CPU 299.88 299.88 506.05 253.40 156.09 88.25

% Permutation 1.20 1.20 0.71 0.92 0 0

AUG3DCQP M k 17 17 15 16 11 11

n = 3873 Total Its 1 1475 1475 1297 20762 11 9869

m = 1000 Total Its 2 1568 1568 1336 20507 11 9689

Total CPU 26.06 26.06 35.43 253.90 23.02 23.11

% Permutation 1.80 1.80 1.35 0.18 0 0

AUG3DQP M k 14 14 14 15 12 12

n = 3873 Total Its 1 2612 2612 2817 20077 12 4058

m = 1000 Total Its 2 2722 2722 2822 20927 12 4324
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Table G.1: CUTEr QP problems—Number of iterations used (continued)

Problem Impl1 Impl2 Impl3 Impl4 Expl1 Expl2

Total CPU 37.09 37.09 52.92 233.08 23.72 117.70

% Permutation 1.02 1.02 0.74 0.18 0 0

BLOCKQP1 k 17 9 — — 10 9

n = 10011 Total Its 1 43 23 — — 10 14

m = 5001 Total Its 2 43 24 — — 10 14

Total CPU 6991.59 4499.18 — — 220.36 199.50

% Permutation 94.49 95.61 — — 0 0

CONT-050 k 6 6 6 6 6 6

n = 2597 Total Its 1 35 35 35 51 6 42

m = 2401 Total Its 2 35 35 35 51 6 41

Total CPU 7.88 7.88 9.99 8.43 63.72 14.45

% Permutation 34.64 34.64 27.68 32.86 0 0

CONT-101 k 10 10 10 10 — —

n = 10197 Total Its 1 36 36 36 33 — —

m = 10098 Total Its 2 37 37 37 37 — —

Total CPU 83.29 83.29 98.25 75.19 — —

% Permutation 37.11 37.11 31.76 37.17 — —

CONT-201 k 9 9 9 9 23 —

n = 10197 Total Its 1 43 43 43 72 49 —

m = 10098 Total Its 2 31 31 31 74 57 —

Total CPU 859.61 859.61 864.26 880.43 2306.97 —

% Permutation 57.23 57.23 57.35 55.52 0 —

CONT-300 k 9 9 9 9 memory memory

n = 90597 Total Its 1 46 46 46 65 — —

m = 90298 Total Its 2 43 43 43 65 — —

Total CPU 3791.34 3791.34 4047.43 3811.77 — —

% Permutation 63.84 63.87 60.28 63.58 — —

CONT5-QP k 18 18 18 — 9 9

n = 40601 Total Its 1 16452 16452 16452 — 9 17

m = 40200 Total Its 2 17532 17532 17532 — 9 17

Total CPU 28564.53 28564.53 82627.57 — 638.08 651.66

% Permutation 4.84 4.84 1.70 — 0 0

CONT1-10 k 6 6 6 6 memory —

n = 10197 Total Its 1 37 37 37 56 — —

m = 9801 Total Its 2 38 38 38 56 — —

Total CPU 67.92 67.92 80.27 70.30 — —

% Permutation 50.25 50.25 42.74 48.58 — —

CVXQP1 M k 12 12 13 14 11 11

n = 1000 Total Its 1 1066 1405 1140 8257 108 6754

m = 500 Total Its 2 1093 1415 1267 8238 109 6752

Total CPU 9.50 15.45 17.22 105.70 8.88 68.26

% Permutation 5.05 3.17 3.31 0.51 0 0
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Table G.1: CUTEr QP problems—Number of iterations used (continued)

Problem Impl1 Impl2 Impl3 Impl4 Expl1 Expl2

CVXQP2 M k 13 13 13 20 12 14

n = 1000 Total Its 1 256 656 256 13859 260 7310

m = 250 Total Its 2 265 675 260 13815 263 6945

Total CPU 4.04 7.18 4.98 132.39 7.24 71.05

% Permutation 4.70 2.65 3.61 0.19 0 0

CVXQP3 M k 11 11 11 11 10 10

n = 1000 Total Its 1 825 1132 765 3827 79 2362

m = 750 Total Its 2 871 1124 783 3688 79 2335

Total CPU 9.27 15.05 14.01 40.23 12.96 47.02

% Permutation 22.00 13.42 14.70 4.87 0 0

DUALC1 k 9 12 13 13 11 12

n = 223 Total Its 1 28 61 45 89 35 112

m = 215 Total Its 2 29 80 48 90 36 103

Total CPU 0.78 1.75 1.31 1.87 0.99 1.22

% Permutation 7.69 4.57 6.11 3.74 0 0

DUALC2 k 41 16 10 10 7 8

n = 235 Total Its 1 244 107 34 40 23 40

m = 229 Total Its 2 277 108 33 38 24 39

Total CPU 3.56 2.36 0.99 1.04 0.65 0.71

% Permutation 6.18 4.23 3.03 3.85 0 0

DUALC5 k 13 16 22 7 8 7

n = 285 Total Its 1 24 95 40 39 44 48

m = 278 Total Its 2 25 89 41 36 43 48

Total CPU 1.21 2.47 2.24 1.05 1.01 0.87

% Permutation 6.61 2.43 5.36 4.76 0 0

DUALC8 k 9 10 11 11 9 6

n = 510 Total Its 1 35 42 41 56 39 28

m = 503 Total Its 2 38 45 49 59 40 29

Total CPU 1.97 2.63 2.74 2.93 2.25 1.47

% Permutation 4.57 4.18 4.38 3.41 0 0

GOULDQP2 k 54 55 125 52 25 13

n = 19999 Total Its 1 351 24835 1498 20225 61538 72441

m = 9999 Total Its 2 2430 19989 15529 20312 50204 69779

Total CPU 195.38 1657.18 1480.50 1396.20 21221.31 11900.73

% Permutation 4.31 0.51 1.53 0.58 0 0

GOULDQP3 k 64 82 57 194 10 10

n = 19999 Total Its 1 4889 1175 17521 74205 34 78278

m = 9999 Total Its 2 5354 1852 21927 84847 33 77861

Total CPU 578.96 203.27 3352.42 5033.66 18.93 11406.81

% Permutation 1.99 7.37 0.31 0.70 0 0

KSIP k 15 15 15 15 13 25

n = 1021 Total Its 1 29 29 29 220 13 378
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Table G.1: CUTEr QP problems—Number of iterations used (continued)

Problem Impl1 Impl2 Impl3 Impl4 Expl1 Expl2

m = 1001 Total Its 2 34 34 34 247 13 540

Total CPU 19.99 19.99 20.46 23.51 13.99 32.25

% Permutation 35.12 35.12 34.41 30.11 0 0

MOSARQP1 k 12 12 12 15 12 20

n = 3200 Total Its 1 4104 4116 4100 22282 34 36452

m = 700 Total Its 2 4080 4134 4089 21732 35 31205

Total CPU 56.58 66.69 74.71 313.54 44.64 937.51

% Permutation 0.44 0.37 0.33 0.10 0 0

PRIMALC1 k 34 34 34 — 28 —

n = 239 Total Its 1 104 104 104 — 28 —

m = 9 Total Its 2 125 125 125 — 28 —

Total CPU 1.84 1.84 2.15 — 1.69 —

% Permutation 7.61 5.61 7.44 — 0 —

PRIMALC2 k 46 46 46 — 23 —

n = 238 Total Its 1 71 71 71 — 23 —

m = 7 Total Its 2 101 101 101 — 23 —

Total CPU 2.41 2.41 2.47 — 1.24 —

% Permutation 8.71 8.71 10.53 — 0 —

PRIMALC5 k 44 44 44 — 21 65

n = 295 Total Its 1 300 300 300 — 21 12504

m = 8 Total Its 2 278 278 278 — 21 13272

Total CPU 2.69 2.69 3.20 — 1.28 37.24

% Permutation 8.55 8.55 7.81 — 0 0

PRIMALC8 k 42 42 42 — 24 —

n = 528 Total Its 1 213 213 213 — 24 —

m = 8 Total Its 2 206 206 206 — 24 —

Total CPU 3.31 3.31 4.45 — 2.50 —

% Permutation 8.76 8.76 7.64 — 0 —

PRIMAL1 k 13 13 13 13 13 13

n = 410 Total Its 1 1311 1311 1311 2604 13 1913

m = 85 Total Its 2 1322 1322 1322 2607 13 1882

Total CPU 7.01 7.01 11.82 20.70 2.47 10.71

% Permutation 4.71 4.71 2.62 1.74 0 0

PRIMAL2 k 12 12 12 12 12 12

n = 745 Total Its 1 832 832 832 3193 12 2415

m = 96 Total Its 2 805 805 805 3225 12 2438

Total CPU 6.84 6.84 10.55 34.50 3.44 18.88

% Permutation 8.63 4.82 5.50 1.62 0 0

PRIMAL3 k 12 12 12 12 12 12

n = 856 Total Its 1 1739 1739 1739 5562 12 2846

m = 111 Total Its 2 1705 1705 1705 5534 12 2831

Total CPU 20.05 20.05 30.81 78.69 8.77 40.93
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Table G.1: CUTEr QP problems—Number of iterations used (continued)

Problem Impl1 Impl2 Impl3 Impl4 Expl1 Expl2

% Permutation 6.48 6.48 4.25 1.65 0 0

PRIMAL4 k 10 10 10 11 10 10

n = 10197 Total Its 1 1436 1436 1436 7473 10 3722

m = 10098 Total Its 2 1407 1407 1407 7443 10 3721

Total CPU 15.38 15.38 20.85 92.49 4.80 44.97

% Permutation 6.37 6.37 4.84 1.21 0 0

QPCSTAIR k 433 433 433 733 33 172

n = 614 Total Its 1 255952 255952 255952 425570 33 111810

m = 356 Total Its 2 234820 234820 234820 426534 33 105678

Total CPU 1686.25 1686.25 2928.70 7220.83 12.38 1266.04

% Permutation 0.36 0.36 0.22 0.15 0 0

QPNSTAIR k 798 798 798 113 32 297

n = 614 Total Its 1 438152 438152 438152 58502 32 161547

m = 356 Total Its 2 372670 372670 372670 57028 32 169140

Total CPU 2486.57 2486.57 4407.28 1214.57 12.64 2583.85

% Permutation 0.49 0.49 0.28 0.14 0 0

SOSQP1 k 10 10 15 — — —

n = 5000 Total Its 1 10 10 16 — — —

m = 2501 Total Its 2 11 11 19 — — —

Total CPU 3.66 3.66 6.82 — — —

% Permutation 12.84 12.84 9.53 — — —

STCQP2 k 16 16 16 16 16 16

n = 8193 Total Its 1 16 63 16 3541 63 3645

m = 4095 Total Its 2 16 71 16 3508 71 3626

Total CPU 8.38 8.64 9.08 107.92 9.47 165.79

% Permutation 18.38 18.26 16.52 1.33 0 0



Appendix H

CUTEr Inequality constrained QP
problems: Complete tables

The following appendix gives complete results corresponding to the numerical

experiments carried out in Section 8.1.2.1. The total number of interior point

iterations “k”, the total number of PPCG iterations to solve the resulting

saddle point system “Its”, and the total amount of CPU time used “CPU” are

given for different preconditioners. Performance profiles based on this data are

also provided.

Table H.1: CUTEr QP problems—Number of iterations used

Problem Expl1 Expl2 Fam1a Fam1b Fam1c Fam2a Fam2b Fam2c Fam2d Fam3a Fam3b

AUG2DC- k 13 13 13 13 13 13 13 13 13 13 13

QP M Its 13 24 1000 941 892 895 895 895 972 897 975

CPU 26.81 26.30 31.51 31.26 30.77 30.76 30.76 30.86 31.46 32.93 33.50

AUG2D- k 13 13 13 13 13 13 13 13 13 13 13

QP M Its 13 41 1044 941 840 871 871 989 1026 839 1029

CPU 26.09 26.45 31.57 30.95 30.36 30.59 30.53 31.35 31.68 32.28 33.95

AUG3DC- k 26 26 97 105 95 111 200 105 79 88 85

QP M Its 507 473 3258 3616 3052 3817 4522 3293 3046 2816 2769

CPU 26.77 26.04 85.76 93.97 83.39 99.83 175.32 92.49 73.12 82.34 79.75

AUG3D- k 14 14 47 52 52 76 200 57 50 75 68

QP M Its 93 108 2109 2318 2227 3124 5451 2591 2192 3199 2783

CPU 12.52 12.84 46.21 50.97 50.53 73.26 185.38 56.93 49.02 78.59 69.97

CONT-050 k 13 13 13 13 13 13 14 13 13 13 13

Its 483 352 538 583 567 564 278 545 532 571 537

CPU 243.93 236.23 95.62 96.47 96.26 95.54 97.68 95.14 95.06 101.45 100.73

CONT-101 k — — 5 5 5 — — — — — —

Its — — 5 5 5 — — — — — —

CPU — — 3313 3351 3566 — — — — — —

CONT1-10 k 17 17 25 18 24 27 54 24 25 25 25

Its 835 677 2227 1517 2096 2015 1502 2061 2243 2082 2245

CPU 9193 8973 13172 8960 12108 13478 25933 12542 13345 12647 12354

CVXQP1 M k 27 31 45 42 47 34 48 51 47 — —

Its 1802 3256 9522 6493 10460 5348 7471 13744 9991 — —

CPU 27.07 42.31 34.51 30.17 36.72 25.57 35.75 48.73 36.58 — —
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Table H.1: CUTEr QP problems—Number of iterations used (continued)

Problem Expl1 Expl2 Fam1a Fam1b Fam1c Fam2a Fam2b Fam2c Fam2d Fam3a Fam3b

CVXQP2 M k 24 27 27 24 24 24 23 25 26 — —

Its 2161 3596 4452 1233 3800 1214 1281 8331 4254 — —

CPU 13.73 14.62 12.71 8.25 10.60 8.10 8.32 23.02 12.34 — —

CVXQP3 M k 71 101 157 122 146 121 135 148 141 — —

Its 2229 5489 16085 16842 15452 15028 16007 16102 15297 — —

CPU 92.36 150.83 103.46 103.66 96.50 93.86 102.15 98.55 93.84 — —

DUALC2 k 200 13 200 27 200 200 200 52 7 82 13

Its 409 2277 10431 3526 12773 17601 743 6882 851 12673 590

CPU 10.38 3.01 22.78 5.75 26.73 31.69 8.84 10.62 1.32 25.83 1.56

DUALC5 k 27 200 200 200 9 200 200 200 200 200 26

Its 200 24460 5518 4088 271 11104 605 6843 9489 3335 962

CPU 1.40 54.22 18.98 17.49 0.89 25.15 10.55 18.45 21.17 16.83 3.10

KSIP k 76 15 22 22 14 7 7 7 7 7 7

Its 76 41 103 157 51 12 12 13 13 12 13

CPU 80.20 16.17 19.78 18.89 11.63 8.12 8.04 8.05 8.09 8.18 8.15

MOSARQP1 k 18 28 6 7 10 10 10 8 11 12 12

Its 72 390 138 87 227 105 105 107 134 159 89

CPU 6.55 12.66 2.44 2.68 3.95 3.71 3.52 2.82 3.69 4.75 3.81

PRIMAL1 k 11 8 7 7 7 11 11 13 8 13 8

Its 200 31 404 302 411 187 187 174 134 168 135

CPU 1.55 0.99 1.13 0.97 1.17 0.96 0.95 1.05 0.69 1.23 0.81

PRIMAL2 k 8 8 7 7 7 8 8 7 8 8 16

Its 124 80 520 368 555 149 149 150 187 151 813

CPU 1.71 1.54 1.93 1.65 2.10 1.15 1.16 1.07 1.25 1.32 4.22

PRIMAL3 k 13 13 9 9 9 8 8 6 8 8 8

Its 438 293 1652 1118 1623 195 195 182 233 197 234

CPU 8.74 6.87 8.74 6.57 8.77 2.55 2.56 2.07 2.74 2.83 2.99

PRIMAL4 k 21 12 8 9 8 6 6 6 6 6 6

Its 310 46 1499 1416 1547 150 150 194 192 145 193

CPU 8.36 3.53 7.22 7.08 7.36 1.74 1.75 1.93 1.92 1.87 2.07

QPBAND k 13 7 9 10 7 7 7 7 9 7 7

Its 73 35 191 171 163 151 151 367 337 200 147

CPU 683.91 390.09 488.90 539.15 391.10 392.88 392.93 396.28 492.66 395.95 391.72

QPCSTAIR k 56 64 60 59 60 59 63 61 63 60 59

Its 1190 2806 3319 3116 3614 3068 2764 5326 3138 3605 3264

CPU 25.90 36.24 12.51 11.68 12.86 11.44 13.71 17.14 12.19 15.26 14.35

SOSQP1 k 6 6 8 9 8 9 9 9 8 6 15

Its 6 6 11 12 11 12 13 12 11 15 33

CPU 77.93 88.51 59.76 66.44 59.71 66.29 66.01 66.09 59.40 46.50 105.80

STCQP2 k 74 74 73 73 73 73 74 73 74 93 75

Its 1146 2216 4355 5541 5729 5485 5196 14471 4378 32656 5639

CPU 702.32 807.47 316.91 396.21 332.36 398.94 434.13 450.43 324.74 2802.36 354.24
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Figure H.1: Performance profile, p(α): CPU time (seconds) to solve QP programming problems.
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inequality constrained, 8

mixed constraints, 22

Affine direction, 19

Arnoldi method, 42

Arrow-Hurwicz method, 38

Augmented Lagrangian technique, 54

Bi-Conjugate gradient method, 45

Bi-CGSTAB, 45

Bi-conjugate gradient method, 101

Block diagonal preconditioner, 157

Block triangular form, 149

Cholesky factorization, 30, 48

Complementary slackness, 8, 9

Condition number, 35

Conjugate gradient method, 40, 42, 47

convergence, 41

full system, 50, 51

preconditioner, 41

projected, 62, 63, 81, 82

reduced, 48, 49

Constrained minimization

equality constrained, 4

inequality constrained, 4

optimality conditions, 7

mixed constraints, 4

optimality conditions, 9

Constraint preconditioner, 51, 64

implicit factorization, 103

implicit families, 122

Krylov subspace dimension, 53

spectral properties, 52

Displacement method, 32

Doubly augmented system, 169

Dual variable method, 34

Euclidean inner product, 4

Feasibility

dual feasibility, 7

feasible point, 3

feasible set, 3

infeasible point, 3

primal feasibility, 7

feasibility

dual, 8, 9

primal, 8, 9

First-order optimality conditions

equality constrained optimization,

7

inequality constrained optimization,

8

mixed constraints optimization, 9

unconstrained optimization, 6

Floating point operation

flop, 29

Force method, 34

Fundamental basis, 34

Gaussian elimination, 28
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LU factorization, 29

pivoting, 29

Generalized minimum residual method,

42

restarted, 45

Gerschgorin’s Theorem, 23

Global minimizer, 5

Goldman-Tucker Theorem, 22

Gradient, 4

Hessian, 4

HSS preconditioner, 160

Incidence matrix, 107

Inertia, 5

Interior point methods, 11, 16

central path, 14

ill-conditioning, 24, 35

inequality constrained, 12

Mehrotra’s Method, 18

mixed constraints, 16

Jacobian, 4

Karush-Kuhn-Tucker, see KKT

KKT, 8, 12

Krylov subspace, 40

Lagrange multipliers, 4, 7

Lagrangian function, 4

LICQ, 8

Local minimizer, 5

Loop analysis, 34

LU factorization, see Gaussian Elimi-

nation

Minimum polynomial, 74

Minimum residual method, 42

Navier-Stokes equations, 159

Neighbourhood, 5

Nodal analysis method, 32

Nullspace, 48

fundamental basis, 55, 104

Nullspace methods, 32

Objective function, 3

Optimality conditions, see first-order

optimality conditions, second-

order optimality conditions

equality constrained, 6

inequality constrained, 7

mixed constraints optimization, 9

unconstrained optimization, 6

PCG, see Conjugate gradient method

Performance profile, 117

Preconditioned residual, 50

Preconditioner, 44

Projected Hessian methods, 34

Projection matrix, 50

Quadratic programming, 17

saddle point problem, 18

spectral properties, 22

Range-space method, 32

Reduced gradient technique, 104

Reduced Hessian methods, 34

Saddle point problem, 12, 19

invertibility, 20

spectral properties, 21

quadratic programming, 22

Schilders factorization, 107

Schur complement, 20, 32

Schur complement method, 31
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Second-order optimality conditions

equality constrained, 7

inequality constrained optimization,

8

mixed constraints optimization, 9,

10

unconstrained optimization, 6

Stokes equations, 26

Unconstrained minimization, 3

Unconstrained optimization

Optimality conditions, 6

Uzawa’s method, 38

Variable reduction technique, 104


